Skip to main content

Potential Eco-friendly Techniques for the Management of Organic Pollutants from Industry Effluents

  • Chapter
  • First Online:
Organic Pollutants

Abstract

Bioremediation techniques have become noticeable and valuable tools to reduce, reuse, and recycle different industrial effluents through eco-friendly practices. Industries are well known to release anthropogenic-related chemicals into the environment over the century and consequences are witnessed as contamination of soil, water, and air, respectively. The untreated or impertinently treated wastewater effluents are known to be toxic to plants and animals, including humans that lead to negative impacts on the earth. Remediation has emerged for degrading contaminants using physical, chemical, and biological methods. Bioremediation techniques are used nowadays around the world meticulously. It is technology based along with the combined action of plants and associated microbial communities to degrade, remove, transform, or immobilize toxic compounds in effluents. This chapter discusses the classes of organic effluents, toxicological mechanism, and its environmental impact and also emphasizes the current and advanced eco-friendly techniques in the remediation of organic effluents through microbial, algal bioremediation and phytoremediation. Bioremediation techniques are potential, cost-effective, and in addition to that remains as a solution to the challenge of treating many classes of contaminants, compared to the conventional chemical and physical methods, which are often very expensive and ineffective compared to biological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboulhassan, M. A., Souabi, S., Yaacoubi, A., & Baudu, M. (2006). Removal of surfactant from industrial wastewaters by coagulation flocculation process. International journal of Environmental Science and Technology, 3, 327–332.

    Article  CAS  Google Scholar 

  • Ahmad, M., Bajahlan, A. S., & Hammad, W. S. (2008). Industrial effluent quality, pollution monitoring and environmental management. Environmental Monitoring and Assessment, 147, 297–306.

    Article  CAS  Google Scholar 

  • Albert, J., Ravendra, N. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation.

    Google Scholar 

  • Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. Environmental Management, 60, 758–783.

    Article  Google Scholar 

  • Alharbi, O. M. L., Basheer, A. A., Khattab, R. A., & Ali, I. (2018). Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids, 263, 442–453.

    Article  CAS  Google Scholar 

  • Anjaneyulu, Y., Sreedhara, C. N., & Samuel, S. R. D. (2005). Decolourization of industrial effluents – Available methods and emerging technologies – A review. Reviews in Environmental Science and Bio/Technology, 4, 245–273.

    Article  CAS  Google Scholar 

  • Anushree, M. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–275.

    Google Scholar 

  • Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14, 94.

    Article  Google Scholar 

  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques– Classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32, 180.

    Article  Google Scholar 

  • Baghour, M. (2019). Algal degradation of organic pollutants. In Handbook of ecomaterials (pp. 565–586). Springer.

    Chapter  Google Scholar 

  • Banat, M. E., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile dye containing effluents, a review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Banitz, T., Frank, K., Wick, L. Y., Harms, H., Johst, K. (2016). Spatial metrics as indicators of biodegradation benefits from bacterial dispersal networks. Ecological Indicators, 60, 54–63.

    Google Scholar 

  • Banuelos, G. S. (2000). Factors influencing field phytoremediation of selenium-laden soils. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 41–61). Boca Raton: Lewis.

    Google Scholar 

  • Bhattacharya, M., Guchhait, S., Biswas, D., Datta, S. (2015). Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study. Bioprocess and Biosystems Engineering, 38, 2095–2106.

    Google Scholar 

  • Begum, A., Harikrishna, S., & Khan, I. (2009). A survey of persistent organochlorine pesticides residues in some streams of the Cauvery River, Karnataka, India. International Journal of Chemical Technology Research, 1, 237–244.

    CAS  Google Scholar 

  • Bishnu, A., Chakrabarti, K., Chakraborty, A., & Saha, T. (2009). Pesticide residue level in tea ecosystems of Hill and Dooars regions of West Bengal, India. Environment Monitoring and Assessment, 149, 457–464.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Tiede, K., & Chaudhry, Q. (2007). Engineered nanomaterials in soils and water: How do they behave and could they pose a risk to human health? Nanomedicine, 2, 919–927.

    Article  CAS  Google Scholar 

  • Brown, T. N., & Wania, F. (2008). Screening chemicals for the potential to be persistent organic pollutants: A case study of Arctic contaminants. Environmental Science & Technology, 42, 5202–5209.

    Article  CAS  Google Scholar 

  • Cassidy, D. P., Srivastava, V. J., Dombrowski, F. J., Lingle, J. W. (2015). Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leach ability in soil. Journal of Hazardous Materials, 297, 347–355.

    Google Scholar 

  • Coulon, F., Al Awadi, M., Cowie, W., Mardlin, D., Pollard, S., Cunningham, C., Risdon, G., Arthur, P., Semple, K. T., Paton, G. I. (2010). When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environmental Pollution, 158, 3032–3040.

    Google Scholar 

  • Chaudhaery, S. S., Roy, K. K., Shakya, N., Saxena, G., Sammi, S. R., Nazir, A., et al. (2010). Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment, pharmacophore-based virtual screening, synthesis, and pharmacology. Journal of Medicinal Chemistry, 53, 6490–6505.

    Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153.

    Article  Google Scholar 

  • Chiron, S., & Minero, C. (2007). Occurrence of 2 , 4-Dichlorophenol and of 2 , 4-Dichloro-6- Nitrophenol in the Rhone River Delta (Southern France). Environmental Science and Technology, 41, 3127–3133.

    Google Scholar 

  • Clara, M., Kreuzinger, N., Strenn, B., Gans, O., & Kroiss, H. (2005). The solids retention time- A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research, 39, 97–106.

    Article  CAS  Google Scholar 

  • Dignac, M. F., Houot, S., Francou, C., & Derenne, S. (2005). Pyrolytic study of compost and waste organic matter. Organic Geochemistry, 36, 1054–1071.

    Article  CAS  Google Scholar 

  • Drexler, E. (1986). Engines of creation: The coming era of nanotechnology. New York: Anchor Book Editions.

    Google Scholar 

  • Dubey, S. K., Dubey, J., Mehra, S., Tiwari, P., & Bishwas, A. (2013). Potential use of cyanobacterial species in bioremediation of industrial effluents. African Journal of Biotechnology, 10, 1125–1132.

    Google Scholar 

  • ETC Group. (2003). The big down: From genomes to atoms. Winnepeg: Canada ETC Group.

    Google Scholar 

  • Euvrard, É., Druart, C., Morin-Crini, N., & Crini, G. (2017). Monitoring and origin of polycyclic aromatic hydrocarbons (PAHs) in effluents from a surface treatment industry. Polycyclic Aromatic Compounds, 39, 452–461.

    Article  Google Scholar 

  • Fatima, R. A., & Ahmad, M. (2006). Genotoxicity of industrialwastewaters obtained from two different pollution sourcesin northern India: a comparison of three bioassays. Mutation Research, 609, 81–91.

    Google Scholar 

  • Ferro, A., Chard, J., Kjelgren, R., Chard, B., Turner, D., & Montague, T. (2001). Groundwater capture using hybrid poplar trees: Evaluation of a system in Ogden, Utah. International Journal of Phytoremedediation, 3, 87–104.

    Google Scholar 

  • Ferro, A. M., Rock, S. A., Kennedy, J., Herrick, J. J., & Turner, D. L. (1999). Phytoremediation of soils contaminated with wood preservatives: Greenhouse and field evaluations. Internationational Journal of Phytoremediation, 1, 289–306.

    Article  CAS  Google Scholar 

  • Flechas, F. W., & Latady, M. (2003). Regulatory evaluation and acceptance issues for phytotechnology projects. Advances in Biochemical Engineering/Biotechnology, 78, 172–185.

    Google Scholar 

  • Gadipelly, C., Pérez-González, A., Yadav, G. D., Ortiz, I., Ibáñez, R., Rathod, V. K., & Marathe, K. V. (2014). Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, 53, 11571–11592.

    Article  CAS  Google Scholar 

  • Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F. (2015). Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. Nature Biotechnology, 32, 147–156.

    CAS  Google Scholar 

  • Gilbert, B., Lu, G., & Kim, C. S. (2007). Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. Journal of Colloid Interface Science, 313, 152–159.

    Article  CAS  Google Scholar 

  • Giovanella, P., Vieira, G. A. L., Ramos Otero, I. V., Pellizzer, E., de Jesus, F. B., & Sette, L. D. (2020). Metal and organic pollutants bioremediation by extremophile microorganisms. Journal of Hazardous Materials, 382, 121024.

    Article  CAS  Google Scholar 

  • Glass, D. J. (1999). U.S. and international markets for phytoremediation, 1999–2000. Needham: D. Glass Assoc.

    Google Scholar 

  • Guo, L., Jiao, W., Liu, Y. Z., Xu, C. C., Liu, W. L., & Li, J. (2014). Treatment of nitrobenzene- containing wastewater using different combined processes with ozone. Hanneng Cailiao/Chinese Journal of Energetic Materials, 22, 702–708.

    CAS  Google Scholar 

  • Gupta, A. K., & Ahmad, M. (2012). Assessment of cytotoxic and genotoxic potential of refinery waste effluent using plant, animal and bacterial systems. Journal of Hazardous Materials, 201, 92–99.

    Google Scholar 

  • Hansen, D., Duda, P. J., Zayed, A., & Terry, N. (1998). Selenium removal by constructed wetlands: Role of biological volatilization. Environmental Science and Technology, 32, 591–597.

    Article  CAS  Google Scholar 

  • Heipieper, H. J., Meinhardt, F., & Segura, A. (2003). The cis-trans isomerase of unsaturated fatty acids inPseudomonasandVibrio, biochemistry, molecular biology and physio-logical function of a unique stress adaptive mechanism. FEMS Microbiology Letters, 229, 1–7.

    Google Scholar 

  • Henn, K. W., & Waddill, D. W. (2006). Utilization of nanoscale zerovalent iron for source remediation—A case study. Remediation, 16, 57–77.

    Article  Google Scholar 

  • Hochella, M. F., Moore, J. N., Putnis, C. V., Putnis, A., Kasama, T., & Eberl, D. D. (2005). Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochimica et Cosmochimica Acta, 69, 1651–1663.

    Article  CAS  Google Scholar 

  • Horne, A. J. (2000). Phytoremediation by constructed wetlands. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 13–40). Boca Raton: Lewis.

    Google Scholar 

  • Hossain, M. M., Islam, K. M. N., & Rahman, I. M. M. (2012). An over view of the persistent organic pollutants in the freshwater system. In Ecological water quality – Water treatment and reuse edited (p. 496). IntechOpen.

    Google Scholar 

  • Iriti, M., Castorina, G., Picchi, V., Faoro, F., & Gomarasca, S. (2009). Acute exposure of the aquatic macrophyte Callitriche obtusangula to the herbicide oxadiazon: The protective role of N-acetylcysteine. Chemosphere, 74, 1231–1237.

    Article  CAS  Google Scholar 

  • Jeffers, P. M., & Liddy, C. D. (2003). Treatment of atmospheric halogenated hydrocarbons by plants and fungi. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 787–804). New York: Wiley.

    Chapter  Google Scholar 

  • Kang, J. H., Choi, S. D., Park, H., Baek, S. Y., Hong, S., & Chang, Y. S. (2009). Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas. Science of Total Environment, 408, 57–63.

    Article  CAS  Google Scholar 

  • Karigar, C. S., & Rao, S. S. (2011). Role of microbial enzymes in the bioremediation of pollutants: A review. Enzyme Research, 2011, 805187.

    Article  Google Scholar 

  • Karuppiah, S., Subramanian, A., & Obbard, J. B. (2005). Organochlorine residues in odontocete species from the southeast coast of India. Chemosphere, 60, 891–897.

    Article  CAS  Google Scholar 

  • Kersting, A., Efurd, D., Finnegan, D., Rokop, D. J., Smith, D. K., Thompson, J. L. (1999). Migration of plutonium in ground water at the Nevada Test Site. Nature, 397, 56–59.

    Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: a Beneficial Plant-Microbe Interaction. Molecular Plant Microbe Interaction, 7, 6–15.

    Google Scholar 

  • Kuforiji, O. O., & Fasid, I. O. (2008). Enzyme activities of Pleurotus tuber-regium (Fries) Singer, cultivated on selected agricultural wastes. Bioresource Technology, 99, 4275–4278.

    Article  CAS  Google Scholar 

  • Kulshreshtha, S., Mathur, N., & Bhatnagar, P. (2013). Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In E. M. Goltapeh, Y. R. Danesh, & A. Varma (Eds.), Fungi as bioremediators: Soil biology. Heidelberg: Springer Berlin.

    Google Scholar 

  • Kumarasamy, P., Govindaraj, S., Vignesh, S., Rajendran, R. B., & James, R. A. (2012). Anthropogenic nexus on organochlorine pesticide pollution: A case study with Tamiraparani river basin, South India. Environment Monitoring and Assessment, 184, 3861–3873.

    Article  CAS  Google Scholar 

  • Kuyukina, M. S., Krivoruchko, A. V., & Ivshina, I. B. (2020). Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences, 10, 831.

    Article  CAS  Google Scholar 

  • Lin, Z.-Q., Schemenauer, R. S., Cervinka, V., Zayed, A., Lee, A., & Terry, N. (2000). Selenium volatilization from a soil-plant system for the remediation of contaminated water and soil in the San Joaquin Valley. Journal of Environmental Quality, 29, 1048–1056.

    Article  CAS  Google Scholar 

  • Madadi, R., Pourbabaee, A. A., Tabatabaei, M., Zahed, M. A., & Naghavi, M. R. (2016). Treatment of petrochemical wastewater by the green algae Chlorella vulgaris. International Journal of Environmental Research, 10, 555–560.

    CAS  Google Scholar 

  • Madden, A. S., Hochella, M. F., & Luxton, T. P. (2006). Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochimica et Cosmochimica Acta, 70, 4095–4104.

    Article  CAS  Google Scholar 

  • Meagher, R. B. (2000). Phytoremediation of toxic elemental organic pollutants. Current Opinion in Plant Biology 3, 153–162.

    Google Scholar 

  • Mench, M., Schwitzguebel, J-P., Schroeder, P., Bert, V., Gawronski, S., Gupta, S. (2009). Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environmental Science and Pollution Research International, 16, 876–900.

    Google Scholar 

  • Morikawa, H., Takahashi, M., & Kawamura, Y. (2003). Metabolism and genetics of atmospheric nitrogen dioxide control using pollutant-philic plants. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 765–786). New York: Wiley.

    Google Scholar 

  • Moschella, P., Laane, R., Bäck, S., Behrendt, H., Bendoricchio, G., Georgiou, S., Herman, P., Lindeboom, H., Skourtous, M., Tett, P., Voss, M., & Windhorst, W. (2005). Group report, methodologies to support implementation of the water framework directive. In Managing European coasts Environmental science (pp. 137–152). Springer.

    Chapter  Google Scholar 

  • Mrozik, A., Piotrowska-Seget, Z., & Łabużek, S. (2004). Cyto-plasmatic bacterial membrane response to environmental perturbations. Polish Journal of Environmental Studies, 13(5), 487–494.

    Google Scholar 

  • Muniz, J. F., McCauley, L., Scherer, J., Lasarev, M., Koshy, M.,Kow, Y. W., et al. (2008). Biomarkers of oxidative stressand DNA damage in agricultural workers, a pilot study. Toxicology and Applied Pharmacology, 227, 97–107.

    Google Scholar 

  • Myers, J. P. (2002). The latest hormone science part 4: Disrupting life’s messages. Rachel’s Environment and Health News, 753, 1–5.

    Google Scholar 

  • Negri, M. C., Gatliff, E. G., Quinn, J. J., & Hinchman, R. R. (2003). Root development and rooting at depths. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 233–262). Wiley-Interscience.

    Chapter  Google Scholar 

  • Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., et al. (2006). Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science, 314, 638–641.

    Article  CAS  Google Scholar 

  • Olson, P. E., Reardon, K. F., & Pilon-Smits, E. A. H. (2003). Ecology of rhizosphere bioremediation. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 317–354). Wiley-Interscience.

    Chapter  Google Scholar 

  • Otto, M., Floyd, M., & Bajpai, S. (2008). Nanotechnology for site remediation. Remediation, 19, 99–108.

    Article  Google Scholar 

  • Panchanathan, E., Selvakumar, K., Ravi, J., Devi, N., Selvarani, M., & Sivakumar, V. M. (2016). Studies on removal of formaldehyde from industrial wastewater by photocatalytic method. Journal of Chemical and Pharmaceutical Sciences, 9, 259–264.

    Google Scholar 

  • Pariatamby, A., & Kee, Y. L. (2016). Persistent organic pollutants management and remediation. Procedia Environmental Sciences, 31, 842–848.

    Article  Google Scholar 

  • Parvathi, P. V., Mahalingam, U., & Raj, B. R. (2015). Improved waste water treatment by biosynthesized graphene sand composite. Journal of Environmental Management, 162, 299–305.

    Article  Google Scholar 

  • Parvathi, P. V., Parimaladevi, R., Sathe, V., & Mahalingam, U. D. (2018). Graphene boosted silver nanoparticles as surface enhanced Raman spectroscopic sensors and photocatalysts for removal of standard and industrial dye contaminants. Sensors and Actuators B: Chemical, 281, 679–688.

    Google Scholar 

  • Paul, D., Pandey, G., Pandey, J., & Jain, R. K. (2005). Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23, 135–142.

    Google Scholar 

  • Petala, M., Kokokiris, L., Samaras, P., Papadopoulos, A., & Zouboulis, A. (2009). Toxicological and ecotoxic impact of secondary and tertiary treated sewage effluents. Water Research, 43, 5063–5074.

    Article  CAS  Google Scholar 

  • Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.

    Google Scholar 

  • Purkait, S., Ganguly, M., Aktar, M. W., Sengupta, D., & Chowdhury, A. (2009). Impact assessment of various parameters polluting Ganga water in Kolkata Region: A study for quality evalution and environmental implication. Environment Monitoring and Assessment, 155, 443–454.

    Article  CAS  Google Scholar 

  • Purnomo, A. S., Mori, T., Putra, S. R., & Kondo, R. (2013). Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. International Biodeterioration and Biodegradation, 4, 40–44.

    Article  Google Scholar 

  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment. New York: Wiley.

    Google Scholar 

  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88, 3411–3424.

    Article  CAS  Google Scholar 

  • Razia, M., Maheshwari Nallal, V. U., & Sivaramakrishnan, S. (2020). Agro-based sugarcane industry wastes for production of high-value bioproducts. In Biovalorisation of wastes to renewable chemicals and biofuels (pp. 303–316). Elsevier.

    Chapter  Google Scholar 

  • Richards, D. J., & Shieh, W. K. (1986). Biological fate of organic priority pollutants in the aquatic environment. Water Research, 20, 1077–1090.

    Article  CAS  Google Scholar 

  • Rizwan, M., Singh, M., Mitra, C. K., Morve, R. K. (2014). Ecofriendly application of nanomaterials: nanobioremediation. Journal of Nanoparticles, 1–7.

    Google Scholar 

  • Rock, S. A. (2003). Field evaluations of phytotechnologies. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: Transformation and control of contaminants (pp. 905–924). Wiley-Interscience.

    Chapter  Google Scholar 

  • Ron, E., & Rosenberg, E. (2002). Biosurfactants and oil bioremediation. Current Opinion in Biotechnology, 13, 249–252.

    Article  CAS  Google Scholar 

  • Roane, T. M., Pepper, I. L., & Miller, R. M. (1996). Microbial remediation of metals. In R. L. Crawford & D. L. Crawford (Eds.). Bioremediation, principles and applications (pp. 312–340). UK: Cambridge University Press.

    Google Scholar 

  • Sanscartier, D., Zeeb, B., Koch, I., Reimer, K. (2009). Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Regions Science and Technology, 55, 167–173.

    Google Scholar 

  • Sarkar, U. K., Basheer, V. S., Singh, A. K., & Srivastava, S. M. (2003). Organochlorine pesticide residues in water and fish samples: First report from rivers and streams of Kumaon Himalayan Region, India. Bulletin of Environmental Contamination and Toxicology, 70, 485–493.

    Article  CAS  Google Scholar 

  • Silva-Castro, G. A., Uad, I., Gónzalez-López, J., Fandiño, C. G., Toledo, F. L., Calvo, C. (2012). Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technologies and Environmental Policy, 14, 719–726.

    Google Scholar 

  • Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88, 3548–3555.

    Article  CAS  Google Scholar 

  • Singh, O. V., & Nagaraj, N. S. (2006). Transcriptomics, proteomics and interactomics: Unique approaches to track the insights of bioremediation. Briefings in Functional Genomics and Proteomics, 4, 355–362.

    Article  CAS  Google Scholar 

  • Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  • Sudip, K. S., Om, V. S., & Rakesh, K. J. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248.

    Google Scholar 

  • Tabrez, S., & Ahmad, M. (2010). Cytochrome P450 system as a toxicity biomarker of industrial wastewater in rat tissues. Food and Chemical Toxicology, 48, 998–1001.

    Article  CAS  Google Scholar 

  • Tabrez, S., Shakil, S., Urooj, M., Abuzenadah, A. M., Damanhouri, G. A., & Ahmad, M. (2011). Genotoxicity testing and bio-marker studies on surface waters, an overview of the techniques and their efficacies. Journal of Environmental Science and Health. Part C, 29(3), 250–275.

    Google Scholar 

  • Tang, H. P. (2013). Recent development in analysis of persistent organic pollutants under the Stockholm Convention. Trends in Analytical Chemistry, 45, 48–66.

    Article  CAS  Google Scholar 

  • Thamaraiselvi, C., Ancy Jenifer, A., & Vasanthy, M. (2019). Coagulation performance evaluation of natural and synthetic coagulants for the treatment of sugar wash. In S. Ghosh (Ed.), Waste water recycling and management. Singapore: Springer.

    Google Scholar 

  • Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews of Microbiology, 34, 43–69.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. NanoToday, 1, 44–48.

    Article  Google Scholar 

  • Tripathi, A. K., Harsh, N. S. K., & Gupta, N. (2007). Fungal treatment of industrial effluents: A mini-review. Life Science Journal, 4, 78–81.

    CAS  Google Scholar 

  • U.S. EPA. (1999). Phytoremediation resource guide. EPA/542/B-99/003.

    Google Scholar 

  • Vaishnavi, S., Thamaraiselvi, C., & Vasanthy, M. (2019). Efficiency of Indigeneous microorganisms in bioremediation of Tannery effluent. In S. Ghosh (Ed.), Waste water recycling and management. Singapore: Springer.

    Google Scholar 

  • Verma, J. P., & Jaiswal, D. K. (2016). Book review: Advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology, 6, 1–2.

    Article  Google Scholar 

  • Vidali, M. (2001). Bioremediation- An overview. Pure Applied Chemistry, 73, 1163–1172.

    Article  CAS  Google Scholar 

  • Vilks, P., Frost, L. H., & Bachinski, D. B. (1997). Field-scale colloid migration experiments in a granite fracture. Journal of Contanminant Hydrology, 26, 203–214.

    Article  CAS  Google Scholar 

  • Villegas, L. G. C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K. E., & Biswas, N. (2016). A short review of techniques for phenol removal from wastewater. Current Pollution Reports, 2, 157–167.

    Article  CAS  Google Scholar 

  • Wang, S., Nomura, N., Nakajima, T., & Uchiyama, H. (2012). Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. Journal of Bioscience Bioengineering, 113, 624–630.

    Google Scholar 

  • Waite, T. D., Schafer, A. I., Fane, A. G., & Heuer, A. (1999). Colloidal fouling of ultrafiltration membranes: Impact of aggregate structure and size. Journal of Colloids and Interface Science, 212, 264–274.

    Article  CAS  Google Scholar 

  • Wasi, S., Tabrez, S., & Ahmad, M. (2012). Toxicological effects of major environmental pollutants: An overview. Environmental Monitoring and Assessment, 185, 2585–2593.

    Article  Google Scholar 

  • Winter, S. M. E., & Redente, E. F. (2002). Reclamation of high-elevation, acidic mine waste with organic amendments and topsoil. Journal of Environmental Quality, 31, 1528–1537.

    Google Scholar 

  • Yao, M., Li, Z., Zhang, X., & Lei, L. (2014). Polychlorinated biphenyls in the centralized wastewater treatment plant in a chemical industry zone: Source, distribution, and removal. Journal of Chemistry, 2014, 1–10.

    Article  Google Scholar 

  • Yap, L. F., Lee, Y. K., & Poh, C. L. (1999). Mechanism for phenoltolerance in phenol-degrading Comamon as testosteronistrain. Applied Microbiology and Biotechnology, 833–840.

    Google Scholar 

  • Younas, U., Iqbal, S., Saleem, A., Nazir, A., Noureen, S., Mahmood, K., & Nisar, N. (2017). Fertilizer industrial effluents: Physico-chemical characterization and water quality parameters evaluation. Acta Ecologica Sinica, 37, 236–239.

    Article  Google Scholar 

  • Zhang, W. X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zheng, C., Zhao, L., Zhou, X., Fu, Z., & Li, A. (2013). Treatment technologies for organic wastewater. In Water treatment (pp. 249–286). IntechOpen.

    Google Scholar 

  • Zhu, M. J., Du, F., Zhang, G. Q., Wang, H. X., & Ng, T. B. (2013). Purification a laccase exhibiting dye decolorizing ability from an edible mushroom Russula virescens. International Biodeterioration and Biodegradation, 82, 33–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uma Maheshwari Nallal, V., Sitrarasi, R., Thamaraiselvi, C., Razia, M. (2022). Potential Eco-friendly Techniques for the Management of Organic Pollutants from Industry Effluents. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds) Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-72441-2_16

Download citation

Publish with us

Policies and ethics