Skip to main content

Biotechnology: An Eco-friendly Tool of Nature for Textile Industries

  • Chapter
  • First Online:
Advances in Functional Finishing of Textiles

Abstract

Biotechnology has impacted the textile industry through the improvement of more proficient and eco-friendly manufacturing processes, as well as by facilitating the amended designs of textile materials. Traditionally, the growing textile industry requires harsh chemicals, a lot of costs, labor, and energy for processing. Efforts due to heavy energy costs and water deficit are being made to substitute the conventional chemical processes with eco-friendly and economically alluring bioprocesses. Applications of laccases for nape removing, fabric processing, bio bleaching, dyeing, printing, and cellulases for denim finishing are the recent commercial advancements. Latterly, tools of biotechnology also include the modification of synthetic and natural fibers. This chapter represents the application of biotechnological tools involved in the textile industry to make it more clean and global friendly. This manuscript is about to explore the design and engineering of novel enzymes for textile applications. Hopefully, this chapter will give a new guideline to the textile community, academic researchers and traders to move towards the applications of biotechnology for improvement of textile processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman H, Biswas PK, Mitra BK, Rakesh MSR (2014) Effect of enzyme wash (cellulase enzyme) on properties of different weft knitted fabrics. Int J Curr Eng Technol 4(6):4242–4246

    Google Scholar 

  2. Chatha SAS, Asgher M, Iqbal HM (2017) Enzyme-based solutions for textile processing and dye contaminant biodegradation—a review. Environ Sci Pollut Res 24(16):14005–14018

    Article  Google Scholar 

  3. Jaithlia H (2016) Eco-friendly substitute used on polyester-viscose fabric in textile wet processing units of Bhilwara city (Doctoral dissertation, MPUAT, Udaipur)

    Google Scholar 

  4. Franco MA (2017) Circular economy at the micro level: a dynamic view of incumbents’ struggles and challenges in the textile industry. J Clean Prod 168:833–845

    Article  Google Scholar 

  5. Ozturk E, Cinperi NC (2018) Water efficiency and wastewater reduction in an integrated woolen textile mill. J Clean Prod 201:686–696

    Article  CAS  Google Scholar 

  6. Knowles VL, Hussey CJ (2015) Key choices in developing sustainable apparel for the active ageing population. In: Textile-led design for the active ageing population. Woodhead Publishing, pp 269–281

    Google Scholar 

  7. Agarwal S, Gupta KK, Chaturvedi VK, Kushwaha A, Chaurasia PK, Singh MP (2018) The potential application of peroxidase enzyme for the treatment of industry wastes. In Research advancements

    Google Scholar 

  8. Gamallo M, Moldes-Diz Y, Taboada-Puig R, Lema JM, Feijoo G, Moreira MT (2018) 6 textile wastewater treatment by advanced oxidation processes. Life Cycle Assess Wastewater Treat 5

    Google Scholar 

  9. Cavaco-Paulo A, Gübitz G (2003) Catalysis and processing. In: Textile processing with enzymes. Woodhead Publishing Ltd, England, p 86

    Google Scholar 

  10. Hasanbeigi A, Price L (2015) A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J Clean Prod 95:30–44

    Google Scholar 

  11. Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HM (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants–a review. Sci Total Environ 576:646–659

    Article  PubMed  CAS  Google Scholar 

  12. Aly AS, Moustafa AB, Hebeish A (2004) Bio-technological treatment of cellulosic textiles. J Clean Prod 12(7):697–705

    Article  Google Scholar 

  13. Jemli S, Ayadi-Zouari D, Hlima HB, Bejar S (2016) Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol 36(2):246–258

    Article  CAS  PubMed  Google Scholar 

  14. Sheikh J, Bramhecha I (2019) Enzymes for green chemical processing of cotton. In: The impact and prospects of green chemistry for textile technology. Woodhead Publishing, pp 135–160

    Google Scholar 

  15. Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransform 26(5):332–349

    Article  CAS  Google Scholar 

  16. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biolog Chem 53:2613–2617

    Google Scholar 

  17. Asgher M, Kamal S, Iqbalr HMN (2012) Improvement of catalytic efficiency, thermo-stability and dye decolorization capability of Pleurotus ostreatus IBL-02 laccase by hydrophobic sol gel entrapment. Chem Cent J 6(1):110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wamg W, Yu B, Zhong CJ (2012) Use of ultrasonic energy in the enzymatic desizing of cotton fabric. J Clean Prod 33:179–182

    Google Scholar 

  19. Sarayu K, Sandhya S (2012) Current technologies for biological treatment of textile wastewater–a review. Appl Biochem Biotechnol 167(3):645–661

    Article  CAS  PubMed  Google Scholar 

  20. Baffes J (2005) Cotton: market setting, trade policies, and issues. In: Aksoy MA, Beghin JC (eds), p 259

    Google Scholar 

  21. Mojsov K, Andronikov D, Janevski A, Jordeva S, Kertakova M, Golomeova S et al (2018) Production and application of α-amylase enzyme in textile industry. Tekstilna industrija 66(1):23–28

    Google Scholar 

  22. Peng S, Gao Z, Sun J, Yao L, Qiu Y (2009) Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics. Appl Surf Sci 255(23):9458–9462

    Article  CAS  Google Scholar 

  23. Chand N, Nateri AS, Sajedi RH, Mahdavi A, Rassa M (2012) Enzymatic desizing of cotton fabric using a Ca2+-independent α-amylase with acidic pH profile. J Mol Catal B Enzym 83:46–50

    Article  CAS  Google Scholar 

  24. Hao L, Wang R, Fang K, Liu J (2013) Ultrasonic effect on the desizing efficiency of α-amylase on starch-sized cotton fabrics. Carbohyd Polym 96(2):474–480

    Article  CAS  Google Scholar 

  25. Hao L, Wang R, Zhang L, Fang K, Men Y, Qi Z, Liu J (2014) Utilizing cellulase as a hydrogen peroxide stabilizer to combine the biopolishing and bleaching procedures of cotton cellulose in one bath. Cellulose 21(1):777–789

    Article  CAS  Google Scholar 

  26. Dehabadi VA, Opwis K, Gutmann J (2011) Combination of acid-demineralization and enzymatic desizing of cotton fabrics by using industrial acid stable glucoamylases and α-amylases. Starch-Stärke 63(12):760–764

    Article  CAS  Google Scholar 

  27. Wang Q, Yuan J, Fan X, Wang P, Cui L (2016) Hydrophobic modification of cotton fabric with octadecylamine via laccase/TEMPO mediated grafting. Carbohyd Polym 137:549–555

    Article  CAS  Google Scholar 

  28. Ahlawat S, Dhiman SS, Battan B, Mandhan RP, Sharma J (2009) Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 44(5):521–526

    Article  CAS  Google Scholar 

  29. Carmen Z, Daniela S (2012) Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In: Organic pollutants ten years after the Stockholm convention-environmental and analytical update. Intech Open

    Google Scholar 

  30. Agrawal PB, Nierstrasz VA, Klug-Santner BG, Gübitz GM, Lenting HB, Warmoeskerken MM (2007) Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnol J Healthc Nutr Technol 2(3):306–315

    CAS  Google Scholar 

  31. Kalantzi S, Mamma D, Kalogeris E, Kekos D (2010) Improved properties of cotton fabrics treated with lipase and its combination with pectinase. Fibres Text Eastern Eur 18(5):86–92

    CAS  Google Scholar 

  32. Kaur SJ, Gupta VK (2017) Production of pectinolytic enzymes pectinase and pectin lyase by Bacillus subtilis SAV-21 in solid state fermentation. Ann Microbiol 67(4):333–342

    Article  CAS  Google Scholar 

  33. Mukhopadhyay A, Dutta N, Chattopadhyay D, Chakrabarti K (2013) Degumming of ramie fiber and the production of reducing sugars from waste peels using nanoparticle supplemented pectatelyase. Biores Technol 137:202–208

    Article  CAS  Google Scholar 

  34. Hasanbeigi A, Price L (2012) A review of energy use and energy efficiency technologies for the textile industry. Renew Sustain Energy Rev 16(6):3648–3665

    Google Scholar 

  35. Bhatti IA, Adeel S, Parveen S, Zuber M (2016) Dyeing of UV irradiated cotton and polyester fabrics with multifunctional reactive and disperse dyes. J Saudi Chem Soc 20(2):178–184

    Article  CAS  Google Scholar 

  36. Shatalov MS, Deng J, Dobrinsky A, Hu X, Gaska R, Shur M (2017) U.S. Patent No. 9,595,636. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  37. Elhami V, Karimi A (2016) Preparation of Kissiris/TiO2/Fe3O4/GOx biocatalyst: feasibility study of MG decolorization. Adv Environ Technol 3:111–117

    Google Scholar 

  38. Buschle-Diller G, Yang XD, Yamamoto R (2001) Enzymatic bleaching of cotton fabric with glucose oxidase. Text Res J 71(5):388–394

    Article  CAS  Google Scholar 

  39. Zhu D, Mobasher B, Rajan SD (2010) Dynamic tensile testing of Kevlar 49 fabrics. J Mater Civ Eng 23(3):230–239

    Article  CAS  Google Scholar 

  40. Soares JC, Moreira PR, Queiroga AC, Morgado J, Malcata FX, Pintado ME (2011) Application of immobilized enzyme technologies for the textile industry: a review. Biocatal Biotransform 29(6):223–237

    Article  CAS  Google Scholar 

  41. Cengiz S, Çavaş L, Yurdakoç K (2012) Bentonite and sepiolite as supporting media: immobilization of catalase. Appl Clay Sci 65:114–120

    Article  CAS  Google Scholar 

  42. Madhu A, Chakraborty JN (2017) Developments in application of enzymes for textile processing. J Clean Prod 145:114–133

    Article  CAS  Google Scholar 

  43. Kan CW, Yam LY, Ng SP (2014) Effect of stretching on ultraviolet protection of cotton and cotton/coolmax blended weft knitted fabric in a wet state. Materials 7(1):58–74

    Article  Google Scholar 

  44. Kan CW (2015) Washing techniques for denim jeans. In: Denim. Woodhead Publishing, pp 313–356

    Google Scholar 

  45. Souza RP, Ambrosio E, Souza MT, Freitas TK, Ferrari-Lima AM, Garcia JC (2017) Solar photocatalytic degradation of textile effluent with TiO 2, ZnO, and Nb 2 O 5 catalysts: assessment of photocatalytic activity and mineralization. Environ Sci Pollut Res 24(14):12691–12699

    Article  CAS  Google Scholar 

  46. Yu Y, Yuan J, Wang Q, Fan X, Ni X, Wang P, Cui L (2013) Cellulase immobilization onto the reversibly soluble methacrylate copolymer for denim washing. Carbohyd Polym 95(2):675–680

    Article  CAS  Google Scholar 

  47. Yu Y, Yuan J, Wang Q, Fan X, Wang P, Cui L (2014) A study of surface morphology and structure of cotton fibres with soluble immobilized-cellulase treatment. Fibers Polym 15(8):1609–1615

    Google Scholar 

  48. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  CAS  PubMed  Google Scholar 

  49. Cavaco-Paulo A, Gubitz G (eds) (2003) Textile processing with enzymes. Elsevier

    Google Scholar 

  50. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res

    Google Scholar 

  51. Choudhury AKR (2017) Environmental impacts of denim washing. In: Sustainability in denim. Woodhead Publishing, pp 49–81

    Google Scholar 

  52. Choudhury AR (2014) Environmental impacts of the textile industry and its assessment through life cycle assessment. In: Roadmap to sustainable textiles and clothing. Springer, Singapore, pp 1–39

    Google Scholar 

  53. Kunamneni A, Camarero S, García-Burgos C, Plou FJ, Ballesteros A, Alcalde M (2008) Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact 7(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Samanta KK, Basak S, Chattopadhyay SK (2017) Environmentally friendly denim processing using water-free technologies. In: Sustainability in Denim. Woodhead Publishing, pp 319–348

    Google Scholar 

  55. Maryan AS, Montazer M (2013) A cleaner production of denim garment using one step treatment with amylase/cellulase/laccase. J Clean Prod 57:320–326

    Article  CAS  Google Scholar 

  56. Maryan AS, Montazer M, Harifi T, Rad MM (2013) Aged-look vat dyed cotton with anti-bacterial/anti-fungal properties by treatment with nano clay and enzymes. Carbohyd Polym 95(1):338–347

    Article  CAS  Google Scholar 

  57. Vigneswaran C, Jayapriya J (2010) Effect on physical characteristics of jute fibres with cellulase and specific mixed enzyme systems. J Text Inst 101(6):506–513

    Article  CAS  Google Scholar 

  58. Vigneswaran C (2011) Biovision in textile wet processing industry-technological challenges. J Text Appar Technol Manag 7(1)

    Google Scholar 

  59. Mir S, Hossain M, Biswas P, Hossain A, Idris MA (2014) Evaluation of mechanical properties of denim garments after enzymatic bio-washing. World Appl Sci J 31(9):1661–1665

    Google Scholar 

  60. Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24(2–3):125–154

    Article  CAS  PubMed  Google Scholar 

  61. Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP (1994) Purification, properties and structural aspects of a thermoacidophilic a-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Insight into acidostability of proteins. Eur J Biochem 226:981–991

    Google Scholar 

  62. Rehman AMM, Imran MA (2014) Revolution of biotechnology in finishing sector of textile. Chem Mater Res 6(2):92–103

    Google Scholar 

  63. Noreen H, Zia MA, Ali S, Hussain T (2014) Optimization of bio-polishing of polyester/cotton blended fabrics with cellulases prepared from Aspergillus niger

    Google Scholar 

  64. Penava Ž, Šimić-Penava D, Knezic Ž (2014) Determination of the elastic constants of plain woven fabrics by a tensile test in various directions. Fibres Text Eastern Eur

    Google Scholar 

  65. Nielsen PH, Kuilderd H, Zhou W, Lu X (2009) Enzyme biotechnology for sustainable textiles. In: Sustainable textiles. Woodhead Publishing, pp 113–138

    Google Scholar 

  66. Kan Z, Yang MB, Yang W, Liu ZY, Xie BH (2015) Investigation on the reactive processing of textile-ramie fiber reinforced anionic polyamide-6 composites. Compos Sci Technol 110:188–195

    Article  CAS  Google Scholar 

  67. Saravanan D, Vasanthi NS, Ramachandran T (2009) A review on influential behaviour of biopolishing on dyeability and certain physico-mechanical properties of cotton fabrics. Carbohydr Polym 76(1):1–7

    Google Scholar 

  68. Duran N, Duran M (2000) Enzyme applications in the textile industry. Rev Prog Color Relat Top 30:41–44

    Article  CAS  Google Scholar 

  69. Kan CW, Au CH (2014) Effect of biopolishing and UV absorber treatment on the UV protection properties of cotton knitted fabrics. Carbohyd Polym 101:451–456

    Article  CAS  Google Scholar 

  70. Lee I, Evans BR, Woodward J (2000) The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy 82(1–4):213–221

    Article  CAS  PubMed  Google Scholar 

  71. Mengal N, Arbab AA, Sahito IA, Memon AA, Sun KC, Jeong SH (2017) An electrocatalytic active lyocell fabric cathode based on cationically functionalized and charcoal decorated graphite composite for quasi-solid state dye sensitized solar cell. Sol Energy 155:110–120

    Article  CAS  Google Scholar 

  72. Mosier N, Hall P, Ladisch CM, Ladisch MR (1999) Reaction kinetics, molecular action and mechanisms of cellulolytic proteins. Adv Biochem Eng Biotechnol 65:23–39

    Google Scholar 

  73. Albers A, Weber NF, Cirauqui M (2017) On weaving: new expanded edition. Princeton University Press

    Google Scholar 

  74. Naikwade M, Liu F, Wen S, Cai Y, Navik R (2017) Combined use of cationization and mercerization as pretreatment for the deep dyeing of ramie fibre. Fibers Polym 18(9):1734–1740

    Article  CAS  Google Scholar 

  75. Zheng D, Zhou J, Zhong L, Zhang F, Zhang G (2016) A novel durable and high-phosphorous-containing flame retardant for cotton fabrics. Cellulose 23(3):2211–2220

    Article  CAS  Google Scholar 

  76. Uddin MG (2016) Effect of biopolishing on dye ability of cotton fabric–a review. Trends Green Chem 2:1–5

    Google Scholar 

  77. Brahma S, Dina MRIRB (2018) Role of mercerizing condition on physical and dyeing properties of cotton knit fabric dyed with reactive dyes

    Google Scholar 

  78. Jordanov I, Mangovska B (2009) Characterization on surface of mercerized and enzymatic scoured cotton after different temperature of drying. Open Text J 2:39–47

    Article  CAS  Google Scholar 

  79. Simic K, Soljačić I, Pušić T (2015) Application of cellulases in the process of finishing Up or a bacelulazv process up lemenitenja

    Google Scholar 

  80. Meksi N, Haddar W, Hammami S, Mhenni MF (2012) Olive mill wastewater: a potential source of natural dyes for textile dyeing. Ind Crops Prod 40:103–109

    Article  CAS  Google Scholar 

  81. Singh L (2017) Biodegradation of synthetic dyes: a mycoremediation approach for degradation/decolourization of textile dyes and effluents. J Appl Biotechnol Bioeng 3:1–7

    Google Scholar 

  82. Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Bio/Technol 14(1):73–92

    Article  CAS  Google Scholar 

  83. Balapure K, Jain K, Bhatt N, Madamwar D (2016) Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. Int biodeterior biodegradation 106:97–105

    Article  CAS  Google Scholar 

  84. Singh SA, Rao AGA (2002) A simple fractionation protocol for, and a comprehensive study of the molecular properties of two major endopolygalacturonases from Aspergillus niger. Biotechnol Appl Biochem 35:115–123

    Google Scholar 

  85. Zhang H, Zhang J, Zhang X, Geng A (2018) Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process Biochem 66:222–229

    Article  CAS  Google Scholar 

  86. Irshad M (2011) Characterization of Ligninolytic enzymes produced by schyzophyllum commune in solid state cultures for industrial applications (Doctoral dissertation, University Of Agriculture Faisalabad)

    Google Scholar 

  87. Chatha SAS, Asgher M, Ali S, Hussain AI (2012) Biological color stripping: a novel technology for removal of dye from cellulose fibers. Carbohyd Polym 87(2):1476–1481

    Article  CAS  Google Scholar 

  88. Chatha SA, Mallhi AI, Hussain AI, Asgher M, Nigam PS (2014) A biological approach for color-stripping of cotton fabric dyed with CI reactive black 5 using fungal enzymes from solid state fermentation. Curr Biotechnol 3(2):166–173

    Article  CAS  Google Scholar 

  89. Sisti L, Totaro G, Vannini M, Celli A (2018) Retting process as a pretreatment of natural fibers for the development of polymer composites. In; Lignocellulosic composite materials. Springer, Cham, pp 97–135

    Google Scholar 

  90. Mohammed L, Ansari MN, Pua G, Jawaid M, Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci

    Google Scholar 

  91. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu M, Thygesen A, Summerscales J, Meyer AS (2017) Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind Crops Prod 108:660–683

    Article  CAS  Google Scholar 

  93. Akin DE (2012) Linen most useful: perspectives on structure, chemistry, and enzymes for retting flax. ISRN Biotechnol

    Google Scholar 

  94. Paridah MT, Basher AB, SaifulAzry S, Ahmed Z (2011) Retting process of some bast plant fibres and its effect on fibre quality: a review. BioResources 6(4):5260–5281

    Google Scholar 

  95. Oosterhuis F (2006) Substitution of hazardous chemicals: a case study in the framework of the project, assessing innovation dynamics induced by environment policy. Institute for Environmental Studies, Amsterdam, Netherlands

    Google Scholar 

  96. Osuji AC, Eze SOO, Osayi EE, Chilaka FC (2014) Biobleaching of industrial important dyes with peroxidase partially purified from garlic. Sci World J

    Google Scholar 

  97. Budak E, Ozturk E, Tunc LT (2009) Modeling and simulation of 5-axis milling processes. CIRP Ann 58(1):347–350

    Google Scholar 

  98. Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48(3):522–526

    Article  CAS  Google Scholar 

  99. Callewaert C, De Maeseneire E, Kerckhof FM, Verliefde A, Van de Wiele T, Boon N (2014) Microbial odor profile of polyester and cotton clothes after a fitness session. Appl Environ Microbiol 80(21):6611–6619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410(6828):541

    Article  CAS  PubMed  Google Scholar 

  101. Brandt L, Rawski TG, Sutton J (2008) China’s industrial development. China’s Great Econ Transf 569–632

    Google Scholar 

  102. Chauhan S, Sharma AK, Jain RK (2013) Enzymatic retting: a revolution in the handmade papermaking from Calotropisprocera. In: Biotechnology for environmental management and resource recovery. Springer, India, pp 77–88

    Google Scholar 

  103. Hoondal G, Tiwari R, Tewari R, Dahiya NBQK, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418

    CAS  PubMed  Google Scholar 

  104. Rebello S, Anju M, Aneesh EM, Sindhu R, Binod P, Pandey A (2017) Recent advancements in the production and application of microbial pectinases: an overview. Rev Environ Sci Bio/Technol 16(3):381–394

    Article  CAS  Google Scholar 

  105. Meng C, Zhong N, Hu J, Yu C, Saddler JN (2019) The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. J Clean Prod 206:498–507

    Article  CAS  Google Scholar 

  106. Bacci L, Di Lonardo S, Albanese L, Mastromei G, Perito B (2011) Effect of different extraction methods on fiber quality of nettle (Urticadioica L.). Text Res J 81(8):827–837

    Google Scholar 

  107. Jacob N, Niladevi KN, Anisha GS, Prema P (2008) Hydrolysis of pectin: an enzymatic approach and its application in banana fiber processing. Microbiol Res 163(5):538–544

    Article  CAS  PubMed  Google Scholar 

  108. Yadav D, Yadav S, Dwivedi R, Anand G, Yadav P (2016) Potential of microbial enzymes in retting of natural fibers: a review. Curr Biochem Eng 3(2):89–99

    Google Scholar 

  109. De Prez J, Van Vuure AW, Ivens J, Aerts G, Van de Voorde I (2018) Enzymatic treatment of flax for use in composites. Biotechnol Rep e00294

    Google Scholar 

  110. Bajpai P (2018) Bioretting. In: Biotechnology for pulp and paper processing. Springer, Singapore, pp 97–111

    Google Scholar 

  111. Morvan C, Jauneau A, Flaman A, Millet J, Demarty M (1990) Degradation of flax polysaccharides with purified endo-polygalacturonase. Carbohyd Polym 13(2):149–163

    Article  CAS  Google Scholar 

  112. Somashekarappa H, Annadurai V, Subramanya G, Somashekar R (2002) Structure–property relation in varieties of acid dye processed silk fibers. Mater Lett 53(6):415–420

    Article  CAS  Google Scholar 

  113. Yang G, Zhang L, Cao X, Liu Y (2002) Structure and microporous formation of cellulose/silk fibroin blend membranes: Part II. Effect of post-treatment by alkali. J Membr Sci 210(2):379–387

    Google Scholar 

  114. Koch R, Spreinat A, Lemke K, Antranikian G (1991) Purification and properties of a hyperthermoactive a-amylase from the archaeobacterium Pyrococcus woesei. Arch Microbiol 155:572–578

    Google Scholar 

  115. Liu M, Silva DAS, Fernando D, Meyer AS, Madsen B, Daniel G, Thygesen A (2016) Controlled retting of hemp fibres: effect of hydrothermal pre-treatment and enzymatic retting on the mechanical properties of unidirectional hemp/epoxy composites. Compos A Appl Sci Manuf 88:253–262

    Article  CAS  Google Scholar 

  116. Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China–the benefits continue. Plant J 31(4):423–430

    Article  CAS  PubMed  Google Scholar 

  117. Cheung HY, Ho MP, Lau KT, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng 40(7):655–663

    Article  CAS  Google Scholar 

  118. Das S (1992) The preparation and processing of tussah silk. J Soc Dyers Colour 108(11):481–486

    Article  CAS  Google Scholar 

  119. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057

    Article  CAS  PubMed  Google Scholar 

  120. Barclay S, Buckley C (2000) A waste minimisation guide for the textile industry. The Pollution Research Group, Water Research Commission, WRC Report No.TT 139/00

    Google Scholar 

  121. Barrozo A, Borstnar R, Marloie G, Kamerlin SCL (2012) Computational protein engineering: bridging the gap between rational design and laboratory evolution. Int J Mol Sci 13(10):12428–12460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sivalokanathan S, Vijayababu MR, Balasubramanian MP (2006) Effects of Terminalia arjuna bark extract on apoptosis of human hepatoma cell line HepG2. World J Gastroenterol: WJG 12(7):1018

    Article  PubMed  PubMed Central  Google Scholar 

  123. Basra AS, Saha S (1999) Growth regulation of cotton fibers. Basra, AS Food Products Press, Binghamton, NY

    Google Scholar 

  124. Yang YM, Wang JW, Tan RX (2004) Immobilization of glucose oxidase on chitosan–SiO2 gel. Enzym Microbial Technol 34(2):126–131

    Article  CAS  Google Scholar 

  125. Chang SF, Chang SW, Yen YH, Shieh CJ (2007) Optimum immobilization of Candida rugosa lipase on Celite by RSM. Appl Clay Sci 37(1–2):67–73

    Article  CAS  Google Scholar 

  126. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, Shen BW et al (2012) Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat Biotechnol 30(2):190

    Google Scholar 

  127. Hossain KMG, González MD, Juan AR, Tzanov T (2010) Enzyme-mediated coupling of a bi-functional phenolic compound onto wool to enhance its physical, mechanical and functional properties. Enzym Microbial Technol 46(3–4):326–330

    Article  CAS  Google Scholar 

  128. Forbes P (2008) Self-cleaning materials: lotus leaf-inspired nanotechnology. Sci Am 299(2):88

    Article  CAS  PubMed  Google Scholar 

  129. Freddi G, Mossotti R, Innocenti R (2003) Degumming of silk fabric with several proteases. J Biotechnol 106(1):101–112

    Article  CAS  PubMed  Google Scholar 

  130. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT et al (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19(4):354

    Google Scholar 

  131. Singh S, Bajaj BK (2017) Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol Environ 2(6):370–386

    Article  Google Scholar 

  132. Fu Chengjie, Shao Zhengzhong, Fritz Vollrath (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529

    Article  CAS  Google Scholar 

  133. Gedik G, Avinc O (2018) Bleaching of hemp (Cannabis sativa L.) fibers with peracetic acid for textiles industry purposes. Fibers Polym 19(1):82–93

    Google Scholar 

  134. Holland GP et al (2008) Quantifying the fraction of glycine and alanine in β-sheet and helical conformations in spider dragline silk using solid-state NMR. Chem Commun 43:5568–5570

    Google Scholar 

  135. Pandey AK, Vishwakarma SK, Srivastava AK, Pandey VK (2012) Extracellular xylanase production by Pleurotus species on lignocellulosic wastes under in vivo condition using novel pretreatment. Cell Mol Biol 58(1):170–173

    PubMed  Google Scholar 

  136. Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem 36(8–9):803–807

    Google Scholar 

  137. James C (2001) Global review of commercialized transgenic crops: 2000

    Google Scholar 

  138. Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biores Technol 77(3):215–227

    Article  CAS  Google Scholar 

  139. Losonczi AK (2004) Bioscouring of cotton fabrics. Ph.D. dissertation. Budapest university of Technology and Economics. Department of Plastics and Rubber technology

    Google Scholar 

  140. Wang WM, Yu B, Zhong CJ (2012) Use of ultrasonic energy in the enzymatic desizing of cotton fabric. J Clean Prod 33:179–182

    Article  CAS  Google Scholar 

  141. Rossbach V, Patanathabutr P, Wichitwechkarn J (2003) Copying and manipulating nature: innovation for textile materials. Fibers Polym 4(1):8–14

    Article  CAS  Google Scholar 

  142. Qiu XM (2000) Advances in natural colored cotton. China Cotton 27(5):5–7

    Google Scholar 

  143. Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387(4):1225–1234

    Article  CAS  PubMed  Google Scholar 

  144. Xue R, Chen H, Cui L, Cao G, Zhou W, Zheng X, Gong C (2012) Expression of hGM-CSF in silk glands of transgenic silkworms using gene targeting vector. Transgenic Res 21(1):101–111

    Article  CAS  PubMed  Google Scholar 

  145. Pandey R (2016) Fiber extraction from dual-purpose flax. J Nat Fibers 13(5):565–577

    Article  CAS  Google Scholar 

  146. Holmquist H, Schellenberger S, van Der Veen I, Peters GM, Leonards PEG, Cousins IT (2016) Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environ Int 91:251–264

    Article  CAS  PubMed  Google Scholar 

  147. Wool R, Sun XS (2011) Bio-based polymers and composites. Elsevier

    Google Scholar 

  148. Truong LV, Tuyen H, Helmke E, Binh LT, Schweder T (2001) Cloning of two pectatelyase genes from the marine Antarctic bacterium Pseudoaltero monashalo planktis strain ANT/505 and characterization of the enzymes. Extremophiles 5:35–44

    Google Scholar 

  149. Pasternack R, Dorsch S, Otterbach JT, Robenek IR, Wolf S, Fuchsbauer HL (1998) Bacterial pro-transglutaminase from Strep to verticillium mobaraense-purification, characterisation and sequence of the zymogen. Eur J Biochem 257:570–576

    Google Scholar 

  150. Ruscio JZ, Kohn JE, Ball KA, Head-Gordon T (2009) The influence of protein dynamics on the success of computational enzyme design. J Am Chem Soc 131(39):14111–14115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24(2–3):125–154

    Google Scholar 

  152. Zhao Y, Chen X, Peng WP, Dong L, Huang JT, Lu CD (2001) Altering fibroin heavy chain gene of silkworm bombyx mori by homologous recombination. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica 33(1):112–116

    CAS  PubMed  Google Scholar 

  153. Tamura T, Thibert C, Royer C, Kanda T, Eappen A, Kamba M et al (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18(1):81

    Google Scholar 

  154. De Fries W, Altenhofen U, Föhles J, Zahn H (1983) A protein chemical investigation of the chlorine-hercosett process. J Soc Dyers Colour 99(1):13–16

    Article  Google Scholar 

  155. Gouveia IC, Fiadeiro JM, Queiroz JA (2008) Combined bio-carbonization and dyeing of wool: a possibility using cell wall-degrading enzymes and 1: 1 metal-complex dyes. Eng Life Sci 8(3):250–259

    Article  CAS  Google Scholar 

  156. Duan S, Liu Z, Feng X, Zheng K, Cheng L, Zheng X (2012) Diversity and characterization of ramie-degumming strains. Sci Agricola 69(2):119–125

    Article  CAS  Google Scholar 

  157. Duffield PA, Lewis DM (1985) The yellowing and bleaching of wool. Rev Prog Color Relat Top 15(1):38–51

    Article  CAS  Google Scholar 

  158. Gubitz GM, Paulo AC (2003) New substrates for reliable enzymes: enzymatic modification of polymers. Curr Opin Biotechnol 14(6):577–582

    Article  CAS  PubMed  Google Scholar 

  159. Cecchini MP, Turek VA, Paget J, Kornyshev AA, Edel JB (2013) Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat Mater 12(2):165

    Article  CAS  PubMed  Google Scholar 

  160. Hussain F, Kamal S, Rehman S, Azeem M, Bibi I, Ahmed T, Iqbal HMN (2017) Alkaline protease production using response surface methodology, characterization and industrial exploitation of alkaline protease of Bacillus subtilis sp. Catal Lett 147(2017):1204–12013

    Article  CAS  Google Scholar 

  161. Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9(3):261–267

    Article  CAS  PubMed  Google Scholar 

  162. Naranjo SE (2005) Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ Entomol 34(5):1193–1210

    Article  Google Scholar 

  163. Porter D, Vollrath F (2009) Silk as a biomimetic ideal for structural polymers. Adv Mater 21(4):487–492; [184] Termonia Y (1994) Molecular modeling of spider silk elasticity. Macromolecules 27(25):7378–7381

    Google Scholar 

  164. Shaheen T, Tabbasam N, Iqbal MA, Ashraf M, Zafar Y, Paterson AH (2012) Cotton genetic resources. A review. Agron Sustain Dev 32(2):419–432

    Article  CAS  Google Scholar 

  165. Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5(2):137–143

    Article  CAS  PubMed  Google Scholar 

  166. Çetinus ŞA, Öztop HN (2003) Immobilization of catalase into chemically crosslinked chitosan beads. Enzym Microbial Technol 32(7):889–894

    Article  CAS  Google Scholar 

  167. Zaouali R, Msahli S, Sakli F (2016) Energy modelling of fabrics wrinkle recovery behaviour. J Text Inst 107(11):1434–1441

    Article  CAS  Google Scholar 

  168. Chen J, Wang Q, Hua Z, Du G (2007) Research and application of biotechnology in textile industries in China. Enzym Microbial Technol 40(7):1651–1655

    Article  CAS  Google Scholar 

  169. Bajwa KS, Shahid AA, Rao AQ, Kiani MS, Ashraf MA, Dahab AA et al (2013) Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aust J Crop Sci 7(2):206

    Google Scholar 

  170. Chakravarthy VS, Reddy TP, Reddy VD, Rao KV (2014) Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Crit Rev Biotechnol 34(2):144–160

    Article  CAS  PubMed  Google Scholar 

  171. Liu JF, Zhao CY, Ma J, Zhang GY, Li MG, Yan GJ et al (2011) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum L.) with a fungal phytase gene improves phosphorus acquisition. Euphytica 181(1):31–40

    Google Scholar 

  172. Liu YD, Yin ZJ, Yu JW, Li J, Wei HL, Han XL, Shen FF (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the agrobacterium IPT gene. Biol Plant 56(2):237–246

    Article  CAS  Google Scholar 

  173. Naranjo SE (2005) Long-term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community. Environ Entomol 34(5):1211–1223

    Article  CAS  Google Scholar 

  174. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY (2011) Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J Hazard Mater 185(1):124–130

    Article  CAS  PubMed  Google Scholar 

  175. Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18(9):374–379

    Article  CAS  PubMed  Google Scholar 

  176. Zhang M, Yi TT, Zhang YM, Zhang L, Wu W, Zhang AL, Pan ZJ (2011) Ornithoctonus huwenna spider silk protein attenuating diameter and enhancing strength of the electrospun PLLA fiber. Polym Adv Technol 22(1):151–157

    Article  CAS  Google Scholar 

  177. Saravanan D (2006) Spider silk-structure, properties and spinning. J Text Appar Technol Manag 5(1):1–20

    Google Scholar 

  178. Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20(3):665–673

    Article  CAS  PubMed  Google Scholar 

  179. Ganesan M, Jayabalan N (2006) Isolation of disease-tolerant cotton (Gossypium hirsutum L. cv. SVPR 2) plants by screening somatic embryos with fungal culture filtrate. Plant cell, Tissue Organ Cult 87(3):273–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shagufta Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adeel, S. et al. (2020). Biotechnology: An Eco-friendly Tool of Nature for Textile Industries. In: Shahid, M., Adivarekar, R. (eds) Advances in Functional Finishing of Textiles. Textile Science and Clothing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3669-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3669-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3668-7

  • Online ISBN: 978-981-15-3669-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics