Skip to main content
Log in

Cotton genetic resources. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Since 6000 BC, cotton has been cultivated for lint fiber, which now dominates the natural textile industry worldwide. Common resources such as an integrated web database, a microsatellite database, and comparative quantitative trait loci (QTL) resources for Gossypium have accelerated the progress towards quantifying the impact of repeated human dispersals and selection regimes on various gene pools of the genus Gossypium. Out of 50 Gossypium species, four have been domesticated—two diploids and two tetraploids—for elimination of hard seed coat, improvement in lint percentage of about 40% and fiber length of 22%, larger boll size, and day-neutral reproductive habit. The major drawback of domestication is the lack of genetic diversity. This lack of genetic diversity is observed more in Gossypium hirsutum L. cultivars characterizing upland cotton than in Gossypium barbadense, typical of Pima and Egyptian cotton. Much of the genetic diversity among G. barbadense cultivars is attributed to the introgression of G. hirsutum alleles. This process highlights the importance of introgression of new alleles from accessions of all the Gossypium species into cultivated cotton species. Among the genomic resources, about 16,162 publicly available SSRs and 312 mapped cotton RFLP sequences containing simple sequence repeat (SSR), restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), and random amplified polymorphic DNA (RAPD) markers have been surveyed on numerous mapping populations, and developed about 26 linkage maps (SSR, RFLP, AFLP, and RAPD). Reports show the identification of DNA markers associated with over 29 important traits or QTLs such as fiber quality and yield, leaf and flower morphology, trichome density and their distribution, and disease resistance. In comparative mapping studies, 432 QTLs mapped on 11 different mapping populations were aligned on a high-density reference map containing 3,475 loci. In a meta-analysis study of over 1,000 QTLs obtained from backcross population and recombinant inbred line populations derived from the same parents, most consistent meta-clusters were reported for fiber color, fineness, and length. For exploring the function of genes, the targeting induced local lesions in genomes (TILLING) approach—avoiding gene transfer process was used for identifying a brassino steroid receptor gene that is involved in fiber development. Lastly, cotton genome has been enriched with genes isolated from distantly related organisms using various transformation methods. For example, Cry1Ac, Cry1Ab, and herbicide-resistant genes were transformed in cotton that covered a vast majority of cotton acreage worldwide. Here the authors discuss investigations for improving the efficacy of transformation and regeneration systems, and for searching new genes or silencing the unwanted cotton genes using RNAi technology. We suggest initiating projects on sequencing the diploid and tetraploid genomes for exploring the extent of genetic variations, developing TILLING populations, initiating nested association mapping studies, and developing third generation genetically modified cotton, collectively setting the stage for sustaining cotton production under continually changing production conditions, climates, and human needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BC:

Backcross population

CLCuD:

Cotton leaf curl disease

GUS gene:

Beta-glucuronidase gene

LD:

Linkage disequilibrium

MAS:

Marker-assisted selection

MYA:

Million years ago

NAM:

Nested association mapping

PCR:

Polymerase chain reaction

QTLs:

Quantitative trait loci

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RIL:

Recombinant inbred line

SNPs:

Single nucleotide polymorphisms

SSR:

Simple sequence repeat

TILLING:

Targeting induced local lesions in genomes

References

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Saha S, Scheffler BE, Jenkins JN, Abdukarimov A (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487

    PubMed  CAS  Google Scholar 

  • Abelson PH (1998) A third technological revolution. Science 279:2019

    PubMed  CAS  Google Scholar 

  • Adkisson PL, Niles GA, Walker JK, Bird LS, Scott HB (1982) Controlling cottons insect pests—a new system. Science 216:19–22

    PubMed  CAS  Google Scholar 

  • Ali I, Kausar A, Rahman M, Zafar Y, Asif M, Ashraf M, Riaz S, Zafar S, Wahid A, Maqsood S, Niaz M, Abbas SQ (2009a) Development of genetic linkage map of leaf hairiness in Gossypium hirsutum (cotton) using molecular markers. Pak J Bot 41(4):1627–1635

    CAS  Google Scholar 

  • Ali I, Ashraf M, Rahman M, Zafar Y, Asif M, Kausar A, Riaz S, Niaz M, Wahid A, Abbas SQ (2009b) Development of genetic linkage map of leaf red colour in cotton (Gossypium hirsutum) using DNA markers. Pak J Bot 41(3):1127–1136

    CAS  Google Scholar 

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9(3):208–218

    CAS  Google Scholar 

  • Asad S, Mukhtar Z, Nazir F, Hashmi AJ, Mansoor S, Zafar Y, Arshad M (2008) Silicon carbide whisker-mediated embryogenic callus transformation of cotton (Gossypium hirsutum L.) and regeneration of salt tolerant plants. Mol Biotechnol 40:161–169

    PubMed  CAS  Google Scholar 

  • Asif M (2010) Genomic analysis for quality traits in cotton (G. hirsutum L) by DNA fingerprinting technology. B.Z. Univ, Multan Pakistan

    Google Scholar 

  • Auld D, Light GG, Fokar M, Bechere E, Allen RD (2009) Mutagenesis system for genetic analysis of Gossypium; In genetics and genomics of cotton. Paterson AH (ed), Springer 3: 209–226

  • Bolek Y, El-Zik KM, Pepper AE, Bell AA, Magill CW, Thaxton PM, Reddy OUK (2005) Mapping of verticillium wilt resistance genes in cotton. Plant Sci 168:1581–1590

    CAS  Google Scholar 

  • Boulanger J, Pinheiro D (1971) Evolution de la production au nord-est Brasil. Coton et Fibres Tropicales 26:319–353

    Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    PubMed  CAS  Google Scholar 

  • Brubaker C, Wendel J (1993) Molecular evidence bearing on the specific status of Gossypium lanceolatum Todaro. Genet Resour Crop Evol 40:165–170

    Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    CAS  Google Scholar 

  • Byrne PF, McMullen MD (1996) Defining genes for agricultural traits: QTL analysis and the candidate gene approach. Probe 7:24–27

    Google Scholar 

  • Cai Y, Xie Y, Liu J (2010) Glandless seed and glanded plant research in cotton. Agron Sustain Dev 30:181–190

    CAS  Google Scholar 

  • Calhoun DS, Bowman DT, May OL (1997) Pedigrees of upland and pima cotton cultivars released between 1970 and 1995. Miss Agric For Exp Stn 1069:53

    Google Scholar 

  • Chee P, Draye X, Jiang C-X, Decanini L, Delmonte T, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    PubMed  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    PubMed  CAS  Google Scholar 

  • Chen H, Qian N, Guo WZ, Song QP, Li BC, Deng FJ, Dong CG, Zhang TZ (2009) Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on chro.24 in Upland cotton. Theor Appl Genet 119:605–612

    PubMed  Google Scholar 

  • Cunnac S, Wilson A, Nuwer J, Kirik A, Baranage G, Mudgett MB (2007) A conserved carboxylesterase is a suppressor of avrbst-elicited resistance in Arabidopsis. Plant Cell 19:688–705

    PubMed  CAS  Google Scholar 

  • Desai A, Chee PW, May OL, Paterson AH (2008) Correspondence of trichome mutations in diploid and tetraploid cottons. J Hered 99:182–186

    PubMed  CAS  Google Scholar 

  • Dong J, Wu F, Jin Z, Huang Y (2006) Heterosis for yield and some physiological traits in hybrid cotton Cikangza. Euphytica 151:71–77

    CAS  Google Scholar 

  • Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111:764–771

    PubMed  CAS  Google Scholar 

  • Endrizzi J, Ramsay G (1979) Monosomes and telosomes for 18 of the 26 chromosomes of Gossypium hirsutum. Can J Genet 21:531–536

    Google Scholar 

  • Feng CD, Stewart JMD, Zhang JF (2005) STS markers linked to the Rf(1) fertility restorer gene of cotton. Theor Appl Genet 110:237–243

    PubMed  CAS  Google Scholar 

  • Fryxell PA (1963) Morphology of the base of seed hairs of Gossypium. I. Cross morphology. Bot Gaz 123:196–199

    Google Scholar 

  • Fryxell P (1979) The natural history of the cotton tribe. Texas A&M University Press, College Station

    Google Scholar 

  • Fryxell PA, Craven LA, Stewart JM (1992) A revision of Gossypium sect. Grandicalyx (Malvaceae), including the description of six new species. Syst Bot 17:91–114

    Google Scholar 

  • Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. spp. japonica). Science 296:92–100

    PubMed  CAS  Google Scholar 

  • Gotemare V, Singh P (2004) Use of wild species for cotton improvement in India. ICAC Rec XXII:12–14

    Google Scholar 

  • Guo WZ, Zhang TZ, Pan JJ, Kohel RJ (1998) Identification of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton. Chin Sci Bull 43:52–54

    CAS  Google Scholar 

  • Guo WZ, Zhang TZ, Shen XL, Yu JZ, Kohel RJ (2003) Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton. Crop Sci 43:2252–2256

    CAS  Google Scholar 

  • Guo WZ, Cai CP, Wang CB, Han ZG, Song XL, Wang K, Niu XW, Wang C, Lu KY, Shi B, Zhang TZ (2007) A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 176:527–541

    PubMed  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:1610–1615

    CAS  Google Scholar 

  • Haigler CH, Zhang DH, Wilkerson CG (2005) Biotechnological improvement of cotton fibre maturity. Physiol Plant 124:285–294

    CAS  Google Scholar 

  • Hao JJ, Yu SX, Dong ZD, Fan SL, Ma QX, Song MZ, Yu JW (2008) Quantitative inheritance of leaf morphological traits in upland cotton. J Agric Sci 146:561–569

    Google Scholar 

  • Haq I, Asad S, Zafar Y (2005) Bioloistic-mediated transformation of cotton (Gossypium hirsutum L.): embryogenic calli as explant. J Plant Biotechnol 7(4):211–218

    Google Scholar 

  • Helms AB (2000) Yield study report. In: Duggar P, Richder D (eds) Proc. Beltwide cotton Prod. Conf. San Antonio TX. 4–9 Jan. 2000. National Cotton Council, Memphis

    Google Scholar 

  • Hsu CY, Creech RG, Jenkins JN, Ma DP (1999) Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Sci 143:63–70

    CAS  Google Scholar 

  • Hsu C-Y, Jenkins JN, Saha S, Ma D-P (2005) Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein. Plant Sci 168:167–181

    CAS  Google Scholar 

  • Hulskamp M (2004) Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol 5:471–480

    PubMed  Google Scholar 

  • Humphries JA, Walker AR, Timmis JN, Orford SJ (2005) Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol Biol 57:67–81

    PubMed  CAS  Google Scholar 

  • Jacoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Hülskamp M, Larkin J, Schnittger A (2008) Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol 148:1583–1602

    Google Scholar 

  • Jiang CX, Wright RJ, El-Zik K, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci U S A 95:4419–4424

    PubMed  CAS  Google Scholar 

  • Jiang C, Wright RJ, Woo SS, DelMonte TA, Paterson AH (2000a) QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor Appl Genet 100:409–418

    CAS  Google Scholar 

  • Jiang C, Chee P, Draye X, Morrell P, Smith C, Paterson A (2000b) Multi-locus interactions restrict gene flow in advanced-generation interspecific populations of polyploid Gossypium (cotton). Evolution 54:798–814

    PubMed  CAS  Google Scholar 

  • Jixiang W, Johnie NJ, McCarty JC, Zhong M, Michael S (2007) AFLP marker associations with agronomic and fiber traits in cotton. Euphytica 153:153–163

    Google Scholar 

  • Khan SA, Zafar Y, Briddon RW, Malik KA, Mukhtar Z (2006) Spider venom toxin protects plants from insect attack. Transgenic Res 15:349–357

    PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in plant and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    PubMed  CAS  Google Scholar 

  • Kohel RJ, Richmond TR, Lewis CF (1974) Genetics of flowering response in cotton. VI. Flowering behavior of Gossypium hirsutum L. and G. barbadense L. hybrids. Crop Sci 14:696–699

    Google Scholar 

  • Lacape JM, Nguyen TB (2005) Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Hered 96:441–444

    PubMed  CAS  Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum x Gossypium barbadense backcross population. Genome 46:612–626

    PubMed  CAS  Google Scholar 

  • Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B (2007) Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breed 19:45–58

    CAS  Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu S, Palaï O, Georges S, Giband M, de Assunção H, Augusto P, Barroso V, Claverie M, Gawryziak G, Jean J, Vialle M, Viot C (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum × G. barbadense RIL population. BMC Plant Biol 10:132

    PubMed  Google Scholar 

  • Lan T-H, Cook C, Paterson A (1999) Identification of a RAPD marker linked to a male-fertility restoration gene in cotton (Gossypium hirsutum L.). J Agric genomics 4:1–5

    Google Scholar 

  • Larkin JC, Brown ML, Schiefelbein J (2003) How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol 54:403–430

    PubMed  CAS  Google Scholar 

  • Li JF (2005) Research on Chinese Cotton hybrid vigor utilization. Jiangxi Cotton 27(1): 3–7

    Google Scholar 

  • Liu HC, Creech RG, Jenkins JN, Ma DP (2000a) Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids 1487:106–111

    CAS  Google Scholar 

  • Liu S, Cantrell RG, McCarty JC, Stewart JM (2000b) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469

    CAS  Google Scholar 

  • Loguercio LL, Zhang JQ, Wilkins TA (1999) Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet 261:660–671

    CAS  Google Scholar 

  • Ma X, Zhou B, Lu Y, Guo W, Zhang T (2008) Simple sequence repeat genetic linkage maps of A-genome diploid cotton (Gossypium arboreum). J Integr Plant Biol 50:491–502

    PubMed  CAS  Google Scholar 

  • Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol 48:137–163

    CAS  Google Scholar 

  • Marks MDJP, Wenger E, Gilding R, Jilk, Dixon RA (2009) Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant 2(4):803–822

    PubMed  CAS  Google Scholar 

  • May OL, Bowman DT, Calhoun DS (1995) Genetic diversity of U.S. upland cotton cultivars released between 1980 and 1990. Crop Sci 35:1570–1574

    Google Scholar 

  • McCarty J, Jenkins J (1992) Cotton germplasm: characteristics of 79 day-neutral primitive race accessions. Miss Agric Exp Stn Tech Bull 184:17

    Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    PubMed  CAS  Google Scholar 

  • Mumtaz, H. (2007) Identification of structural and functional genomic markers for fiber quality traits in cotton using interspecific population (G. hirsutum x G. barbadense). MPhil Thesis, QA Univ Islamabad Pakistan

  • Niu C, Hinchliffe DJ, Cantrell RG, Wang CL, Roberts PA, Zhang JF (2007) Identification of molecular markers associated with root-knot nematode resistance in upland cotton. Crop Sci 47:951–960

    CAS  Google Scholar 

  • Niu C, Lister HE, Nguyen B, Wheeler TA, Wright RJ (2008) Resistance to Thielaviopsis basicola in the cultivated A genome cotton. Theor Appl Genet 117:1313–1323

    PubMed  CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2010) Expression of an Arabidopsis vacuolar H+−pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX, Wright RJ (2003) QTL analysis of genotype x environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    PubMed  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM et al (1999) ‘Green revolution’ genes encode mutant gibberellin responsemodulators. Nature 400(6741):256–261

    PubMed  CAS  Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard cotton in the USA—early promises versus today's reality. The Plant J 27(6):489–501

    CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291

    CAS  Google Scholar 

  • Pickersgill B, Barrett SCH, Andrade-Lima D (1975) Wild cotton in northeast Brazil. Biotropical 7:42–54

    Google Scholar 

  • Plett JM, Mathur J, Regan S (2009) Ethylene receptor ETR2 controls trichome branching by regulating microtubule assembly in Arabidopsis thaliana. J Exp Bot 60(13):3923–3933

    PubMed  CAS  Google Scholar 

  • Quisenberry JE (1977) Inheritance of fiber properties among crosses of Acalas and high plains cultivars of upland cotton. Crop Sci 15:202–205

    Google Scholar 

  • Quisenberry J, Jordan W, Roark B, Fryrear D (1982) Exotic cottons as genetic sources for drought resistance. Crop Sci 21:889–895

    Google Scholar 

  • Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton (Gossypium hirsutum L.) cultivars/genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144

    CAS  Google Scholar 

  • Rahman M, Hussain D, Malik TA, Zafar Y (2005) Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathol 54:764–772

    CAS  Google Scholar 

  • Rahman M, Ahmed N, Asif M, Zafar Y (2006) Identification of DNA markers linked with cotton leaf curl disease (CLCD). International Cotton Genome Initiative (ICGI) Workshop, Brasilia Brazil, pp 77–78

    Google Scholar 

  • Rahman M, Yasmin T, Tabassum N, Ullah I, Asif M, Zafar Y (2008) Studying the extent of genetic diversity among Gossypium arboreum L. genotypes/cultivars using DNA fingerprinting. Genet Resour Crop Evol 55:331–339

    Google Scholar 

  • Rahman M, Zafar Y, Paterson AH (2009) Gossypium DNA markers types, number and uses. In: Paterson AH (ed) Genomics of cotton. Springer, Dordrecht

    Google Scholar 

  • Rahman M, Asif M, Shaheen T, Tabbasam N, Zafar Y, Paterson AH (2011) Marker-assisted breeding in Higher Plants. In: Eric Lichtfouse (ed) Sustainable Agriculture Reviews 6; Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation, Springer Publisher Pp 39–76

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    PubMed  CAS  Google Scholar 

  • Rayburn ST, Brotton R, Keene E (1999) National cotton variety tests. USDA-ARS, Stoneville

    Google Scholar 

  • Rong J, Paterson AH (2009) Comparative genomics of cotton and Arabidopsis. Genetics and Genomics of Cotton: Paterson AH (ed), Springer 3: 431–449

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding XL, Garza JJ, Marler BS, Park C-H, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    PubMed  CAS  Google Scholar 

  • Rong J, Bowers JE, Schulze SR, Waghmare VN, Rogers CJ, Pierce GJ, Zhang H, Estill JC, Paterson AH (2005a) Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res 15:1198–1210

    PubMed  CAS  Google Scholar 

  • Rong J, Pierce G, Waghmare V, Rogers C, Desai A, Chee P, May O, Gannaway J, Wendel J, Wilkins T, Paterson A (2005b) Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet 111:1137–1146

    PubMed  CAS  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTLs shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics. doi:10.1534/genetics.107.074518

  • Rosenow D, Quisenberry J, Wendt C, Clark L (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Google Scholar 

  • Rungis D, Llewellyn D, Dennis ES, Lyon BR (2002) Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton (Gossypium hirsutum L.) cultivar. Aust J Agric Res 53:551–560

    CAS  Google Scholar 

  • Running MP, Hake S (2001) The role of floral meristems in patterning. Curr Opin Plant Biol 4:69–74

    PubMed  CAS  Google Scholar 

  • Saha S, Raska D, Stelly DM (2006) Upland (Gossypium hirsutum L.) x Hawaiian cotton (G. tomentosum Nutt. ex Seem.) F1 hybrid hypoaneuploid chromosome substitution series. J Cotton Sci 10:263–272

    CAS  Google Scholar 

  • Salentijn EMJ, Pereira A, Angenent GC, Linden CG, Krens F, Smulders MJM, Vosman B (2007) Plant translational genomics: from model species to crops. Mol Breed 20:1–13

    Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995

    PubMed  CAS  Google Scholar 

  • Saranga Y, Jiang CX, Wright RJ, Yakir D, Paterson AH (2004) Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environ 27:263–277

    CAS  Google Scholar 

  • Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jurgens G, Hulskamp M (2002) triptychon and caprice mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21:5036–5046

    PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–120

    PubMed  CAS  Google Scholar 

  • Shangguan X-X, Xu B, Z-X Yu, Wang L-J, Chen X-Y (2008) Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco. J Exp Bot 59(13):3533–3542

    PubMed  CAS  Google Scholar 

  • Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu JZ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181

    CAS  Google Scholar 

  • Shen XL, Van Becelaere G, Kumar P, Davis RF, May OL, Chee P (2006) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet 113:1539–1549

    PubMed  CAS  Google Scholar 

  • Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    CAS  Google Scholar 

  • Silva TMS, Camara CA, Medeiros FD, Oliviera EJ, Argra MF, Harley RM, Giulietti AB (2006) Phaeophytins from Gossypium mustelinum Miers ex Watt (Malvaceae). Biochem Syst Ecol 34:263–264

    CAS  Google Scholar 

  • Song XL, Zhang TZ (2007) Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res 17:243–251

    CAS  Google Scholar 

  • Song XL, Guo WZ, Han ZG, Zhang TZ (2005) Quantitative trait loci mapping of leaf morphological traits and chlorophyll content in cultivated tetraploid cotton. J Integr Plant Biol 47:1382–1390

    CAS  Google Scholar 

  • Stewart J. M., 1994. Potential for crop improvement with exotic germplasm and genetic engineering. Challenging the Future: Proceedings of the World Cotton Research Conference-1, Brisbane Australia, G.A. Constable and N.W. Forrester (Eds), CSIRO, Melbourne, Australia, pp. 313–327

  • Suo JF, Liang X, Pub L, Zhang YS, Xue YB (2003) Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta Mol Cell Biol Lipids 1630:25–34

    CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+transport in higher plants. Ann Bot 91:503–527

    PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 15:1596–1604

    Google Scholar 

  • Ullah, I. (2009) Molecular Genetic Studies for Drought Tolerance in Cotton. PhD thesis, Quaid-i-Azam University, Islamabad

  • Ulloa M, Meredith WR, Shappley ZW, Kahler AL (2002) Genetic linkage maps from four F2:3 populations and a join maps of Gossypium hirsutum L. Theor Appl Genet 101:200–208

    Google Scholar 

  • Van Esbroeck GA, Bowman DT, Calhoun DS, May OL (1998) Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Sci 38:33–37

    Google Scholar 

  • Varshney RK, Grosse I, Hahnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–350

    PubMed  CAS  Google Scholar 

  • Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419

    PubMed  CAS  Google Scholar 

  • Waghmare VN, Rong JK, Rogers CJ, Pierce GJ, Wendel JF, Paterson AH (2005) Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet 111:665–676

    PubMed  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    PubMed  CAS  Google Scholar 

  • Wang C, Roberts PA (2006) Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton. Euphytica 152:185–196

    CAS  Google Scholar 

  • Wang S, Wang J-W, Yu N, Li C-H, Luo B, Gou J-Y, Wang L-J, Chen X-Y (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    PubMed  CAS  Google Scholar 

  • Wang C, Ulloa M, Roberts PA (2006) Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton (Gossypium hirsutum L.). Theor Appl Genet 112:770–777

    PubMed  CAS  Google Scholar 

  • Wang BH, Wu YT, Guo WZ, Zhu XF, Huang NT, Zhang TZ (2007a) QTL analysis and epistasis effects dissection of fiber qualities in an elite cotton hybrid grown in second generation. Crop Sci 47:1384–1392

    CAS  Google Scholar 

  • Wang F, Stewart JM, Zhang J (2007b) Molecular markers linked to the Rf(2) fertility restorer gene in cotton. Genome 50:818–824

    PubMed  CAS  Google Scholar 

  • Wang HM, Lin ZX, Zhang XL, Chen W, Guo XP, Nie YC, Li YH (2008) Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. J Integr Plant Biol 50:174–182

    PubMed  Google Scholar 

  • Wang P, Su L, Qin L, Hu B, Guo W, Zhang T (2009) Identification and molecular mapping of a Fusarium wilt resistant gene in upland cotton. Theor Appl Genet 119(4):733–739

    PubMed  CAS  Google Scholar 

  • Wendel JF (1989) New world tetraploid cottons contain old-world cytoplasm. Proc Natl Acad Sci 86:4132–4136

    PubMed  CAS  Google Scholar 

  • Wright R, Thaxton P, El-Zik K, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (Cotton) suggests that polyploid formation has created novel avenues for evolution. Genetics 149:1987–1996

    PubMed  CAS  Google Scholar 

  • Wright R, Thaxton P, Paterson AH, El-Zik K (1999) Molecular mapping of genes affecting pubescence of cotton. J Hered 90:215–219

    CAS  Google Scholar 

  • Wu J, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J (2009) Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica 165:231–245

    Google Scholar 

  • Yang C, Guo WZ, Li GY, Gao F, Lin SS, Zhang TZ (2008) QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Sci 174:290–298

    CAS  Google Scholar 

  • Ynturi P, Jenkins JN, McCarty JC, Gutierrez OA, Saha S (2006) Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton. Crop Sci 46:2670–2674

    CAS  Google Scholar 

  • Yu J, Nian HS, Wang-Jun et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    PubMed  CAS  Google Scholar 

  • Yu JW, Yu SX, Lu CR, Wang W, Fan SL, Song MZ, Lin ZX, Zhang XL, Zhang JF (2007) High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol 49:716–724

    CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of Nested Association Mapping. Genetics 178:539–551

    PubMed  Google Scholar 

  • Zhang JF, Stewart JM (2004) Identification of molecular markers linked to the fertility restorer genes for CMS-D8 in cotton. Crop Sci 44:1209–1217

    CAS  Google Scholar 

  • Zhang TZ, Yuan YL, Yu J, Guo WZ, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106:262–268

    PubMed  CAS  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Pei Y (2005) Construction of a genetic linkage map and QTL analysis of fibre related traits in upland cotton. Euphytica 144:91–99

    CAS  Google Scholar 

  • Zhao XQ, Xu JL, Zhao M, Lafitte R, Zhu LH, Fu BY, Gao YM, Li ZK (2008) QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci 174:618–625

    CAS  Google Scholar 

  • Zhu W, Liu K, Wang X-D (2008) Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica 164(1):283–291

    CAS  Google Scholar 

  • Zuo K, Sun J, Zhang X, Nie Y, Liu J, Feng C (2000) Constructing a linkage map of upland cotton (Gossypium hirsutum L.) using RFLP, RAPD and SSR makers. J Huazhong Agric Univ 19:190–193

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehboob-ur-Rahman.

About this article

Cite this article

Mehboob-ur-Rahman, Shaheen, T., Tabbasam, N. et al. Cotton genetic resources. A review. Agron. Sustain. Dev. 32, 419–432 (2012). https://doi.org/10.1007/s13593-011-0051-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-011-0051-z

Keywords

Navigation