Skip to main content

Neuroflex: Intraneural and Extraneural Flexible Sensor Architectures for Neural Probing

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering
  • 84 Accesses

Abstract

The development of flexible, ultra-compliant neural interfaces has evolved to be a prerequisite to the realization of seamlessly integrable soft neural systems destined to be implanted within the neural milieu. The chapter provides a holistic view of Neuroflex, a class of flexible interface architectures employed to communicate with the neural tissues either by penetrating (intraneural mode of communication) or by being in contact with the target tissue surface (extraneural mode of communication). This flexible conformal class of neural interface designs is highly compatible for integration with the bendable electronic systems and has demonstrated tremendous potential as a starting point for the realization of soft flexible bioelectronics. We appreciate this motivation that led to the development of Neuroflex and further discuss the substrate materials and the electrode materials (for conductive traces and sensing sites) that have enabled such flexible designs. We provide brief descriptions of the design innovations in the intraneural and extraneural flexible electrode interfaces for the neural tissues such as the brain and the peripheral nerve. The chapter concludes with a road map of the flexible neural interface development and the application-specific material compatibility, the result of which identifies Neuroflex as a well-suited domain for future research toward preclinical studies and possibly clinical translation. The authors observe that Neuroflex has provided an invaluable opportunity to reimagine conventional biointegrated sensors and electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Patil, A.C., Thakor, N.V.: Implantable neurotechnologies: a review of micro-and nanoelectrodes for neural recording. Med. Biol. Eng. Comput. 54(1), 23–44 (2016)

    Article  Google Scholar 

  2. Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  3. Grill, W.M., Norman, S.E., Bellamkonda, R.V.: Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009)

    Article  Google Scholar 

  4. Lebedev, M.A., Nicolelis, M.A.: Brain–machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  5. Wellman, S.M., Eles, J.R., Ludwig, K.A., et al.: A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28(12), 1701269 (2018)

    Article  Google Scholar 

  6. Pandit, A., Biggs, M.: Advanced functional materials solutions to engineering the neural interface. Adv. Funct. Mater. 28(12), 1800827 (2018)

    Article  Google Scholar 

  7. Ma, Z., Williams, J.C., Park, D.W., et al.: Transparent and flexible neural electrode arrays. US Patent 9,861,288 (2018)

    Google Scholar 

  8. Someya, T., Bao, Z., Malliaras, G.G.: The rise of plastic bioelectronics. Nature 540(7633), 379 (2016)

    Article  Google Scholar 

  9. Yu, K.J., Kuzum, D., Hwang, S.W., et al.: Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782 (2016)

    Article  Google Scholar 

  10. Litt, B., Viventi, J.: Flexible and scalable sensor arrays for recording and modulating physiologic activity. US Patent 9,107,592 (2015)

    Google Scholar 

  11. Rogers, J., Dae-Hyeong, K., Litt, B., et al.: Conformable actively multiplexed high-density surface electrode array for brain interfacing. US Patent 8,934,965 (2015)

    Google Scholar 

  12. Jeong, J.W., Shin, G., Park, S.I., et al.: Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86(1), 175–186 (2015)

    Article  Google Scholar 

  13. Minev, I.R., Musienko, P., Hirsch, A., et al.: Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218), 159–163 (2015)

    Article  Google Scholar 

  14. Rogers, J.A., Dae-Hyeong, K., Omenetto, F., et al.: Implantable biomedical devices on bioresorbable substrates. US Patent 8,666,471 (2014)

    Google Scholar 

  15. Kim, D.H., Ghaffari, R., Lu, N., et al.: Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012)

    Article  Google Scholar 

  16. Viventi, J., Kim, D.H., Vigeland, L., et al.: Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599 (2011)

    Article  Google Scholar 

  17. Fattahi, P., Yang, G., Kim, G., et al.: A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014)

    Article  Google Scholar 

  18. Lacour, S.P., Benmerah, S., Tarte, E., et al.: Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 48(10), 945–954 (2010)

    Article  Google Scholar 

  19. Donoghue, J.P.: Bridging the brain to the world: a perspective on neural interface systems. Neuron 60(3), 511–521 (2008)

    Article  Google Scholar 

  20. Hatsopoulos, N.G., Donoghue, J.P.: The science of neural interface systems. Annu. Rev. Neurosci. 32, 249–266 (2009)

    Article  Google Scholar 

  21. Yuk, H., Lu, B., Zhao, X.: Hydrogel bioelectronics. Chem. Soc. Rev. 48(6), 1642–1667 (2019)

    Article  Google Scholar 

  22. Renshaw, B., Forbes, A., Morison, B.: Activity of isocortex and hippocampus: electrical studies with micro-electrodes. J. Neurophysiol. 3(1), 74–105 (1940)

    Article  Google Scholar 

  23. Woldring, S., Dirken, M.: Spontaneous unit-activity in the superficial cortical layers. Acta Physiol. Pharmacol. Neerl 1(3), 369–379 (1950)

    Google Scholar 

  24. Li, C.L., Jasper, H.: Microelectrode studies of the electrical activity of the cerebral cortex in the cat. J. Physiol. (Lond.) 121(1), 117–140 (1953)

    Google Scholar 

  25. Dowben, R.M., Rose, J.E.: A metal-filled microelectrode. Science 118(3053), 22–24 (1953)

    Article  Google Scholar 

  26. Green, J.: A simple microelectrode for recording from the central nervous system. Nature 182(4640), 962 (1958)

    Article  Google Scholar 

  27. Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148(3), 574–591 (1959)

    Google Scholar 

  28. Wolbarsht, M., MacNichol, E., Wagner, H.: Glass insulated platinum microelectrode. Science 132(3436), 1309–1310 (1960)

    Article  Google Scholar 

  29. Marg, E., Adams, J.E.: Indwelling multiple micro-electrodes in the brain. Electroencephalogr. Clin. Neurophysiol. 23(3), 277–280 (1967)

    Article  Google Scholar 

  30. Branner, A., Normann, R.A.: A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res. Bull. 51(4), 293–306 (2000)

    Article  Google Scholar 

  31. Nicolelis, M.A., Ghazanfar, A.A., Faggin, B.M., et al.: Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18(4), 529–537 (1997)

    Article  Google Scholar 

  32. Williams, J.C., Rennaker, R.L., Kipke, D.R.: Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain. Res. Protoc. 4(3), 303–313 (1999)

    Article  Google Scholar 

  33. Nicolelis, M.A., Dimitrov, D., Carmena, J.M., et al.: Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. U. S. A. 100(19), 11041–11046 (2003)

    Article  Google Scholar 

  34. Polikov, V.S., Tresco, P.A., Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)

    Article  Google Scholar 

  35. Jackson, A., Fetz, E.E.: Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J. Neurophysiol. 98(5), 3109–3118 (2007)

    Article  Google Scholar 

  36. Lehew, G., Nicolelis, M.A.: State-of-the-art microwire array design for chronic neural recordings in behaving animals. In: Methods for Neural Ensemble Recordings, vol. 2, pp. 361–371. CRC Press, Boca Raton (2008)

    Google Scholar 

  37. Prasad, A., Xue, Q.S., Sankar, V., et al.: Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. J. Neural Eng. 9(5), 056015 (2012)

    Article  Google Scholar 

  38. Campbell, P.K., Jones, K.E., Huber, R.J., et al.: A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38(8), 758–768 (1991)

    Article  Google Scholar 

  39. Nordhausen, C.T., Maynard, E.M., Normann, R.A.: Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726(1–2), 129–140 (1996)

    Article  Google Scholar 

  40. Bai, Q., Wise, K.D., Anderson, D.J.: A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans. Biomed. Eng. 47(3), 281–289 (2000)

    Article  Google Scholar 

  41. Branner, A., Stein, R.B., Normann, R.A.: Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J. Neurophysiol. 85(4), 1585–1594 (2001)

    Article  Google Scholar 

  42. Xu, C., Lemon, W., Liu, C.: Design and fabrication of a high-density metal microelectrode array for neural recording. Sens. Actuat. A 96(1), 78–85 (2002)

    Article  Google Scholar 

  43. Kipke, D.R., Vetter, R.J., Williams, J.C., et al.: Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 151–155 (2003)

    Article  Google Scholar 

  44. Wise, K.D., Anderson, D.J., Hetke, J.F., et al.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92(1), 76–97 (2004)

    Article  Google Scholar 

  45. Biran, R., Martin, D.C., Tresco, P.A.: Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195(1), 115–126 (2005)

    Article  Google Scholar 

  46. Cheung, K.C.: Implantable microscale neural interfaces. Biomed. Microdev. 9(6), 923–938 (2007)

    Article  MathSciNet  Google Scholar 

  47. Kipke, D.R., Williams, J.C., Hetke, J., et al.: Intracranial neural interface system. US Patent 7,548,775 (2009)

    Google Scholar 

  48. Kim, S., Bhandari, R., Klein, M., et al.: Integrated wireless neural interface based on the Utah electrode array. Biomed. Microdev. 11(2), 453–466 (2009)

    Article  Google Scholar 

  49. Piret, G., Hébert, C., Mazellier, J.P., et al.: 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173–183 (2015)

    Article  Google Scholar 

  50. Christensen, M.B., Wark, H.A., Hutchinson, D.T.: A histological analysis of human median and ulnar nerves following implantation of utah slanted electrode arrays. Biomaterials 77, 235–242 (2016)

    Article  Google Scholar 

  51. Christensen, M., Pearce, S., Ledbetter, N., et al.: The foreign body response to the utah slant electrode array in the cat sciatic nerve. Acta Biomater. 10(11), 4650–4660 (2014)

    Article  Google Scholar 

  52. Rousche, P.J., Normann, R.A.: Chronic recording capability of the utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998)

    Article  Google Scholar 

  53. Normann, R.A.: Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat. Rev. Neurol. 3(8), 444 (2007)

    Article  Google Scholar 

  54. Wark, H., Sharma, R., Mathews, K., et al.: A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10(4), 045003 (2013)

    Article  Google Scholar 

  55. Mathews, K.S., Wark, H.A., Normann, R.A.: Assessment of rat sciatic nerve function following acute implantation of high density utah slanted electrode array (25 electrodes/mm2) based on neural recordings and evoked muscle activity. Muscle Nerve 50(3), 417–424 (2014)

    Article  Google Scholar 

  56. Spira, M.E., Hai, A.: Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8(2), 83 (2013)

    Article  Google Scholar 

  57. Fejtl, M., Stett, A., Nisch, W., et al.: On micro-electrode array revival: its development, sophistication of recording, and stimulation. In: Advances in Network Electrophysiology, pp. 24–37. Springer, Boston (2006)

    Google Scholar 

  58. Gross, G.W.: Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans. Biomed. Eng. 26(5), 273–279 (1979)

    Article  Google Scholar 

  59. Pine, J.: Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J. Neurosci. Methods 2(1), 19–31 (1980)

    Article  Google Scholar 

  60. Regehr, W.G., Pine, J., Rutledge, D.B.: A long-term in vitro silicon-based microelectrode-neuron connection. IEEE Trans. Biomed. Eng. 35(12), 1023–1032 (1988)

    Article  Google Scholar 

  61. Hoogerwerf, A.C., Wise, K.D.: A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41(12), 1136–1146 (1994)

    Article  Google Scholar 

  62. Fromherz, P., Stett, A.: Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett. 75(8), 1670 (1995)

    Article  Google Scholar 

  63. Maher, M., Pine, J., Wright, J., et al.: The neurochip: a new multielectrode device for stimulating and recording from cultured neurons. J. Neurosci. Methods 87(1), 45–56 (1999)

    Article  Google Scholar 

  64. McGarvey, K.A., Lee, J.M., Boughner, D.R.: Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves. Biomaterials 5, 109–117 (1984)

    Article  Google Scholar 

  65. Borschel, G.H., Kia, K.F., Kuzon, W.M. Jr, et al.: Mechanical properties of acellular peripheral nerve. J. Surg. Res. 114, 133–139 (2003)

    Article  Google Scholar 

  66. Sharp, A.A., Ortega, A.M., Restrepo, D., et al.: In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans. Biomed. Eng. 56, 45–53 (2008)

    Article  Google Scholar 

  67. Maikos, J.T., Elias, R.A., Shreiber, D.I.: Mechanical properties of dura mater from the rat brain and spinal cord. J. Neurotrauma 25, 38–51 (2008)

    Article  Google Scholar 

  68. Elkin, B.S., Ilankovan, A., Morrison, B.: Age-dependent regional mechanical properties of the rat hippocampus and cortex. J. Biomech. Eng. 132, 011010 (2010)

    Article  Google Scholar 

  69. Ogneva, I.V., Lebedev, D.V., Shenkman, B.S.: Transversal stiffness and young’s modulus of single fibers from rat soleus muscle probed by atomic force microscopy. Biophys. J. 98, 418–424 (2010)

    Article  Google Scholar 

  70. Ju, M.S., Lin, C.C.K., Chang, C.T.: Researches on biomechanical properties and models of peripheral nerves-a review. J. Biomech. Sci. Eng. 12, 16–00,678 (2017)

    Article  Google Scholar 

  71. Karimi, A., Shojaei, A., Tehrani, P.: Mechanical properties of the human spinal cord under the compressive loading. J. Chem. Neuroanat. 86, 15–18 (2017)

    Article  Google Scholar 

  72. Kozai, T.D.Y., Langhals, N.B., Patel, P.R., et al.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065 (2012)

    Article  Google Scholar 

  73. Guitchounts, G., Markowitz, J.E., Liberti, W.A., et al.: A carbon-fiber electrode array for long-term neural recording. J. Neural Eng. 10(4), 046016 (2013)

    Article  Google Scholar 

  74. Kang, M., Jung, S., Zhang, H., et al.: Subcellular neural probes from single-crystal gold nanowires. ACS Nano 8(8), 8182–8189 (2014)

    Article  Google Scholar 

  75. Apollo, N.V., Maturana, M.I., Tong, W., et al.: Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide. Adv. Funct. Mater. 25(23), 3551–3559 (2015)

    Article  Google Scholar 

  76. Canales, A., Jia, X., Froriep, U.P., et al.: Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33(3), 277 (2015)

    Article  Google Scholar 

  77. Xie, C., Liu, J., Fu, T.M., et al.: Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14(12), 1286 (2015)

    Article  Google Scholar 

  78. Leccardi, M.J.I.A., Vagni, P., Ghezzi, D.: Multilayer 3D electrodes for neural implants. J. Neural Eng. 16(2), 026013 (2018)

    Article  Google Scholar 

  79. Boretius, T., Badia, J., Pascual-Font, A., et al.: A transverse intrafascicular multichannel electrode (time) to interface with the peripheral nerve. Biosens. Bioelectron. 26(1), 62–69 (2010)

    Article  Google Scholar 

  80. Wang, J., Thow, X.Y., Wang, H., et al.: A highly selective 3D spiked ultraflexible neural (SUN) interface for decoding peripheral nerve sensory information. Adv. Healthcare Mater. 7(5), 1700987 (2018)

    Article  Google Scholar 

  81. Cutrone, A., Del Valle, J., Santos, D., et al.: A three-dimensional self-opening intraneural peripheral interface (SELINE). J. Neural Eng. 12(1), 016016 (2015)

    Article  Google Scholar 

  82. Cutrone, A., Bossi, S., Micera, S.: Development of a self-opening neural interface. J. Med. Dev. 7(2), 020938 (2013)

    Article  Google Scholar 

  83. Wurth, S., Capogrosso, M., Raspopovic, S., et al.: Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 122, 114–129 (2017)

    Article  Google Scholar 

  84. Khodagholy, D., Doublet, T., Quilichini, P., et al.: In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013)

    Article  Google Scholar 

  85. Lee, W., Kim, D., Matsuhisa, N., et al.: Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl. Acad. Sci. U. S. A. 114(40), 0554–10559 201703886 (2017)

    Google Scholar 

  86. Patil, A.C., Bandla, A., Liu, Y.H., et al.: Nontransient silk sandwich for soft, conformal bionic links. Mater. Today 32, 68–83 (2020)

    Article  Google Scholar 

  87. Escabi, M.A., Read, H.L., Viventi, J., et al.: A high-density, high-channel count, multiplexed μecog array for auditory-cortex recordings. J. Neurophysiol. 112(6), 1566–1583 (2014)

    Article  Google Scholar 

  88. Kim, D.H., Kim, Y.S., Amsden, J., et al.: Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95(13), 133701 (2009)

    Article  Google Scholar 

  89. Kim, D., Viventi, J., Amsden, J.J., et al.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511 (2010)

    Article  Google Scholar 

  90. Tsioris, K., Raja, W.K., Pritchard, E.M., et al.: Fabrication of silk microneedles for controlled-release drug delivery. Adv. Funct. Mater. 22(2), 330–335 (2012)

    Article  Google Scholar 

  91. Tao, H., Kainerstorfer, J.M., Siebert, S.M., et al.: Implantable, multifunctional, bioresorbable optics. Proc. Natl. Acad. Sci. U. S. A. 109(48), 19584–19589 (2012)

    Article  Google Scholar 

  92. Tien, L.W., Wu, F., Tang-Schomer, M.D., et al.: Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes. Adv. Funct. Mater. 23(25), 3185–3193 (2013)

    Article  Google Scholar 

  93. Tao, H., Hwang, S.W., Marelli, B., et al.: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U. S. A. 111(49), 17385–17389 (2014)

    Article  Google Scholar 

  94. Wu, F., Tien, L.W., Chen, F., et al.: Silk-backed structural optimization of high-density flexible intracortical neural probes. J. Microelectromech. Syst. 24(1), 62–69 (2015)

    Article  Google Scholar 

  95. Rockwood, D.N., Preda, R.C., Yücel, T., et al.: Materials fabrication from bombyx mori silk fibroin. Nat. Protoc. 6(10), 1612–1631 (2011)

    Article  Google Scholar 

  96. Liao, L.D., Bandla, A., Ling, J.M., et al.: Improving neurovascular outcomes with bilateral forepaw stimulation in a rat photothrombotic ischemic stroke model. Neurophotonics 1(1), 011007 (2014)

    Article  Google Scholar 

  97. Seo, D., Neely, R.M., Shen, K., et al.: Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91(3), 529–539 (2016)

    Article  Google Scholar 

  98. Liu, Y., Liu, J., Chen, S., et al.: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3(1), 58 (2019)

    Article  Google Scholar 

  99. Sanghoon, L.: Flexible neural interfaces for recording and stimulation of peripheral and visceral nerves, ScholarBank@NUS Repository. PhD thesis (2017). https://scholarbank.nus.edu.sg/handle/10635/136078

  100. Lee, S., Wang, H., Shi, Q., et al.: Development of battery-free neural interface and modulated control of tibialis anterior muscle via common peroneal nerve based on triboelectric nanogenerators (TENGs). Nano Energy 33, 1–11 (2017)

    Article  Google Scholar 

  101. Lee, S., Sheshadri, S., Xiang, Z., et al.: Selective stimulation and neural recording on peripheral nerves using flexible split ring electrodes. Sens. Actuat. B 242, 1165–1170 (2017)

    Article  Google Scholar 

  102. Xiang, Z., Yen, S.C., Sheshadri, S., et al.: Progress of flexible electronics in neural interfacing–a self-adaptive non-invasive neural ribbon electrode for small nerves recording. Adv. Mater. 28(22), 4472–4479 (2016)

    Article  Google Scholar 

  103. Lissandrello, C.A., Gillis, W.F., Shen, J., et al.: A micro-scale printable nanoclip for electrical stimulation and recording in small nerves. J. Neural Eng. 14(3), 036006 (2017)

    Article  Google Scholar 

  104. Lee, S., Peh, W.Y.X., Wang, J., et al.: Toward bioelectronic medicine-neuromodulation of small peripheral nerves using flexible neural clip. Adv. Sci. 4(11), 1700149 (2017)

    Article  Google Scholar 

  105. Rodri, F.J., Ceballos, D., Schu, M., et al.: Polyimide cuff electrodes for peripheral nerve stimulation. J. Neurosci. Methods 98(2), 105–118 (2000)

    Article  Google Scholar 

  106. Loeb, G., Peck, R.: Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J. Neurosci. Methods 64(1), 95–103 (1996)

    Article  Google Scholar 

  107. Badia, J., Boretius, T., Andreu, D., et al.: Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng. 8(3), 036023 (2011)

    Article  Google Scholar 

  108. Naples, G.G., Mortimer, J.T., Scheiner, A., et al.: A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35(11), 905–916 (1988)

    Article  Google Scholar 

  109. Lee, S., Yen, S.C., Sheshadri, S., et al.: Flexible epineural strip electrode for recording in fine nerves. IEEE Trans. Biomed. Eng. 63(3), 581–587 (2016)

    Article  Google Scholar 

  110. Lee, S., Yen, S.C., Liao, L.D., et al.: Flexible sling electrode for bidirectional neural signal recording and selective stimulation. In: IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 375–378. IEEE (2016)

    Google Scholar 

  111. Lu, Y., Lyu, H., Richardson, A.G., et al.: Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci. Rep. 6, 33526 (2016)

    Article  Google Scholar 

  112. Robinson, J.T., Jorgolli, M., Shalek, A.K., et al.: Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7(3), 180 (2012)

    Article  Google Scholar 

  113. Dvir, T., Timko, B.P., Kohane, D.S., et al.: Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6(1), 13 (2011)

    Article  Google Scholar 

  114. Yan, Z., Han, M., Shi, Y., et al.: Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl. Acad. Sci. U. S. A. 114(45), E9455–E9464 (2017)

    Article  Google Scholar 

  115. Liu, J., Fu, T.M., Cheng, Z., et al.: Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–637 (2015)

    Article  Google Scholar 

  116. Wei, X., Luan, L., Zhao, Z., et al.: Nanofabricated ultraflexible electrode arrays for high-density intracortical recording. Adv. Sci. 5(6), 1700625 (2018)

    Article  Google Scholar 

  117. Ferro, M.D., Melosh, N.A.: Electronic and ionic materials for neurointerfaces. Adv. Funct. Mater. 28(12), 1704335 (2018)

    Article  Google Scholar 

  118. Wang, K., Liu, C.C., Durand, D.M.: Flexible nerve stimulation electrode with iridium oxide sputtered on liquid crystal polymer. IEEE Trans. Biomed. Eng. 56(1), 6–14 (2009)

    Article  Google Scholar 

  119. Zhou, D.D., Greenbaum, E.: Implantable Neural Prostheses 1: Devices and Applications. Springer, New York (2009)

    Google Scholar 

  120. Sun, K., Zhang, S., Li, P., et al.: Review on application of pedots and pedot: Pss in energy conversion and storage devices. J. Mater Sci. Mater. Electron. 26(7), 4438–4462 (2015)

    Article  Google Scholar 

  121. Le, T.H., Kim, Y., Yoon, H.: Electrical and electrochemical properties of conducting polymers. Polymers 9(4), 150 (2017)

    Article  Google Scholar 

  122. Ganji, M., Elthakeb, A.T., Tanaka, A., et al.: Scaling effects on the electrochemical performance of poly (3, 4-ethylenedioxythiophene (pedot), au, and pt for electrocorticography recording. Adv. Funct. Mater. 27(42), 1703018 (2017)

    Article  Google Scholar 

  123. Kim, G.H., Kim, K., Nam, H., et al.: Cnt-au nanocomposite deposition on gold microelectrodes for improved neural recordings. Sens. Actuat. B 252, 152–158 (2017)

    Article  Google Scholar 

  124. Lu, Y., Liu, X., Hattori, R., et al.: Ultralow impedance graphene microelectrodes with high optical transparency for simultaneous deep two-photon imaging in transgenic mice. Adv. Funct. Mater. 28(31), 1800002 (2018)

    Article  Google Scholar 

  125. Tian, B., Cohen-Karni, T., Qing, Q., et al.: Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329(5993), 830–834 (2010)

    Article  Google Scholar 

  126. Blaschke, B.M., Tort-Colet, N., Guimerà-Brunet, A., et al.: Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4(2), 025040 (2017)

    Google Scholar 

  127. Wang, C.W., Pan, C.Y., Wu, H.C., et al.: In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor. Small 3(8), 1350–1355 (2007)

    Article  Google Scholar 

  128. Rivnay, J., Inal, S., Salleo, A., et al.: Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018)

    Article  Google Scholar 

  129. Liu, X., Lu, Y., Kuzum, D.: High-density porous graphene arrays enable detection and analysis of propagating cortical waves and spirals. Sci. Rep. 8(1), 17089 (2018)

    Article  Google Scholar 

  130. Zhou, W., Dai, X., Lieber, C.M.: Advances in nanowire bioelectronics. Rep. Prog. Phys. 80(1), 016701 (2016)

    Article  Google Scholar 

  131. Patolsky, F., Timko, B.P., Yu, G., et al.: Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)

    Article  Google Scholar 

  132. Vogt, N.: (2015) Injectable meshes for neural recordings. Nat. Methods 12(8), 702

    Google Scholar 

  133. Zhou, T., Hong, G., Fu, T.M., et al.: Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl. Acad. Sci. U. S. A. 114(23), 5894–5899 (2017)

    Article  Google Scholar 

  134. Fu, T.M., Hong, G., Viveros, R.D., et al.: Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc. Natl. Acad. Sci. U. S. A. 114(47), E10046–E10055 (2017)

    Article  Google Scholar 

  135. Schuhmann Jr T.G., Yao, J., Hong, G., et al.: Syringe-injectable electronics with a plug-and-play input/output interface. Nano Lett. 17(9), 5836–5842 (2017)

    Article  Google Scholar 

  136. Hong, G., Yang, X., Zhou, T., et al.: Mesh electronics: a new paradigm for tissue-like brain probes. Curr. Opin. Neurobiol. 50, 33–41 (2018)

    Article  Google Scholar 

  137. Dai, X., Hong, G., Gao, T., et al.: Mesh nanoelectronics: seamless integration of electronics with tissues. Acc. Chem. Res. 51(2), 309–318 (2018)

    Article  Google Scholar 

  138. Schuhmann, T.G. Jr, Zhou, T., Hong, G., et al.: Syringe-injectable mesh electronics for stable chronic rodent electrophysiology. J. Vis. Exp. (137), e58003 (2018)

    Google Scholar 

  139. Lieber, C.M., Schuhmann, T.G., Yao, J., et al.: Interfaces for syringe-injectable electronics. US Patent App. 15/977710 (2018)

    Google Scholar 

  140. Liu, J.: Syringe injectable electronics. In: Biomimetics Through Nanoelectronics, pp. 65–93. Springer, Cham (2018)

    Google Scholar 

  141. Schuhmann, T.G.: Injectable nanoelectronic sensors for brain-machine interfacing. PhD thesis (2019)

    Google Scholar 

  142. Zhou, T.: Syringe-injectable mesh electronics: seamless integration with the central nervous system and biomedical applications. PhD thesis (2018)

    Google Scholar 

  143. Zimmerman, J.F., Tian, B.: Injectable electronics as a modern day ‘ship in a bottle’. NPG Asia Mater. 7(9), e214 (2015)

    Article  Google Scholar 

  144. Luan, L., Wei, X., Zhao, Z., et al.: Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3(2), e1601966 (2017)

    Article  Google Scholar 

  145. Luan, L., Sullender, C.T., Li, X., et al.: Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model. J. Neurosci. Methods 295, 68–76 (2018)

    Article  Google Scholar 

  146. Zhao, Z., Li, X., He, F., et al.: Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays. J. Neural Eng. 16(3), 035001 (2019)

    Article  Google Scholar 

  147. Zhao, Z., Luan, L., Wei, X., et al.: Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 17(8), 4588–4595 (2017)

    Article  Google Scholar 

  148. Rogers, J.A.: Materials for biointegrated electronic and microfluidic systems. MRS Bull. 44(3), 195–202 (2019)

    Article  Google Scholar 

  149. Fallegger, F., Schiavone, G., Lacour, S.P.: Conformable hybrid systems for implantable bioelectronic interfaces. Adv Mater. 32, 1903904 (2019)

    Article  Google Scholar 

  150. Wang, C., Xia, K., Zhang, Y., et al.: Silk-based advanced materials for soft electronics. Acc. Chem. Res. 52, 2916–2927 (2019)

    Article  Google Scholar 

  151. Schiavone, G., Lacour, S.P.: Conformable bioelectronic interfaces: mapping the road ahead. Sci. Transl. Med. 11(503), eaaw5858 (2019)

    Google Scholar 

  152. Ho, J.S., Yeh, A.J., Neofytou, E., et al.: Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. U. S. A. 111(22), 7974–7979 (2014)

    Article  Google Scholar 

  153. Montgomery, K.L., Yeh, A.J., Ho, J.S., et al.: Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12(10), 969 (2015)

    Article  Google Scholar 

  154. Agrawal, D.R., Tanabe, Y., Weng, D., et al.: Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 1(3), 0043 (2017)

    Article  Google Scholar 

  155. Zhang, Y., Castro, D.C., Han, Y., et al.: Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. U. S. A. 116(43), 21427–21437 (2019)

    Article  Google Scholar 

  156. Zhang, Y., Mickle, A.D., Gutruf, P., et al.: Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci. Adv. 5(7), eaaw5296 (2019)

    Google Scholar 

  157. Xie, Z., Avila, R., Huang, Y., et al.: Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32(15), 1902767 (2020)

    Article  Google Scholar 

  158. Song, E., Chiang, C.H., Li, R., et al.: Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl. Acad. Sci. USA. 116(31), 15398–15406 (2019)

    Article  Google Scholar 

  159. Viveros, R.D., Zhou, T., Hong, G., et al.: Advanced one-and two-dimensional mesh designs for injectable electronics. Nano Lett. 19(6), 4180–4187 (2019)

    Article  Google Scholar 

  160. Rivnay, J., Wang, H., Fenno, L., et al.: Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3(6), e1601649 (2017)

    Article  Google Scholar 

  161. Park, S., Loke, G., Fink, Y., et al.: Flexible fiber-based optoelectronics for neural interfaces. Chem. Soc. Rev. 48(6), 1826–1852 (2019)

    Article  Google Scholar 

  162. Ledesma, H.A., Li, X., Carvalho-de Souza, J.L., et al.: An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14(7), 645–657 (2019)

    Article  Google Scholar 

  163. Capadona, J.R., Shoffstall, A.J., Pancrazio, J.J.: Neuron-like neural probes. Nat. Mater. 18(5), 429 (2019)

    Article  Google Scholar 

  164. Vachicouras, N., Tarabichi, O., Kanumuri, V.V., et al.: Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci. Transl. Med. 11(514), eaax9487 (2019)

    Google Scholar 

  165. Li, J., Li, R., Du, H., et al.: Ultrathin, transferred layers of metal silicide as faradaic electrical interfaces and biofluid barriers for flexible bioelectronic implants. ACS Nano 13(1), 660–670 (2019)

    Article  Google Scholar 

  166. Song, E., Li, J., Rogers, J.A.: Barrier materials for flexible bioelectronic implants with chronic stability–current approaches and future directions. APL Mater. 7(5), 050902 (2019)

    Article  Google Scholar 

  167. Rogers, J.A., Fang, H., Jianing, Z., et al.: Encapsulated flexible electronics for long-term implantation. US Patent App. 16/162,613 (2020)

    Google Scholar 

  168. Shin, J., Yan, Y., Bai, W., et al.: Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3(1), 37 (2019)

    Article  Google Scholar 

  169. Phan, H.P., Zhong, Y., Nguyen, T.K., et al.: Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 13(10), 11572–11581 (2019)

    Article  Google Scholar 

  170. Rogers, J.A., Khang, D.Y., Sun, Y., et al.: Stretchable form of single crystal silicon for high performance electronics on rubber substrates. US Patent App. 16/272,488 (2020)

    Google Scholar 

  171. Shin, J., Liu, Z., Bai, W., et al.: Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5(7), eaaw1899 (2019)

    Google Scholar 

  172. Bai, W., Shin, J., Fu, R., et al.: Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 3, 644–654 (2019)

    Article  Google Scholar 

  173. Donahue, M.J., Sanchez-Sanchez, A., Inal, S., et al.: Tailoring pedot properties for applications in bioelectronics. Mater. Sci. Eng. R. Rep. 140, 100546 (2020)

    Article  Google Scholar 

  174. Harris, A.R., Wallace, G.G.: Organic electrodes and communications with excitable cells. Adv. Funct. Mater. 28(12), 1700587 (2018)

    Article  Google Scholar 

  175. Malliaras, G.: Interfacing with the brain using organic electronics. Bull. Am. Phys. Soc. 62 (2017)

    Google Scholar 

  176. Gao, D., Parida, K., Lee, P.S.: Emerging soft conductors for bioelectronic interfaces. Adv. Funct. Mater. 30(29), 1907184 (2019)

    Article  Google Scholar 

  177. Huang, X., Wang, L., Wang, H., et al.: Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 16(15), 1902827 (2020)

    Article  Google Scholar 

  178. Wozny, T.A., Richardson, R.M.: The future of neural recording devices: Nanoscale, flexible, and injectable. Neurosurgery 77(6), N17–N19 (2015)

    Article  Google Scholar 

  179. Hong, G., Lieber, C.M.: Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20(6), 330–345 (2019)

    Article  Google Scholar 

  180. Patel, S.R., Lieber, C.M.: Precision electronic medicine in the brain. Nat. Biotechnol. 37(9), 1007–1012 (2019)

    Article  Google Scholar 

  181. Lee, M., Shim, H.J., Choi, C., et al.: Soft high-resolution neural interfacing probes: Materials and design approaches. Nano Lett. 19(5), 2741–2749 (2019)

    Article  Google Scholar 

  182. Patil, A.C., Ze, X., Thakor, N.V.: Towards nontransient silk bioelectronics: engineering silk fibroin for bionic links. Small Methods 4, 2000274 (2020)

    Article  Google Scholar 

  183. Yang, X., Zhou, T., Zwang, T.J., et al.: Bioinspired neuron-like electronics. Nat. Mater. 18(5), 510 (2019)

    Article  Google Scholar 

  184. Woeppel, K., Yang, Q., Cui, X.T.: Recent advances in neural electrode–tissue interfaces. Curr. Opin. Biomed. Eng. 4, 21–31 (2017)

    Article  Google Scholar 

  185. Feiner, R., Dvir, T.: Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3(1), 1–16 (2017)

    Google Scholar 

  186. Shoffstall, A.J., Srinivasan, S., Willis, M., et al.: A mosquito inspired strategy to implant microprobes into the brain. Sci. Rep. 8(1):1–10 (2018)

    Article  Google Scholar 

  187. Fujishiro, A., Kaneko, H., Kawashima, T., et al.: In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays. Sci. Rep. 4, 4868 (2014)

    Article  Google Scholar 

  188. Buzsáki, G., Stark, E., Berényi, A., et al.: Tools for probing local circuits: high-density silicon probes combined with optogenetics. Neuron 86(1), 92–105 (2015)

    Article  Google Scholar 

  189. Chen, R., Canales, A., Anikeeva, P.: Neural recording and modulation technologies. Nat. Rev. Mater. 2(2), 1–16 (2017)

    Article  Google Scholar 

  190. Won, S.M., Song, E., Zhao, J., et al.: Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30 1800534 (2018)

    Article  Google Scholar 

  191. Lee, J.M., Hong, G., Lin, D., et al.: Nanoenabled direct contact interfacing of syringe-injectable mesh electronics. Nano Lett. 19(8), 5818–5826 (2019)

    Article  Google Scholar 

  192. Yamagishi, K., Nojiri, A., Iwase, E., et al.: Syringe-injectable, self-expandable, and ultraconformable magnetic ultrathin films. ACS Appl. Mater. Interfaces 11(44), 41770–41779 (2019)

    Article  Google Scholar 

  193. Chen, Y., Zhang, Y., Liang, Z., et al.: Flexible inorganic bioelectronics. NPJ Flex. Electron. 4(1), 1–20 (2020)

    Article  Google Scholar 

  194. Xie, C., Wang, X., He, H., et al.: Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv. Funct. Mater. 30, 1909954 (2020)

    Article  Google Scholar 

  195. Won, S.M., Song, E., Reeder, J.T., et al.: Emerging modalities and implantable technologies for neuromodulation. Cell 181(1), 115–135 (2020)

    Article  Google Scholar 

  196. Cao, H., Coleman, T., Hsiai, T.K., et al.: Interfacing Bioelectronics and Biomedical Sensing. Springer, Cham (2020)

    Book  Google Scholar 

  197. Salatino, J.W., Ludwig, K.A., Kozai, T.D., et al.: Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1(11), 862–877 (2017)

    Article  Google Scholar 

  198. Chung, J.E., Joo, H.R., Fan, J.L., et al.: High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101(1), 21–31 (2019)

    Article  Google Scholar 

  199. Li, J., Li, R., Chiang, C.H., et al.: Ultrathin, high capacitance capping layers for silicon electronics with conductive interconnects in flexible, long-lived bioimplants. Adv. Mater. Technol. 5(1), 1900800 (2020)

    Article  Google Scholar 

  200. Chiang, C.H., Won, S.M., Orsborn, A.L., et al.: Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 12(538), eaay4682 (2020)

    Google Scholar 

  201. Obidin, N., Tasnim, F., Dagdeviren, C.: The future of neuroimplantable devices: A materials science and regulatory perspective. Adv. Mater. 32(15), 1901482 (2020)

    Article  Google Scholar 

  202. Stieglitz, T.: Of man and mice: translational research in neurotechnology. Neuron 105(1), 12–15 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop C. Patil .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patil, A.C., Thakor, N.V. (2022). Neuroflex: Intraneural and Extraneural Flexible Sensor Architectures for Neural Probing. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_16-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_16-2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics