Skip to main content

Thioredoxins as Molecular Players in Plants, Pests, and Pathogens

  • Chapter
  • First Online:
Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology

Abstract

Throughout their life cycle, plants are exposed to various kinds of biotic and abiotic stress conditions. Plant responds to such stressors through the orchestrated machinery at the molecular level and exerts its defense. Plants have sophisticated mechanisms to sense environmental cues, which guard them to mount a protective response. The antioxidant machinery in the plants comprises enzymatic and non-enzymatic proteins. The enzymatic proteins include glutaredoxins, thioredoxins, and many others. Thioredoxin (Trx) are multifunctional small redox proteins found in every living organism, and various Trxs have been identified in plants. The two reactive cysteine residues are found in the conserved motif of thioredoxins. They play post-translational regulatory role in number of cellular processes such as oxidative stresses and plant pathogen interactions. Trxs are reduced by NADP-thioredoxin reductase (NTR) in the presence of NADPH. In model plant, Arabidopsis thaliana, At Trxs are pathogen-inducible and contribute towards plant defense via expression of the defense responsive pathogenesis-related (PR) genes. The most important family of thioredoxin proteins is Trxh, having their role in many versatile processes including defense responses in plants. We present upcoming, prospective roles of thioredoxin proteins of plants, insects as well as pathogens and their role in biological interactions. This chapter would assist plant scientists in further exploring the crucial role of thioredoxins in response to attack by the insects causing losses to economically important plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn SG, Thiele DJ (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17:516–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arsova B et al (2010) Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 22:1498–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson HJ, Babbitt PC (2009) Glutathione transferases are structural and functional outliers in the thioredoxin fold. Biochemistry 48:11108–11116

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plants cells. Plant Physiol 141(2):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balmer Y, Koller A, del Val G, Manieri W, Schürmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci 100(1):370–375

    Article  CAS  PubMed  Google Scholar 

  • Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22:376–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berglund T, Ohlsson AB (1995) Defensive and secondary metabolism in plant tissue cultures, with special reference to nicotinamide, glutathione and oxidative stress. Plant Cell Tissue Organ Cult 43:137–145

    Article  CAS  Google Scholar 

  • Blokhina O, Fagerstedt KV (2009) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138:447–462

    Article  PubMed  CAS  Google Scholar 

  • Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L (2013) Status and prospects of plant virus control through interference with vector transmission. Annu Rev Phytopathol 51:177–201. https://doi.org/10.1146/annurev-phyto-082712-102346

    Article  CAS  PubMed  Google Scholar 

  • Bréhelin C, Mouaheb N, Verdoucq L, Lancelin JM, Meyer Y (2000) Characterization of determinants for the specificity of Arabidopsis thioredoxins h in yeast complementation. J Biol Chem 275:31641–31647

    Article  PubMed  Google Scholar 

  • Briddon RW, Pinner MS, Stanley J, Markham PG (1990) Geminivirus coat protein gene replacement alters insect specificity. J Virol 177(1):85–94. https://doi.org/10.1016/0042-6822(90)90462-Z

    Article  CAS  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Organ Cult 64:145–157

    Article  CAS  Google Scholar 

  • Caverzan A, Casassola A, Patussi Brammer SP (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker A (ed) Abiotic and biotic stress in plants—recent advances and future perspectives. InTech, Rijeka, pp 463–480. https://doi.org/10.5772/61368. ISBN 978-953-51-2250-0

    Chapter  Google Scholar 

  • Chen H et al (2014) Thioredoxin peroxidase gene is involved in resistance to biocontrol fungus omuraea rileyi in Spodoptera litura: gene cloning, expression, localization and function. Dev Comp Immunol 44(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Wingsle G, Jacquot J-P, Gelhaye E, Rouhier N (2009a) Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. Mol Plant 2(2):308–322. https://doi.org/10.1093/mp/ssn076

    Article  CAS  PubMed  Google Scholar 

  • Chibani K, Couturier J, Selles B, Jacquot JP, Rouhier N (2009b) The chloroplastic thiol reducing systems: dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment. Photosynth Res 104:75–99

    Article  PubMed  CAS  Google Scholar 

  • Corona M, Robinson GE (2006) Genes of the antioxidant system of the honeybee: annotation and phylogeny. Insect Mol Biol 15:687–701. https://doi.org/10.1111/j.1365-2583.2006.00695.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czosnek H, Ghanim M, Ghanim M (2002) The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci insights from studies with tomato yellow leaf curl virus. Ann Appl Biol 140(3):215–231. https://doi.org/10.1111/j.1744-7348.2002.tb00175.x

    Article  Google Scholar 

  • Dal Piaz F, Braca A, Belisario MA, De Tommasi N (2010) Thioredoxin system modulation by plant and fungal secondary metabolites. Curr Med Chem 17:479–494

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96

    Article  CAS  PubMed  Google Scholar 

  • Delorme-Hinoux V et al (2016) Nuclear thiol redox systems in plants. Plant Sci 243:84–95

    Article  CAS  PubMed  Google Scholar 

  • Feakin SD (1973) Pest control in groundnuts, PANS manual no. 2. ODA, London

    Google Scholar 

  • Feechan A et al (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur N, Mogalapu S (2018) Pests of soybean. In: Pests and their management. Springer, Singapore, pp 137–162

    Google Scholar 

  • Gelhaye E, Rouhier N, Vlamis-Gardikas A, Girardet JM, Sautière PE, Sayzet M et al (2003a) Identification and characterization of a third thioredoxin h in poplar. Plant Physiol Biochem 41:629–635

    Article  CAS  Google Scholar 

  • Gelhaye E, Rouhier N, Jacquot JP (2003b) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–448

    Article  CAS  PubMed  Google Scholar 

  • Ghanim M, Rosell RC, Campbell LR, Czosnek H, Brown JK, Ullman DE (2001) Digestive, salivary, and reproductive organs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) B type. J Morphol 248(1):22–40. https://doi.org/10.1002/jmor.1018

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Popovski S, Kollenberg M, Gorovitz R, Brown JK, Cicero JM, Czosnek H, Winter S, Ghanim M (2012) Implication of Bemisia tabaci heat shock protein 70 in begomovirus-whitefly interactions. J Virol 86:13241–13252. https://doi.org/10.1128/JVI.00880-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56(3–4):313–329. https://doi.org/10.1007/s000180050433

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11(11):777–788. https://doi.org/10.1038/nrmicro3117

    Article  CAS  PubMed  Google Scholar 

  • Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH (2013) Thioredoxins, glutaredoxins, and peroxiredoxins – molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19:1539–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höfer P, Bedford ID, Markham PG, Jeske H, Frischmuth T (1997) Coat protein gene replacement results in whitefly transmission of an insect nontransmissible geminivirus isolate. Virology 236(2):288–295. https://doi.org/10.1006/viro.1997.8751

    Article  PubMed  Google Scholar 

  • Hoflehner E, Binder M, Hemmer W, Mahler V, Panzani RC, Jarisch R, Wiedermann U, Duchêne M (2012) Thioredoxin from the Indianmeal moth Plodia interpunctella: cloning and test of the allergenic potential in mice. PLoS One 7:e42026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359. https://doi.org/10.1146/annurev.phyto.022508.092135

    Article  CAS  PubMed  Google Scholar 

  • Holloway JD (1989) The moths of Borneo: family Noctuidae, trifine subfamilies: Noctuinae, Heliothinae, Hadeninae, Acronictinae, Amphipyrinae, Agaristinae. Malay Nat J 42(2–3):57–228

    Google Scholar 

  • Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A, Bjornstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol 252:199–208

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Willems P, Van Breusegem F, Messens J (2018) Pathways crossing mammalian and plant sulfenomic landscapes. Free Radic Biol Med 122:193–201

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP et al (2002) Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem Pharmacol 64:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Japelaghi RH, Haddad R, Garoosi G (2012) Isolation, identification and sequence analysis of a thioredoxin h gene, a member of subgroup III of h-type Trxs from grape (Vitis vinifera L. cv. Askari). Mol Biol Rep 39:3683–3693. https://doi.org/10.1007/s11033-011-1143-1

    Article  CAS  PubMed  Google Scholar 

  • Jeong W, Yoon HW, Lee SR, Rhee SG (2004) Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. J Biol Chem 279:3142–3150

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Song W, Li A, Yang X, Sun D (2010) Identification of genes differentially expressed in cauliflower associated with resistance to Xanthomonas campestris pv. campestris. Mol Biol Rep 38(1):621–629

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang T, Wan H, Zhang Y, Shakeel M, Lu Y, You H et al (2015) Comparative study of two thioredoxins from common cutworm (Spodoptera litura): cloning, expression, and functional characterization. Comp Biochem Physiol 182:47–54. https://doi.org/10.1016/j.cbpb.2014.12.004

    Article  CAS  Google Scholar 

  • Kanga LHB, Pree DJ, van Lier JL, Walker GM (2003) Management of insecticide resistance in oriental fruit moth (Grapholita molesta; Lepidoptera: Tortricidae) populations from Ontario. Pest Manag Sci 59:921–927. https://doi.org/10.1002/ps.702

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Lee KS, Kim BY, Choo YM, Sohn HD, Jin BR (2007) Thioredoxin from the silkworm, Bombyx mori: cDNA sequence, expression, and functional characterization. Comp Biochem Physiol B 147:574–581

    Article  PubMed  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk H, Dorn S, Mazzi D (2013) Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol 13:12. https://doi.org/10.1186/1472-6785-13-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kortemme T, Darby NJ, Creighton TE (1996) Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfie isomerase. Biochemistry 35:14503–14511

    Article  CAS  PubMed  Google Scholar 

  • Kranz J, Schumutterer H, Koch W (eds) (1977) Diseases pests and weeds in tropical crops. Verlag Paul Parley, Berlin/Hamburg

    Google Scholar 

  • Krimm I, Lemaire S, Ruelland E, Miginiac-Maslow M, Jacquot JP, Hirasawa M et al (1998) The single mutation Trp35 Ala in the 35–40 redox site of Chlamydomonas reinhardtii thioredoxin h affects its biochemical activity and the pH dependence of C36-C39 1H–13C NMR. Eur J Biochem 255:185–195

    Article  CAS  PubMed  Google Scholar 

  • Laloi C, Mestres-Ortega D, Marco Y, Meyer Y, Reichheld JP (2004) The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol 134:1006–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusiani herbivory. Plant Cell 13:2793–2807. https://doi.org/10.1105/tpc.13.12.2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JR, Lee SS, Jang HH, Lee YM, Park JH, Park SC, Moon JC, Park SK, Kim SY, Lee SY (2009) Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc Natl Acad Sci 106(14):5978–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Lu H, Guo D et al (2011) Molecular characterization of a thioredoxin h gene (HbTRX1) from Hevea brasiliensis showing differential expression in latex between self-rooting juvenile clones and donor clones. Mol Biol Rep 38:1989–1994. https://doi.org/10.1007/s11033-010-0321-x

    Article  CAS  PubMed  Google Scholar 

  • Lin TY, Chen TS (2004) A positive charge at position 33 of thioredoxin primarily affects its interaction with other proteins but not redox potential. Biochemistry 43:945–952

    Article  CAS  PubMed  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci U S A 104:14861–14866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorang J et al (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science 338:659–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87

    Article  CAS  PubMed  Google Scholar 

  • Mata-Perez C, Spoel SH (2018) Thioredoxin-mediated redox signalling in plant immunity. Plant Sci 279:27–33

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347:394–402

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y et al (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    Article  CAS  PubMed  Google Scholar 

  • Meyer Y et al (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935

    Article  CAS  PubMed  Google Scholar 

  • Mukaihara T, Hatanaka T, Nakano M, Oda K (2016) Ralstonia solanacearum type III effctor RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. MBio 7:e00359–e00316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death. Plant Physiol 154(2):521–525. https://doi.org/10.1104/pp.110.16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nareshkumar A, Subbarao S, Vennapusa AR et al (2020) Enzymatic and non-enzymatic detoxification of reactive carbonyl compounds improves the oxidative stress tolerance in cucumber, tobacco and rice seedlings. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10072-w

  • Nikkanen L, Toivola J, Diaz MG, Rintamaki E (2017) Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans R Soc Lond Ser B Biol Sci 372:20160474

    Article  CAS  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnesorge S, Bejarano ER (2009) Begomovirus coat protein interacts with a small heat-shock protein of its transmission vector (Bemisia tabaci). Insect Mol Biol 18(6):693–703. https://doi.org/10.1111/j.1365-2583.2009.00906.x

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY (2009) Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150(2):552–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak Y, Ohana M, Biron-Shental T et al (2020) Thioredoxin, thioredoxin interacting protein and transducer and activator of transcription 3 in gestational diabetes. Mol Biol Rep 47:1199–1206. https://doi.org/10.1007/s11033-019-05221-8

    Article  CAS  PubMed  Google Scholar 

  • Pellicena-Palle A, Stitzinger SM, Salz HK (1997) The function of the Drosophila thioredoxin homolog encoded by the deadhead gene is redox-dependent and blocks the initiation of development but not DNA synthesis. Mech Dev 62:61–65

    Article  CAS  PubMed  Google Scholar 

  • Reichheld JP, Mestres-Ortega D, Laloi C, Meyer Y (2002) The multigenic family of thioredoxin h in Arabidopsis thaliana: specifi expression and stress response. Plant Physiol Biochem 40:685–690

    Article  CAS  Google Scholar 

  • Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J (2017) Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system. Antioxid Redox Signal 27:989–1010. https://doi.org/10.1089/ars.2016.6925

  • Rivas S et al (2004) CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO J 23:2156–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC et al (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    Article  CAS  PubMed  Google Scholar 

  • Rustérucci C, Espunya MC, Díaz M, Chabannes M, Martínez MC (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol 143:1282–1292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saurav GK, Rana VS, Popli S et al (2019) A thioredoxin-like protein of Bemisia tabaci interacts with coat protein of begomoviruses. Virus Genes 55:356. https://doi.org/10.1007/s11262-019-01657-z

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signal triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Guo M, He X et al (2019) Constitutive H2O2 is involved in sorghum defense against aphids. Rev Braz Bot 42:271–281

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shen Z-J, Liu Y-J, Gao X-H, Liu X-M, Zhang S-D, Li Z, Zhang Q-W, Liu X-X (2018) Molecular identification of two thioredoxin genes from Grapholita molesta and their function in resistance to emamectin benzoate. Front Physiol 9:1421. https://doi.org/10.3389/fphys.2018.01421

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Tyagi C, Nath O, Singh IK (2018) Helicoverpa-inducible Thioredoxin h from Cicer arietinum: structural modeling and potential targets. Int J Biol Macromol 109:231–243. https://doi.org/10.1016/j.ijbiomac.2017.12.079

    Article  CAS  PubMed  Google Scholar 

  • Svensson MJ, Chen JD, Pirrotta V, Larsson J (2003) The thioredoxinT and deadhead gene pair encode testis- and ovary-specific thioredoxins in Drosophila melanogaster. Chromosoma 112:133–143

    Article  CAS  PubMed  Google Scholar 

  • Sweat TA, Wolpert TJ (2007) Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 19:673–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada Y et al (2008) Plant immunity requires conformational changes of NPR1 via Snitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tarrago L et al (2010) Plant thioredoxin CDSP32 regenerates 1-cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J Biol Chem 285:14964–14972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trost P, Fermani S, Calvaresi M, Zaffgnini M (2017) Biochemical basis of sulphenomics: how protein sulphenic acids may be stabilized by the protein microenvironment. Plant Cell Environ 40:483–490

    Article  CAS  PubMed  Google Scholar 

  • Varsani A, Navas-Castillo J, Moriones E, Hernández-Zepeda C, Idris A, Brown JK, Zerbini FM, Martin DP (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159(8):2193–2203. https://doi.org/10.1007/s00705-014-2050-2

    Article  CAS  PubMed  Google Scholar 

  • Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Zerbini FM, Martin DP (2017) Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 162(6):1819–1831. https://doi.org/10.1007/s00705-017-3268-6

    Article  CAS  PubMed  Google Scholar 

  • Vieira Dos Santos C, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11:329–334

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hai C (2016) Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 43:607–628

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ et al (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284:2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Hou Y, Qu J et al (2013) Molecular cloning, expression, purification and characterization of thioredoxin from Antarctic Sea-ice bacteria Pseudo alteromonas sp. AN178. Mol Biol Rep 40:6587–6591. https://doi.org/10.1007/s11033-013-2771-4

    Article  CAS  PubMed  Google Scholar 

  • Wang C et al (2014) Free radicals mediate systemic acquired resistance. Cell Rep 7:348–355

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Lu J, Chen H et al (2017) Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell Tissue Organ Cult 129:511–520

    Article  CAS  Google Scholar 

  • Whitfield AE, Falk BW, Rotenberg D (2015) Insect vector-mediated transmission of plant viruses. Virology 479:278–289. https://doi.org/10.1016/j.virol.2015.03.026

    Article  CAS  PubMed  Google Scholar 

  • Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321(5896):1676–1678

    Article  CAS  PubMed  Google Scholar 

  • Xie G, Kato H, Sasaki K, Imai R (2009) A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett 583(17):2734–2738

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Lu W, Meng F, Wang X, Xu B, Guo X (2013) Molecular cloning, expression and oxidative stress response of a mitochondrial thioredoxin peroxidase gene (AccTpx-3) from Apis cerana cerana. J Insect Physiol 59:273–282

    Article  CAS  PubMed  Google Scholar 

  • Yun BW et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  PubMed  Google Scholar 

  • Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, ICTV Report Consortium (2017) ICTV virus taxonomy profile: Geminiviridae. J Gen Virol 98:131–133. https://doi.org/10.1099/jgv.0.000738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z-Y, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536. https://doi.org/10.1105/tpc.105.039602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2015) Sequence analysis, expression profiles and function of thioredoxin 2 and thioredoxin reductase 1 in resistance to nucleopolyhedrovirus in Helicoverpa armigera. Sci Rep 5:15531. https://doi.org/10.1038/srep15531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, P., Gupta, A., Yadav, S. (2021). Thioredoxins as Molecular Players in Plants, Pests, and Pathogens. In: Singh, I.K., Singh, A. (eds) Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2467-7_6

Download citation

Publish with us

Policies and ethics