Skip to main content

Are Ancient Remedies the New Answer to Fighting Infections?

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

Although modern medicine has made great strides over the past decades, there still exists a struggle in the fight against microbial infections. As microbes continue to develop antimicrobial resistance, it is imperative that new treatment options be developed to overcome this hurdle. Bacteria can develop resistance to current antimicrobial agents through several methods, some requiring cell-to-cell contact through conjugation and other mechanisms that require no contact at all. As current treatments become less toxic to microbes, the need for new treatments is intensified. Throughout the history of human existence, plant and animal products have been used for various infectious diseases. As these products have been further analyzed, the phytochemicals, or active molecules involved, have begun to be uncovered. Discovering the mechanisms of action of the active molecules in these ancient remedies may lead to the development of new drugs to help fight infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams, J. E. (2013). “Spitting is dangerous, indecent, and against the law!” legislating health behavior during the American tuberculosis crusade. Journal of the History of Medicine and Allied Sciences, 68(3), 416–450.

    Article  PubMed  Google Scholar 

  • Agra, I. K., et al. (2013). Evaluation of wound healing and antimicrobial properties of aqueous extract from Bowdichia virgilioides stem barks in mice. Anais da Academia Brasileira de Ciências, 85(3), 945–954.

    Article  PubMed  Google Scholar 

  • Ahmed, U., Mujaddad-Ur-Rehman, M., Khalid, N., Fawad, S. A., & Fatima, A. (2012). Antibacterial activity of the venom of Heterometrus xanthopus. Indian Journal of Pharmacology, 44(4), 509–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinpelu, D. A. (2000). Antimicrobial activity of Bryophyllum pinnatum leaves. Fitoterapia, 71(2), 193–194.

    Article  CAS  PubMed  Google Scholar 

  • Akinpelu, D. A. (2001). Antimicrobial activity of Anacardium occidentale bark. Fitoterapia, 72(3), 286–287.

    Article  CAS  PubMed  Google Scholar 

  • Alcalde-Rico, M., Hernando-Amado, S., Blanco, P., & Martinez, J. L. (2016). Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Frontiers in Microbiology, 7, 1483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Almaaytah, A., et al. (2012). Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides, 35(2), 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Antunes Viegas, D., Palmeira-de-Oliveira, A., Salgueiro, L., Martinez-de-Oliveira, J., & Palmeira-de-Oliveira, R. (2014). Helichrysum italicum: from traditional use to scientific data. Journal of Ethnopharmacology, 151(1), 54–65.

    Article  PubMed  Google Scholar 

  • Apetrei, C. L., et al. (2011). Chemical, antioxidant and antimicrobial investigations of Pinus cembra L. bark and needles. Molecules, 16(9), 7773–7788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabski, M., Wegierek-Ciuk, A., Czerwonka, G., Lankoff, A., & Kaca, W. (2012). Effects of saponins against clinical E. coli strains and eukaryotic cell line. Journal of Biomedicine & Biotechnology, 2012, 286216.

    Article  CAS  Google Scholar 

  • Baba, H., & Onanuga, A. (2011). Preliminary phytochemical screening and antimicrobial evaluation of three medicinal plants used in Nigeria. African Journal of Traditional, Complementary, and Alternative Medicines, 8(4), 387–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balde, E. S., et al. (2010). In vitro antiprotozoal, antimicrobial and antitumor activity of Pavetta crassipes K. Schum leaf extracts. Journal of Ethnopharmacology, 130(3), 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Baquero, F., Alvarez-Ortega, C., & Martinez, J. L. (2009). Ecology and evolution of antibiotic resistance. Environmental Microbiology Reports, 1(6), 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Bisignano, G., et al. (2000). Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Letters in Applied Microbiology, 30(2), 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Blanco, P., et al. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms, 4(1).

    Article  PubMed Central  CAS  Google Scholar 

  • Bolivar, P., et al. (2011). Antimicrobial, anti-inflammatory, antiparasitic, and cytotoxic activities of Galium mexicanum. Journal of Ethnopharmacology, 137(1), 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Bouyahyaoui, A., et al. (2016). Antimicrobial activity and chemical analysis of the essential oil of Algerian Juniperus phoenicea. Natural Product Communications, 11(4), 519–522.

    Article  PubMed  Google Scholar 

  • Brown-Jaque, M., Calero-Caceres, W., & Muniesa, M. (2015). Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid, 79, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Brusotti, G., et al. (2011). Antimicrobial properties of stem bark extracts from Phyllanthus muellerianus (Kuntze) Excell. Journal of Ethnopharmacology, 135(3), 797–800.

    Article  CAS  PubMed  Google Scholar 

  • Chah, K. F., Muko, K. N., & Oboegbulem, S. I. (2000). Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia, 71(2), 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. C. (2001). Chinese values, health and nursing. Journal of Advanced Nursing, 36(2), 270–273.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., et al. (2015). Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. Journal of Dairy Science, 98(12), 8486–8491.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 159(6), 1300–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury, M., Kubra, K., & Ahmed, S. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of Clinical Microbiology and Antimicrobials, 14, 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conlon, B. P., Rowe, S. E., & Lewis, K. (2015). Persister cells in biofilm associated infections. Advances in Experimental Medicine and Biology, 831, 1–9.

    Article  PubMed  Google Scholar 

  • Contreras Cardenas, A. V., Hernandez, L. R., Juarez, Z. N., Sanchez-Arreola, E., & Bach, H. (2016). Antimicrobial, cytotoxic, and anti-inflammatory activities of Pleopeltis polylepis. Journal of Ethnopharmacology, 194, 981–986.

    Article  CAS  PubMed  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  PubMed  Google Scholar 

  • Cruz Paredes, C., et al. (2013). Antimicrobial, antiparasitic, anti-inflammatory, and cytotoxic activities of Lopezia racemosa. Scientific World Journal, 2013, 237438.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cushnie, T. P., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushnie, T. P., Cushnie, B., & Lamb, A. J. (2014). Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents, 44(5), 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, J. R., & Ortiz de Montellano, B. R. (1983). The antibacterial properties of an Aztec wound remedy. Journal of Ethnopharmacology, 8(2), 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Davies, J. E. (1997). Origins, acquisition and dissemination of antibiotic resistance determinants. Ciba Foundation Symposium, 207, 15–27; discussion 27–35.

    CAS  PubMed  Google Scholar 

  • Deeni, Y. Y., & Sadiq, N. M. (2002). Antimicrobial properties and phytochemical constituents of the leaves of African mistletoe (Tapinanthus dodoneifolius (DC) Danser) (Loranthaceae): an ethnomedicinal plant of Hausaland, Northern Nigeria. Journal of Ethnopharmacology, 83(3), 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, Q., et al. (2015). AaeAP1 and AaeAP2: novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities. Toxins (Basel), 7(2), 219–237.

    Article  CAS  Google Scholar 

  • El-Haci, I. A., et al. (2014). Antimicrobial activity of Ammodaucus leucotrichus fruit oil from Algerian Sahara. Natural Product Communications, 9(5), 711–712.

    Article  CAS  PubMed  Google Scholar 

  • Fahed, L., et al. (2017). Essential oils composition and antimicrobial activity of six conifers harvested in Lebanon. Chemistry & Biodiversity, 14(2).

    Article  CAS  Google Scholar 

  • Farzaei, M. H., et al. (2014). Chemical composition, antioxidant and antimicrobial activity of essential oil and extracts of Tragopogon graminifolius, a medicinal herb from Iran. Natural Product Communications, 9(1), 121–124.

    Article  CAS  PubMed  Google Scholar 

  • Fiore, D. C., Fettic, L. P., Wright, S. D., & Ferrara, B. R. (2017). Antibiotic overprescribing: Still a major concern. The Journal of Family Practice, 66(12), 730–736.

    PubMed  Google Scholar 

  • Fratini, F., Cilia, G., Mancini, S., & Felicioli, A. (2016). Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiological Research, 192, 130–141.

    Article  CAS  PubMed  Google Scholar 

  • Grigoryan, L., et al. (2007). Is self-medication with antibiotics in Europe driven by prescribed use? The Journal of Antimicrobial Chemotherapy, 59(1), 152–156.

    Article  CAS  PubMed  Google Scholar 

  • Guerra, F. (1966). Aztec medicine. Medical History, 10(4), 315–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez-Lugo, M. T., et al. (1996). Antimicrobial and cytotoxic activities of some crude drug extracts from Mexican medicinal plants. Phytomedicine, 2(4), 341–347.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, F., et al. (2015). A 1,000-year-old antimicrobial remedy with antistaphylococcal activity. MBio, 6(4), e01129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helvaci, S., et al. (2010). Antimicrobial activity of the extracts and physalin D from Physalis alkekengi and evaluation of antioxidant potential of physalin D. Pharmaceutical Biology, 48(2), 142–150.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, T., et al. (2007). Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae). Journal of Ethnopharmacology, 111(1), 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Hernandez, E., Regalado-Gonzalez, C., Vazquez-Landaverde, P., Guerrero-Legarreta, I., & Garcia-Almendarez, B. E. (2014). Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolens H.B.K.) and European (Origanum vulgare L.) oregano essential oils. Scientific World Journal, 2014, 641814.

    PubMed  PubMed Central  Google Scholar 

  • Hershman, M. J., & Campion, K. M. (1985). American Indian medicine. Journal of the Royal Society of Medicine, 78(6), 432–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, J., Hu, J. Y., Liu, J. H., Zhou, Z., & Zhao, A. F. (2014). In vitro antioxidant and antimicrobial activities of flavonoids from Panax notoginseng flowers. Natural Product Research, 28(16), 1260–1266.

    Article  CAS  PubMed  Google Scholar 

  • Hosseini, A., Mirzaee, F., Davoodi, A., Bakhshi Jouybari, H., & Azadbakh, M. (2018). The traditional medicine aspects, biological activity and phytochemistry of Arnebia spp. Medicinski Glasnik (Zenica), 15(1), 1–9.

    Google Scholar 

  • Irobi, O. N., Moo-Young, M., Anderson, W. A., & Daramola, S. O. (1994). Antimicrobial activity of bark extracts of Bridelia ferruginea (Euphorbiaceae). Journal of Ethnopharmacology, 43(3), 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal, Y., Liang, Z., & Zhao, Z. (2016). Botanical drugs in ayurveda and traditional Chinese medicine. Journal of Ethnopharmacology, 194, 245–259.

    Article  PubMed  Google Scholar 

  • Jimenez-Arellanes, A., et al. (2013). Antiprotozoal and antimycobacterial activities of Persea americana seeds. BMC Complementary and Alternative Medicine, 13, 109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karuppiah, P., & Rajaram, S. (2012). Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine, 2(8), 597–601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katerere, D. R., Gray, A. I., Nash, R. J., & Waigh, R. D. (2012). Phytochemical and antimicrobial investigations of stilbenoids and flavonoids isolated from three species of Combretaceae. Fitoterapia, 83(5), 932–940.

    Article  CAS  PubMed  Google Scholar 

  • Kilmarx, P. H. (2009). Global epidemiology of HIV. Current Opinion in HIV and AIDS, 4(4), 240–246.

    Article  PubMed  Google Scholar 

  • Koffuor, G. A., et al. (2014). The immunostimulatory and antimicrobial property of two herbal decoctions used in the management of HIV/AIDS in Ghana. African Journal of Traditional, Complementary, and Alternative Medicines, 11(3), 166–172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuate Defo, B. (2014). Demographic, epidemiological, and health transitions: are they relevant to population health patterns in Africa? Global Health Action, 7, 22443.

    Article  PubMed  Google Scholar 

  • Kuete, V., et al. (2011). Antioxidant, antitumor and antimicrobial activities of the crude extract and compounds of the root bark of Allanblackia floribunda. Pharmaceutical Biology, 49(1), 57–65.

    Article  PubMed  Google Scholar 

  • Kylli, P., et al. (2011). Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. Journal of Agricultural and Food Chemistry, 59(7), 3373–3384.

    Article  CAS  PubMed  Google Scholar 

  • Lacombe, A., Wu, V. C., Tyler, S., & Edwards, K. (2010). Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157:H7. International Journal of Food Microbiology, 139(1-2), 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Levine, M. M., Kotloff, K. L., Breiman, R. F., & Zaidi, A. K. (2013). Diarrheal disease constitutes one of the top two causes of mortality among young children in developing countries. Preface. The American Journal of Tropical Medicine and Hygiene, 89(1 Suppl), 1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Han, Q., Chen, W., & Ye, L. (2012). Antimicrobial activity of Chinese bayberry extract for the preservation of surimi. Journal of the Science of Food and Agriculture, 92(11), 2358–2365.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. J., et al. (2013a). Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi. Chemistry & Biodiversity, 10(11), 2032–2041.

    Article  CAS  Google Scholar 

  • Li Y, Li J, Li Y, Wang XX, & Cao AC (2013b) Antimicrobial constituents of the leaves of Mikania micrantha H. B. K. PLoS One, 8(10), e76725.

    Google Scholar 

  • Li, R., et al. (2014). Chemical composition, antimicrobial and anti-inflammatory activities of the essential oil from Maqian (Zanthoxylum myriacanthum var. pubescens) in Xishuangbanna, SW China. Journal of Ethnopharmacology, 158(Pt A), 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H., et al. (2012). Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complementary and Alternative Medicine, 12, 238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohombo-Ekomba, M. L., et al. (2004). Antibacterial, antifungal, antiplasmodial, and cytotoxic activities of Albertisia villosa. Journal of Ethnopharmacology, 93(2–3), 331–335.

    Article  PubMed  Google Scholar 

  • Lone, B. A., et al. (2013). Anthelmintic and antimicrobial activity of methanolic and aqueous extracts of Euphorbia helioscopia L. Tropical Animal Health and Production, 45(3), 743–749.

    Article  PubMed  Google Scholar 

  • Lunga, P. K., et al. (2014). Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complementary and Alternative Medicine, 14, 369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lutkenhaus, J., & Addinall, S. G. (1997). Bacterial cell division and the Z ring. Annual Review of Biochemistry, 66, 93–116.

    Article  CAS  PubMed  Google Scholar 

  • Ma, T., et al. (2015). Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carota L.) juice essential oil. Food Chemistry, 170, 394–400.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan, G. B., & Balachandran, L. (2012). Antibacterial agents from actinomycetes – A review. Frontiers in Bioscience (Elite Edition), 4, 240–253.

    Article  Google Scholar 

  • Mak, S., Xu, Y., & Nodwell, J. R. (2014). The expression of antibiotic resistance genes in antibiotic-producing bacteria. Molecular Microbiology, 93(3), 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado, P. D., Rivero-Cruz, I., Mata, R., & Pedraza-Chaverri, J. (2005). Antioxidant activity of A-type proanthocyanidins from Geranium niveum (Geraniaceae). Journal of Agricultural and Food Chemistry, 53(6), 1996–2001.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: Setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez Ruiz, M. G., et al. (2012). Antimicrobial, anti-inflammatory, antiparasitic, and cytotoxic activities of Laennecia confusa. ScientificWorldJournal, 2012, 263572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbosso Teinkela, J. E., et al. (2016). In vitro antimicrobial and anti-proliferative activities of plant extracts from Spathodea campanulata, Ficus bubu, and Carica papaya. Pharmaceutical Biology, 54(6), 1086–1095.

    Article  PubMed  Google Scholar 

  • Michael, G. B., et al. (2015). Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiology, 10(3), 427–443.

    Article  CAS  PubMed  Google Scholar 

  • Nemereshina, O. N., Tinkov, A. A., Gritsenko, V. A., & Nikonorov, A. A. (2015). Influence of Plantaginaceae species on E. coli K12 growth in vitro: Possible relation to phytochemical properties. Pharmaceutical Biology, 53(5), 715–724.

    Article  CAS  PubMed  Google Scholar 

  • Ohiri, F. C., & Uzodinma, V. C. (2000). Antimicrobial properties of Thonningia sanguinea root extracts. Fitoterapia, 71(2), 176–178.

    Article  CAS  PubMed  Google Scholar 

  • Ooi, L. S., et al. (2006). Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. The American Journal of Chinese Medicine, 34(3), 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Ozusaglam, M. A., Darilmaz, D. O., Erzengin, M., Teksen, M., & Erkul, S. K. (2013). Antimicrobial and antioxidant activities of two endemic plants from Aksaray in Turkey. African Journal of Traditional, Complementary, and Alternative Medicines, 10(3), 449–457.

    PubMed  PubMed Central  Google Scholar 

  • Pan, S. Y., et al. (2014). Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-based Complementary and Alternative Medicine, 2014, 525340.

    PubMed  PubMed Central  Google Scholar 

  • Paudel, B., et al. (2014). Estimation of antioxidant, antimicrobial activity and brine shrimp toxicity of plants collected from Oymyakon region of the Republic of Sakha (Yakutia), Russia. Biological Research, 47, 10.

    PubMed  PubMed Central  Google Scholar 

  • Pavlovic, D. R., et al. (2017). Influence of different wild-garlic (Allium ursinum) extracts on the gastrointestinal system: spasmolytic, antimicrobial and antioxidant properties. The Journal of Pharmacy and Pharmacology, 69(9), 1208–1218.

    Article  CAS  PubMed  Google Scholar 

  • Pena, J. C. (1999). Pre-Columbian medicine and the kidney. American Journal of Nephrology, 19(2), 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Penesyan, A., Gillings, M., & Paulsen, I. T. (2015). Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities. Molecules, 20(4), 5286–5298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Vasquez, A., et al. (2011). Antimicrobial activity and chemical composition of the essential oil of Hofmeisteria schaffneri. The Journal of Pharmacy and Pharmacology, 63(4), 579–586.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, S. J., Graham, M. A., Dedi, C. G., Taylor-Harris, P. M., & Gunn, A. (2015). Antimicrobial properties of mucus from the brown garden snail Helix aspersa. British Journal of Biomedical Science, 72(4), 174–181; quiz 208.

    Article  CAS  PubMed  Google Scholar 

  • Quave, C. L., et al. (2015). Castanea sativa (European Chestnut) leaf extracts rich in ursene and oleanene derivatives block staphylococcus aureus virulence and pathogenesis without detectable resistance. PLoS One, 10(8), e0136486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramirez-Carreto, S., et al. (2015). Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides, 73, 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, J., et al. (2017). Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules, 22(10).

    Article  PubMed Central  CAS  Google Scholar 

  • Rivero-Cruz, J. F. (2008). Antimicrobial compounds isolated from Haematoxylon brasiletto. Journal of Ethnopharmacology, 119(1), 99–103.

    Article  PubMed  Google Scholar 

  • Rivero-Cruz, I., et al. (2011). Chemical composition and antimicrobial and spasmolytic properties of Poliomintha longiflora and Lippia graveolens essential oils. Journal of Food Science, 76(2), C309–C317.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Garcia, A., et al. (2015). In vitro antimicrobial and antiproliferative activity of amphipterygium adstringens. Evidence-based Complementary and Alternative Medicine, 2015, 175497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Vasquez, L., et al. (2013). Enhanced antimicrobial activity of novel synthetic peptides derived from vejovine and hadrurin. Biochimica et Biophysica Acta, 1830(6), 3427–3436.

    Article  CAS  PubMed  Google Scholar 

  • Selles, C., et al. (2013). Antimicrobial activity and evolution of the composition of essential oil from Algerian Anacyclus pyrethrum L. through the vegetative cycle. Natural Product Research, 27(23), 2231–2234.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, H., Chandola, H. M., Singh, G., & Basisht, G. (2007). Utilization of Ayurveda in health care: an approach for prevention, health promotion, and treatment of disease. Part 1–Ayurveda, the science of life. Journal of Alternative and Complementary Medicine, 13(9), 1011–1019.

    Article  PubMed  Google Scholar 

  • Shay, L. E., & Freifeld, A. G. (1999). The current state of infectious disease: A clinical perspective on antimicrobial resistance. Lippincott’s Primary Care Practice, 3(1), 1–15; quiz 16–18.

    CAS  PubMed  Google Scholar 

  • Shukla, R., et al. (2016). Antioxidant, Antimicrobial Activity and Medicinal Properties of Grewia asiatica L. Medicinal Chemistry, 12(3), 211–216.

    Article  CAS  PubMed  Google Scholar 

  • Silva, S., et al. (2016). Antimicrobial, antiadhesive and antibiofilm activity of an ethanolic, anthocyanin-rich blueberry extract purified by solid phase extraction. Journal of Applied Microbiology, 121(3), 693–703.

    Article  CAS  PubMed  Google Scholar 

  • Sipponen, A., & Laitinen, K. (2011). Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. APMIS, 119(10), 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Solstad, R. G., et al. (2016). Novel antimicrobial peptides EeCentrocins 1, 2 and EeStrongylocin 2 from the edible sea urchin echinus esculentus have 6-Br-Trp post-translational modifications. PLoS One, 11(3), e0151820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sommer, M. O. A., Dantas, G., & Church, G. M. (2009). Functional characterization of the antibiotic resistance reservoir in the human microflora. Science, 325(5944), 1128–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, C. W., et al. (2014). New antimicrobial pregnane glycosides from the stem of Ecdysanthera rosea. Fitoterapia, 99, 267–275.

    Article  CAS  PubMed  Google Scholar 

  • Sonibare, M. A., Aremu, O. T., & Okorie, P. N. (2016). Antioxidant and antimicrobial activities of solvent fractions of Vernonia cinerea (L.) Less leaf extract. African Health Sciences, 16(2), 629–639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spellberg, B., & Taylor-Blake, B. (2013). On the exoneration of Dr. William H. Stewart: debunking an urban legend. Infectious Diseases of Poverty, 2(1), 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Springfield, E. P., Amabeoku, G., Weitz, F., Mabusela, W., & Johnson, Q. (2003). An assessment of two Carpobrotus species extracts as potential antimicrobial agents. Phytomedicine, 10(5), 434–439.

    Article  CAS  PubMed  Google Scholar 

  • Su, B. L., et al. (2012). Antioxidant and antimicrobial properties of various solvent extracts from Impatiens balsamina L. stems. Journal of Food Science, 77(6), C614–C619.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, S., Ross, N. W., & MacKinnon, S. L. (2008). Comparison of antimicrobial activity in the epidermal mucus extracts of fish. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 150(1), 85–92.

    Article  CAS  Google Scholar 

  • Suleman, T., van Vuuren, S., Sandasi, M., & Viljoen, A. M. (2015). Antimicrobial activity and chemometric modelling of South African propolis. Journal of Applied Microbiology, 119(4), 981–990.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Deng, Z., & Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications, 453(2), 254–267.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., et al. (2017). Biological characteristics of Edgeworthia tomentosa (Thunb.) Nakai flowers and antimicrobial properties of their essential oils. Natural Product Research, 1–4.

    Google Scholar 

  • Tadic, V. M., et al. (2008). Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract. Journal of Agricultural and Food Chemistry, 56(17), 7700–7709.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J. B., Yap, W. J., Tan, S. Y., Lim, Y. Y., & Lee, S. M. (2014). Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the Commelinaceae family. Antioxidants (Basel), 3(4), 758–769.

    Article  Google Scholar 

  • Tan, J. B., Lim, Y. Y., & Lee, S. M. (2015). Antioxidant and antibacterial activity of Rhoeo spathacea (Swartz) Stearn leaves. Journal of Food Science and Technology, 52(4), 2394–2400.

    Article  CAS  PubMed  Google Scholar 

  • Taviano, M. F., et al. (2011). Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey. Pharmaceutical Biology, 49(10), 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  • Thiem, B., & Goslinska, O. (2004). Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia, 75(1), 93–95.

    Article  CAS  PubMed  Google Scholar 

  • Torres-Larios, A., Gurrola, G. B., Zamudio, F. Z., & Possani, L. D. (2000). Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. European Journal of Biochemistry, 267(16), 5023–5031.

    Article  CAS  PubMed  Google Scholar 

  • Trentin, D. S., et al. (2013). Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PLoS One, 8(6), e66257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoutsos, D., Kakagia, D., & Tamparopoulos, K. (2009). The efficacy of Helix aspersa Muller extract in the healing of partial thickness burns: a novel treatment for open burn management protocols. The Journal of Dermatological Treatment, 20(4), 219–222.

    Article  PubMed  Google Scholar 

  • van Wyk, B. E. (2008). A broad review of commercially important southern African medicinal plants. Journal of Ethnopharmacology, 119(3), 342–355.

    Article  PubMed  Google Scholar 

  • Van Wyk, B. E. (2015). A review of commercially important African medicinal plants. Journal of Ethnopharmacology, 176, 118–134.

    Article  PubMed  Google Scholar 

  • Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277–283.

    PubMed  PubMed Central  Google Scholar 

  • Verma, R., Gangrade, T., Punasiya, R., & Ghulaxe, C. (2014). Rubus fruticosus (blackberry) use as an herbal medicine. Pharmacognosy Reviews, 8(16), 101–104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viljoen, A., et al. (2003). Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. Journal of Ethnopharmacology, 88(2-3), 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, F., Pendry, B., Corcoran, O., & Sanchez-Medina, A. (2011). Anglo-Saxon pharmacopoeia revisited: A potential treasure in drug discovery. Drug Discovery Today, 16(23–24), 1069–1075.

    Article  PubMed  Google Scholar 

  • Weckesser, S., et al. (2007). Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine, 14(7–8), 508–516.

    Article  CAS  PubMed  Google Scholar 

  • Woguem, V., et al. (2014). Volatile oil from striped African pepper (Xylopia parviflora, Annonaceae) possesses notable chemopreventive, anti-inflammatory and antimicrobial potential. Food Chemistry, 149, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X. L. (2013). History of Chinese medicinal wine. Chinese Journal of Integrative Medicine, 19(7), 549–555.

    Article  PubMed  Google Scholar 

  • Yang, X., Tang, C., Zhao, P., Shu, G., & Mei, Z. (2012). Antimicrobial constituents from the tubers of Bletilla ochracea. Planta Medica, 78(6), 606–610.

    Article  CAS  PubMed  Google Scholar 

  • Yazdankhah S, Lassen J, Midtvedt T, & Solberg CO (2013) [The history of antibiotics]. Tidsskr Nor Laegeforen, 133(23–24), 2502–2507.

    Google Scholar 

  • Yu, Y., Yi, Z. B., & Liang, Y. Z. (2007). Validate antibacterial mode and find main bioactive components of traditional Chinese medicine Aquilegia oxysepala. Bioorganic & Medicinal Chemistry Letters, 17(7), 1855–1859.

    Article  CAS  Google Scholar 

  • Zang, X., et al. (2013). A-type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules, 18(5), 5172–5189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, W. C., et al. (2011). Antibrowning and antimicrobial activities of the water-soluble extract from pine needles of Cedrus deodara. Journal of Food Science, 76(2), C318–C323.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., & Mah, T. F. (2008). Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of Bacteriology, 190(13), 4447–4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra P. Rumbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Redman, W.K., Rumbaugh, K.P. (2019). Are Ancient Remedies the New Answer to Fighting Infections?. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_17

Download citation

Publish with us

Policies and ethics