Skip to main content

Two-Dimensional Transition Metal Dichalcogenides: An Overview

  • Chapter
  • First Online:
Two Dimensional Transition Metal Dichalcogenides

Abstract

Two-dimensional materials attract enormous research attentions owing to the fascinating properties and great potential applications in electronics, optoelectronics, spintronics, energy conversion, and storage. Among them, two-dimensional transitional metal dichalcogenides exhibit exceptional properties such as tunable bandgaps, phase transition, and superconductivity. As such, two-dimensional transitional metal dichalcogenides have been extensively studied focusing on the property, synthesis, modification, and devices. Furthermore, the combination of different two-dimensional transitional metal dichalcogenides brings in versatile functionalities and the proof-of-concept electrical devices such as tunneling field-effect transistors, light-emitting diodes and photovoltaics have been demonstrated in the planar or vertical heterostructures. Thus in this chapter, we summarize the basic knowledge and previous research results about the two-dimensional transitional metal dichalcogenides, emphasizing the atom structure, band structure, and electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798

    Article  CAS  Google Scholar 

  3. Winer WO (1967) Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10:422–452

    Article  CAS  Google Scholar 

  4. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  CAS  Google Scholar 

  5. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y et al (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80

    Article  CAS  Google Scholar 

  6. Li H, Tsai C, Koh AL, Cai L, Contryman AW, Fragapane AH et al (2016) Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater 15:48–53

    Article  CAS  Google Scholar 

  7. Ugeda MM, Bradley AJ, Shi SF, da Jornada FH, Zhang Y, Qiu DY et al (2014) Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater 13:1091–1095

    Article  CAS  Google Scholar 

  8. Zeng H, Dai J, Yao W, Xiao D, Cui X (2012) Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7:490–493

    Article  CAS  Google Scholar 

  9. Mak KF, He K, Shan J, Heinz TF (2012) Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7:494–498

    Article  CAS  Google Scholar 

  10. Qiu DY, da Jornada FH, Louie SG (2013) Optical spectrum of MoS2 : many-body effects and diversity of exciton states. Phys Rev Lett 111:216805

    Google Scholar 

  11. Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805

    Article  CAS  Google Scholar 

  12. Sundaram RS, Engel M, Lombardo A, Kruple R, Ferrari AC, Avouris P et al (2013) Electroluminescence in single layer MoS2. Nano Lett 13:1416–1421

    Article  CAS  Google Scholar 

  13. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907

    Article  CAS  Google Scholar 

  14. Kuc A (2014) Low-dimensional transition-metal dichalcogenides. Royal Soc Chem, Cambridge, pp 1–29

    Google Scholar 

  15. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  16. Kappera R, Voiry D, Yalcin SE, Branch B, Gupta G, Mohite AD, Chhowalla M (2014) Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater 13:1128–1134

    Article  CAS  Google Scholar 

  17. Cho S, Kim S, Kim JH, Zhao J, Seok J, Keum DH et al (2015) Phase patterning for ohmic homojunction contact in MoTe2. Science 349:625–628

    Article  CAS  Google Scholar 

  18. Song S, Keum DH, Cho S, Perello D, Kim Y, Lee YH (2016) Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett 16:188–193

    Article  CAS  Google Scholar 

  19. Scalise E, Houssa M, Pourtois G, Afanasev V, Stesmans A (2012) Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res 5:43–48

    Article  CAS  Google Scholar 

  20. Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M et al (2017) Argon plasma induced phase transition in monolayer MoS2. J Am Chem Soc 139:10216–10219

    Article  CAS  Google Scholar 

  21. Kuc A, Zibouche N, Heine T (2011) Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys Rev B 83:245213

    Article  CAS  Google Scholar 

  22. Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan PH et al (2013) Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7:791–797

    Article  CAS  Google Scholar 

  23. Ruppert C, Aslan OB, Heinz TF (2014) Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett 14:6231–6236

    Article  CAS  Google Scholar 

  24. Roldán R, Silva-Guillén JA, López-Sancho MP, Guinea F, Cappelluti E, Ordejob P (2014) Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se): electronic properties of TMDs. Ann Phys 526:347–357

    Article  CAS  Google Scholar 

  25. Fuhrer MS, Hone J (2013) Measurement of mobility in dual-gated MoS2 transistors. Nat Nanotechnol 8:146–147

    Article  CAS  Google Scholar 

  26. Yu Z, Pan Y, Shen Y, Wang Z, Ong ZY, Xu T, Xin R et al (2014) Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun 5:5290–5297

    Article  CAS  Google Scholar 

  27. Guimarães MHD, Gao H, Han Y, Kang K, Xie S, Kim CJ et al (2016) Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10:6392–6399

    Article  CAS  Google Scholar 

  28. Liu Y, Guo J, Zhu E, Liao L, Lee SJ, Ding M et al (2018) Approaching the Schottky-Mott limit in van der Waals metal–semiconductor junctions. Nature 557:696–700

    Article  CAS  Google Scholar 

  29. Das S, Chen HY, Penumatcha AV, Appenzeller J (2013) High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 13:100–105

    Article  CAS  Google Scholar 

  30. Bao W, Cai X, Kim D, Sridhara K, Fuhrer MS (2013) High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl Phys Lett 102:042104

    Article  CAS  Google Scholar 

  31. Zheng J, Yan X, Lu Z, Qiu H, Xu G, Zhou X et al (2017) High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater 29:1604540

    Article  CAS  Google Scholar 

  32. Huang JK, Pu J, Hsu CL, Chiu MH, Juang ZY, Chang YH et al (2014) Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8:923–930

    Article  CAS  Google Scholar 

  33. Zhou J, Liu F, Lin J, Huang X, Xia J, Zhang B et al (2017) Large-area and high-quality 2D transition metal telluride. Adv Mater 29:1603471

    Article  CAS  Google Scholar 

  34. Empante TA, Zhou Y, Klee V, Nguyen AE, Lu IH, Valentin MD et al (2017) Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: tunable properties of MoTe2 films. ACS Nano 11:900–905

    Article  CAS  Google Scholar 

  35. Nakaharai S, Yamamoto M, Ueno K, Lin YF, Li SL, Tsukagoshi K (2015) Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 9:5976–5983

    Article  CAS  Google Scholar 

  36. Desai SB, Madhvapathy SR, Sachid AB, Llinas JP, Wang Q, Ahn GH, Pinter G et al (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354:99–102

    Article  CAS  Google Scholar 

  37. Radisavljevic B, Whitwick MB, Kis A (2011) Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5:9934–9938

    Article  CAS  Google Scholar 

  38. Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng HC et al (2014) Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat Commun 5:5143

    Article  CAS  Google Scholar 

  39. Wang H, Yu L, Lee YH, Shi Y, Hsu A, Chin ML et al (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680

    Article  CAS  Google Scholar 

  40. Yu L, El-Damak D, Radhakrishna U, Ling X, Zubair A, Lin Y et al (2016) Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett 16:6349–6356

    Article  CAS  Google Scholar 

  41. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501

    Article  CAS  Google Scholar 

  42. Zhang W, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ (2013) High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 25:3456–3461

    Article  CAS  Google Scholar 

  43. Wu CC, Jariwala D, Sangwan VK (2013) Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J Phys Chem Lett 4:2508–2513

    Article  CAS  Google Scholar 

  44. Buscema M, Barkelid M, Zwiller V, van der Zant HSJ, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13:358–363

    Article  CAS  Google Scholar 

  45. Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13:668–673

    Article  CAS  Google Scholar 

  46. Sarkar D, Liu W, Xie X (2014) MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8:3992–4003

    Article  CAS  Google Scholar 

  47. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F, Mishchenko A et al (2012) Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–950

    Article  CAS  Google Scholar 

  48. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV, Morozov SV et al (2013) Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103

    Article  CAS  Google Scholar 

  49. Sarkar D, Xie X, Liu W (2015) A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526:91–95

    Article  CAS  Google Scholar 

  50. Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P (2014) Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat Nanotechnol 9:262–267

    Article  CAS  Google Scholar 

  51. Pospischil A, Furchi MM, Mueller T (2014) Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat Nanotechnol 9:257–261

    Article  CAS  Google Scholar 

  52. Ross JS, Klement P, Jones AM, Ghimire NJ, Yan J, Mandrus DG et al (2014) Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat Nanotechnol 9:268–272

    Article  CAS  Google Scholar 

  53. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K et al (2015) Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 14:301–306

    Article  CAS  Google Scholar 

  54. Fontana M, Deppe T, Boyd AK, Rinzan M, Liu AY, Paranjape M et al (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep 3:1634

    Article  CAS  Google Scholar 

  55. Furchi MM, Pospischil A, Libisch F, Burgdorfer J, Mueller T (2014) Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett 14:4785–4791

    Article  CAS  Google Scholar 

  56. Xiao D, Liu GB, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108:196802

    Article  CAS  Google Scholar 

  57. Xu X, Yao W, Xiao D, Heinz TF (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10:343–350

    Article  CAS  Google Scholar 

  58. Cao T, Wang G, Han W, Ye H, Zhu C, Shi J et al (2012) Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3:887

    Article  CAS  Google Scholar 

  59. Jones AM, Yu H, Ghimire NJ, Wu S, Aivazian G, Ross JS et al (2013) Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8:634–638

    Article  CAS  Google Scholar 

  60. Zhang YJ, Oka T, Suzuki R (2014) Electrically switchable chiral light-emitting transistor. Science 344:725–728

    Article  CAS  Google Scholar 

  61. Rahman M, Davey K, Qiao SZ (2017) Advent of 2D rhenium disulfide (ReS2): fundamentals to applications. Adv Funct Mater 27:1606129

    Article  CAS  Google Scholar 

  62. Wen W, Zhu Y, Liu X, Hsu HP, Fei Z, Chen Y et al (2017) Anisotropic spectroscopy and electrical properties of 2D ReS2(1−x)Se2x alloys with distorted 1T structure. Small 13:1603788

    Article  CAS  Google Scholar 

  63. Lin YC, Komsa HP, Yeh CH, Bjorkman T, Liang ZY, Ho CH et al (2015) Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 9:11249–11257

    Article  CAS  Google Scholar 

  64. Murray H, Kelly SP, Chianelli RR (1994) Structure of rhenium disulfide. Inorg Chem 33:4418–4420

    Article  CAS  Google Scholar 

  65. Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K et al (2014) Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat Commun 5:3252

    Article  CAS  Google Scholar 

  66. Liu E, Fu Y, Wang Y, Feng Y, Liu H, Wan X et al (2015) Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat Commun 6:6991

    Article  CAS  Google Scholar 

  67. Gehlmann M, Aguilera I, Bihlmayer G, Nemsak S, Nagler P, Gospodaric P et al (2017) Direct observation of the band gap transition in atomically thin ReS2. Nano Lett 17:5187–5192

    Article  CAS  Google Scholar 

  68. Ho CH, Huang YS, Tiong KK (1999) In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals. J Phys: Condens Matter 11:5367

    CAS  Google Scholar 

  69. Ho CH, Huang YS, Tiong KK (2001) In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J Alloys Compd 222–226

    Google Scholar 

  70. Chenet DA, Aslan OB, Huang PY, Fan C, van der Zande AM, Heinz TF et al (2015) In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett 15:5667–5672

    Article  CAS  Google Scholar 

  71. Wolverson D, Crampin S, Kazemi AS, LLie A, Bending SJ (2014) Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8:11154–11164

    Article  CAS  Google Scholar 

  72. Feng Y, Zhou W, Wang Y, Zhou J, Liu E, Fu Y et al (2015) Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys Rev B 92:054110

    Article  CAS  Google Scholar 

  73. Lorchat E, Froehlicher G, Berciaud S (2016) Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 10:2752–2760

    Article  CAS  Google Scholar 

  74. Liu KK, Zhang W, Lee YH, Lin YC, Chang MT, Su CY et al (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 12:1538–1544

    Article  CAS  Google Scholar 

  75. Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5:4458

    Article  CAS  Google Scholar 

  76. Pradhan NR, McCreary A, Rhodes D, Lu Z, Feng S, Manousakis E et al (2015) Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett 15:8377–8384

    Article  CAS  Google Scholar 

  77. Corbet CM, McClellan C, Rai A (2015) Field effect transistors with current saturation and voltage gain in ultrathin ReS2. ACS Nano 9:363–370

    Article  CAS  Google Scholar 

  78. He X, Liu F, Hu P, Fu W, Wang X, Zeng Q et al (2015) Chemical vapor deposition of high-quality and atomically layered ReS2. Small 11:5423–5429

    Article  CAS  Google Scholar 

  79. Keyshar K, Gong Y, Ye G, Brunetto G, Zhou W, Cole DP et al (2015) Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv Mater 27:4640–4648

    Article  CAS  Google Scholar 

  80. Cui F, Wang C, Li X, Wang G, Liu K, Yang Z et al (2016) Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv Mater 28:5019–5024

    Article  CAS  Google Scholar 

  81. Li X, Cui F, Feng Q, Wang G, Xu X, Wu J et al (2016) Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 8:18956–18962

    Article  CAS  Google Scholar 

  82. Dathbun A, Kim Y, Kim S (2017) Large-area CVD-grown sub-2V ReS2 transistors and logic gates. Nano Lett 17:2999–3005

    Article  CAS  Google Scholar 

  83. Zhang E, Jin Y, Yuan X, Wang W, Zang C, Tang L et al (2015) ReS2-based field-effect transistors and photodetectors. Adv Funct Mater 25:4076–4082

    Article  CAS  Google Scholar 

  84. Zhang E, Wang P, Li Z, Wang C, Song C, Huang C et al (2016) Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 10:8067–8077

    Article  CAS  Google Scholar 

  85. Hafeez M, Gan L, Li H (2016) Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv Funct Mater 26:4551–4560

    Article  CAS  Google Scholar 

  86. Shim J, Oh A, Kang DH, Oh S, Jang SK, Jeon J et al (2016) High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv Mater 28:6985–6992

    Article  CAS  Google Scholar 

  87. Yang S, Tongay S, Li Y (2014) Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6:7226–7231

    Article  CAS  Google Scholar 

  88. Gutiérrez-Lezama I, Reddy BA, Ubrig N, Morpurgo AF (2016) Electroluminescence from indirect band gap semiconductor ReS2. 2D Mater 3:045016

    Article  CAS  Google Scholar 

  89. Najmzadeh M, Ko C, Wu K Tongay S, Wu J (2016) Multilayer ReS2 lateral p–n homojunction for photoemission and photodetection. Appl Phys Express 9:055201

    Article  CAS  Google Scholar 

  90. Zhao Y, Qiao J, Yu P (2016) Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv Mater 28:2399–2407

    Article  CAS  Google Scholar 

  91. Zhao Y, Qiao J, Yu Z, Hu Z, Lin Z, Lau SP et al (2017) High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv Mater 29:1604230

    Article  CAS  Google Scholar 

  92. Wang Y, Li L, Yao W, Song S, Sun JT, Pan J et al (2015) Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett 15:4013–4018

    Article  CAS  Google Scholar 

  93. Miró P, Ghorbani-Asl M, Heine T (2014) Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. Angew Chem Int Ed 53:3015–3018

    Article  CAS  Google Scholar 

  94. Rasmussen FA, Thygesen KS (2015) Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides. J Phys Chem C 119:13169–13183

    Article  CAS  Google Scholar 

  95. Guo GY, Liang WY (1986) The electronic structures of platinum dichalcogenides: PtS2, PtSe2, and PtTe2. J Phys C: Solid State Phys 19:995

    Article  CAS  Google Scholar 

  96. Yu X, Yu P, Wu X, Sing B, Zeng Q, Lin H, Zhou W et al (2018) Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Nat Commun 9:1545

    Article  CAS  Google Scholar 

  97. Zhang W, Huang Z, Zhang W, Li Y (2014) Two-dimensional semiconductors with possible high room temperature mobility. Nano Res 7:1731–1737

    Article  CAS  Google Scholar 

  98. Su TY, Medina H, Chen YZ, Wang SW, Lee SS, Shih YC, Chen CW et al (2018) Phase-engineered PtSe2-layered films by a plasma-assisted selenization process toward all PtSe2-based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 14:1800032

    Article  CAS  Google Scholar 

  99. Wang Z, Li Q, Besenbacher F (2016) Facile synthesis of single crystal PtSe2 nanosheets for nanoscale electronics. Adv Mater 28:10224–10229

    Article  CAS  Google Scholar 

  100. Yim C, Lee K, McEvoy N, Brien MO, Riazimehr S, Berner NC et al (2016) High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 10:9550–9558

    Article  CAS  Google Scholar 

  101. Ma Y, Dai Y, Guo M (2012) Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6:1695–1701

    Article  CAS  Google Scholar 

  102. Gao D, Xue Q, Mao X, Wang W, Xu Q, Xue D (2013) Ferromagnetism in ultrathin VS2 nanosheets. J Mater Chem C 1:5909–5916

    Article  CAS  Google Scholar 

  103. Xu K, Chen P, Li X, Wu C, Guo Y, Zhao et al (2013) Ultrathin nanosheets of vanadium diselenide: a metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew Chem Int Ed 52:10477–10481

    Article  CAS  Google Scholar 

  104. Yang J, Wang W, Liu Y, Du H, Ning W, Zheng G et al (2014) Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl Phys Lett 105:063109

    Article  CAS  Google Scholar 

  105. Zhang Z, Niu J, Yang P, Gong Y, Ji Q, Shi J et al (2017) Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv Mater 29:1702359

    Article  CAS  Google Scholar 

  106. Zhang H, Liu LM, Lau WM (203) Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 1:10821–10828

    Article  CAS  Google Scholar 

  107. Feng J, Sun X, Wu C (2011) Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133:17832–17838

    Article  CAS  Google Scholar 

  108. Guo Y, Deng H, Sun X, Li X, Zha J, Wu J et al (2017) Modulation of metal and insulator states in 2D ferromagnetic VS2 by van der Waals interaction engineering. Adv Mater 29:1700715

    Article  CAS  Google Scholar 

  109. Li F, Tu K, Chen Z (2014) Versatile electronic properties of VSe2 bulk, few-layers, monolayer, nanoribbons, and nanotubes: A computational exploration. J Phys Chem C 118:21264–21274

    Article  CAS  Google Scholar 

  110. Xi X, Zhao L, Wang Z (2015) Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat Nanotechnol 10:765–769

    Article  CAS  Google Scholar 

  111. Xi X, Berger H, Forró L, Shan J, Mak KF (2016) Gate tuning of electronic phase transitions in two-dimensional NbSe2. Phys Rev Lett 117:106801

    Article  CAS  Google Scholar 

  112. Sipos B, Kusmartseva AF, Akrap A (2008) From Mott state to superconductivity in 1T-TaS2. Nat Mater 7:960–965

    Article  CAS  Google Scholar 

  113. Yu Y, Yang F, Lu XF, Yan YJ, Cho YH, Ma L Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat Nanotechnol 10:270–276

    Article  CAS  Google Scholar 

  114. Navarro-Moratalla E, Island JO, Mañas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomes A, Quereda J, Rubio-Bollinger G et al (2016) Enhanced superconductivity in atomically thin TaS2. Nat Commun 7:11043

    Article  CAS  Google Scholar 

  115. Chen P, Chan YH, Fang XY (2015) Charge density wave transition in single-layer titanium diselenide. Nat Commun 6:8943

    Article  CAS  Google Scholar 

  116. Li LJ, O’Farrell ECT, Loh KP, Eda G, Ozyilmaz B, Castro Neto AH (2016) Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529:185–189

    Article  CAS  Google Scholar 

  117. Sugawara K, Nakata Y, Shimizu R (2015) Unconventional charge-density-wave transition in monolayer 1T-TiSe2. ACS Nano 10:1341–1345

    Article  CAS  Google Scholar 

  118. Yue R, Barton AT, Zhu H, Azcatl A, Pena LF, Wang J et al (2015) HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano 9:474–480

    Article  CAS  Google Scholar 

  119. Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia et al (2018) A library of atomically thin metal chalcogenides. Nature 556:355–359

    Article  CAS  Google Scholar 

  120. Gong C, Li L, Li Z, Ji H, Stern A, Xia Y et al (2017) Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546:265–269

    Article  CAS  Google Scholar 

  121. Huang B, Clark G, Navarro-Moratalla E, Klein DR, Cheng R, Seyler KL et al (2017) Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546:270–273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the financial support of the National Natural Science Foundation of China (Grant 51472219 and 51672244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingsheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, T., Cai, Y., Chen, H., Xu, M. (2019). Two-Dimensional Transition Metal Dichalcogenides: An Overview. In: Arul, N., Nithya, V. (eds) Two Dimensional Transition Metal Dichalcogenides. Springer, Singapore. https://doi.org/10.1007/978-981-13-9045-6_1

Download citation

Publish with us

Policies and ethics