Skip to main content

Fundamental Processes Involved in Seed Priming

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Seed priming is an effective tool to enhance germination of seeds and subsequent growth of seedlings under both ideal and adverse conditions. The positive effects of seed priming are due to varied physiological, biochemical, and molecular changes. These improvements include activation of enzymes that are involved in cellular metabolism, metabolism of inhibitors, breaking seed dormancy, and water imbibition. Environmental stresses can adversely affect growth of plant at the physiological, biochemical, and molecular levels. The plants grown from the primed seeds tend to have better tolerance to abiotic stresses. Seed priming enhances the metabolic processes within the germinating seed, leading to buildup of abiotic stress tolerance. However, physiological, biochemical, and cellular mechanisms of this phenomenon are not well understood. This chapter deals with recent progress in understanding the roles of seed priming in various physiological, biochemical, and molecular mechanisms during seed germination and post-germination stages as well as how it assists in regulating plant tolerance to abiotic stresses. Further, factors affecting seed priming and mechanisms of abiotic stress tolerance with priming agents were explained in the current state research work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AgNPs:

Biocompatible silver nanoparticles

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

ATP:

Adenosine triphosphate

BABA:

Beta-aminobutyric acid

CAT:

Catalase

FC:

Field capacity

GA3:

Gibberellin

GB:

Glycine betaine

GPOX:

Guaiacol peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

HSPs:

Heat shock proteins

IAA:

Indole-3-acetic acid

JA:

Jasmonic acid

LEA:

Late embryogenic abundance

MDA:

Malondialdehyde

NR:

Nitrate reductase

PAL:

Phenylalanine ammonia-lyase

PAs:

Polyamines

PEG:

Polyethylene glycol

POX:

Peroxidase

PPO:

Polyphenol oxidase

ROIs:

Reactive oxygen intermediates

ROS:

Reactive oxygen species

SA:

Salicylic acid

SOD:

Superoxide dismutase

XOD:

Xanthine oxide

References

  • Aboutalebian MA, Nazari S (2017) Seedling emergence and activity of some antioxidant enzymes of canola (Brassica napus) can be increased by seed priming. J Agric Sci 155(10):1541–1552

    Article  CAS  Google Scholar 

  • Abou-Zeid HM, Ismail GSM (2018) The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L. to salt stress. Egypt J Bot 58(1):73–85

    Google Scholar 

  • Afzal I, Basra SMA, Ahmad N, Cheema MA, Warraich EA, Khaliq A (2002) Effect of priming and growth regulator treatment on emergence and seedling growth of hybrid maize (Zea mays). Int J Agric Biol 4:303–306

    CAS  Google Scholar 

  • Afzal I, Basra SMA, Shahid M, Farooq M, Saleem M (2008) Priming enhances germination of spring maize (Zea mays L.) under cool conditions. Seed Sci Technol 36:497–503

    Article  Google Scholar 

  • Afzal I, Munir F, Ayub CM, Basra SMA, Hameed A, Nawaz A (2009) Changes in antioxidant system, germination capacity and vigour of tomato seeds in response of priming with polyamines. Seed Sci Technol 37:765–770

    Article  Google Scholar 

  • Ajouri A, Haben A, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Article  Google Scholar 

  • Akers SW, Holley KE (1986) SPS: a system for priming seed using aerated polyethylene glycol or salt solutions. HortScience 21:529–531

    Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced regulation in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) under saline regimes. Sci Hortic 142:143–148

    Article  CAS  Google Scholar 

  • Alasvandyari F, Mahdavi B, Hosseini Shahab M (2017) Glycine betaine affects the antioxidant system and ion accumulation and reduces salinity-induced damage in safflower seedlings. Arch Biol Sci 69(1):139–147

    Article  Google Scholar 

  • Alevarado AD, Bradford KJ (1988) Priming and storage of tomato (Lycopersicon esculentum) seeds, effect of storage temperature on germination rate and viability. Seed Sci Technol 16:601–612

    Google Scholar 

  • Ali Q, Daud MK, Haider MZ, Ali S, Rizwan M, Aslam N, Noman A, Iqbal N, Shahzad F, Deeba F, Ali I, Zhu SJ (2017) Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem 119:50–58

    Article  CAS  PubMed  Google Scholar 

  • Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Aloui H, Souguir M, Latique S, Hannachi C (2014) Germination and growth in control and primed seeds of pepper as affected by salt stress. Cercetari Agron Moldova 47(3):83–95

    Article  Google Scholar 

  • Amjad M, Ziaf K, Iqbal Q, Ahmad I, Riaz MA (2007) Effect of seed priming on seed vigor and salt tolerance in hot pepper. Pak J Agric Sci 44(3):408–419

    Google Scholar 

  • Amooaghaie R (2011) The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. Afr J Biotechnol 10(33):6269–6275

    Google Scholar 

  • Ansari O, Sharif-Zadeh F (2012) Osmo and hydro priming improvement germination characteristics and enzyme activity of Mountain Rye (Secale montanum) seeds under drought stress. J Stress Physiol Biochem 8(4):253–261

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arif M, Ali S, Shah A, Javeed N, Rashid A (2005) Seed priming maize for improving emergence and seedling growth. Sarhad J Agric 21:539–543

    Google Scholar 

  • Asgedom H, Becker M (2001) Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proceedings Deutscher Tropentag, University of Bonn and ATSAF, Magrraf Publishers Press, Weickersheim, p 282

    Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment-a shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Atia A, Debez A, Barhoumi Z, Smaoui A, Abdelly C (2009) ABA, GA3 and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions. C R Biol 332:704–710

    Article  CAS  PubMed  Google Scholar 

  • Azeem M, Iqbal N, Kausar S, Javed MT, Akram MS, Sajid MA (2015) Efficacy of silicon priming and fertigation to modulate seedling’s vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment. Environ Sci Pollut Res Int 22:14367–14371

    Article  CAS  PubMed  Google Scholar 

  • Azooz MM (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11:343–350

    CAS  Google Scholar 

  • Babu MA, Singh D, Gothandam KM (2012) The effect of salinity on growth, hormone and mineral elements in leaf and fruit of tomato cultivar PKM1. J Anim Plant Sci 22:159–164

    CAS  Google Scholar 

  • Bailly C, Audigier C, Ladonne F, Wagner MH, Coste F (2001) Changes in oligosaccharides content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. J Exp Bot 52:701–708

    Article  CAS  PubMed  Google Scholar 

  • Balestrazzi A, Confalonieri M, Macovei A, Carbonera D (2011) Seed imbibition in Medicago truncatula Gaertn: expression profiles of DNA repair genes in relation to PEG-mediated stress. J Plant Physiol 168:706–713

    Article  CAS  PubMed  Google Scholar 

  • Bandeoglu E, Eyidogan F, Yücel M, Öktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77

    Article  CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2016) Plant responses to light stress: oxidative damages, photoprotection and role of phytohormones. In: Ahammed GJ, Yu J-Q (eds) Plant hormones under challenging environmental factors. Springer Nature, Dordrecht, pp 181–213

    Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Seed priming Technology in the Amelioration of salinity stress in plants. In: Rakshit A, Singh H (eds) Advances in seed priming. Springer, Singapore

    Google Scholar 

  • Barbara J (2015) Improving onion seed germination using priming treatments. Infrastruct Ecol Rural Areas 4:1437–1447

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Basra AS, Singh B, Malik CP (1994) Priming-induced changes in polyamine levels in relation to vigor of aged onion seeds. Bot Bull Acad Sin 35(19):23

    Google Scholar 

  • Basra SMA, Farooq M, Khaliq A (2003) Comparative study of pre-sowing seed enhancement treatments in indica rice (Oryza sativa L.). Pak J Life Soc Sci 1:5–9

    Google Scholar 

  • Basra SMA, Farooq M, Hafeez K, Ahmad N (2004) Osmohardening a new technique for rice seed invigoration. Int Rice Res Notes 29:80–81

    Google Scholar 

  • Basra SMA, Farooq M, Rehman H, Saleem BA (2007) Improving the germination and early seedling growth in melon (Cucumis melo L.) by pre-sowing Salicylicate treatments. Int J Agric Biol 9(4):550–554

    CAS  Google Scholar 

  • Batista TB, Cardoso ED, Binotti FFS, Costa E, Sá ME (2016) Priming and stress under high humidity and temperature on the physiological quality of Brachiaria brizantha cv MG-5 seeds. Acta Sci 38(1):123–127

    Google Scholar 

  • Bayat S, Sepehri A (2012) Paclobutrazol and salicylic acid application ameliorates the negative effect of water stress on growth and yield of maize plants. Int J Res Agric Sci 8:127–139

    Google Scholar 

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:1–7

    Article  Google Scholar 

  • Bellti P, Lanteris S, Lotito S (1993) Priming of Papaver nudicaule seeds for germination at low temperature. Hortic Sci 4:163–165

    Google Scholar 

  • Benamar A, Tallon C, Macherel D (2003) Membrane integrity and oxidative properties of mitochondria isolated from imbibing pea seeds after priming or accelerated ageing. Seed Sci Res 13:35–45

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York, p 455

    Book  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Bittencourt MLC, Dias DCFS, Dias LAS, Araújo EF (2004) Effects of priming on asparagus seed germination and vigour under water and temperature stress. Seed Sci Technol 32:607–616

    Article  Google Scholar 

  • Bocian S, Holubowicz R (2008) Effect of different ways of priming tomato (Lycopersicon esculentum MILL) seeds on their quality. Pol J Nat Sci 23(4):729–739

    Article  Google Scholar 

  • Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237–260

    Article  CAS  Google Scholar 

  • Bonilla I, El-Hamdaoui A, Bolaños L (2004) Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 267:97–107

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose B, Kumar M, Singhal RK, Mondal S (2018) Impact of seed priming on the modulation of physico-chemical and molecular processes during germination, growth, and development of crops. In: Rakshit A, Singh H (eds) Advances in seed priming. Springer, Singapore

    Chapter  Google Scholar 

  • Bouchereau A, Aziz A, Larther F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience 21:1105–1112

    Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 351–396

    Google Scholar 

  • Bradford KJ, May DM, Hoyle BJ, Sibinski S, Scott SJ, Tyler KB (1988) Seed and soil treatments to improve emergence of muskmelon from cold or crusted soils. Crop Sci 28:1001–1005

    Article  Google Scholar 

  • Bray CM (1995) Biochemical processes during the osmopriming of seeds. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 767–789

    Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168:511–528

    Article  CAS  PubMed  Google Scholar 

  • Bray CM, Davison PA, Ashraf M, Taylor RM (1989) Bio-chemical events during osmopriming of leek seed. Ann Appl Biol 102:185–193

    Google Scholar 

  • Brocklehurst PA, Dearman J (1983) Interactions between seed priming treatments and nine lots of carrot, celery and onion. I. Laboratory germination. Ann Appl Biol 120:577–584

    Article  Google Scholar 

  • Brocklehurst PA, Dearman J, Drew RLK (1984) Effects of osmotic priming on seed germination and seedling growth in leek. Sci Hortic 24(3):201–210

    Article  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful memories of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Bruggink GT, Ooms JJJ, van der Toorn P (1999) Induction of longevity in primed seeds. Seed Sci Res 9:49–53

    Article  Google Scholar 

  • Bujalski W, Nienow AW (1991) Large-scale osmotic priming of onion seeds: a comparison of different strategies for oxygenation. Sci Hortic 46:13–24

    Article  Google Scholar 

  • Bujalski W, Nienow AW, Gray D (1989) Establishing the large scale osmotic priming of onion seeds using enriched air. Ann Appl Biol 115:171–176

    Article  Google Scholar 

  • Butler L, Hay F, Ellis R, Smith R, Murray T (2009) Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann Bot 103:1261–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantliffe DJ, Elballa M (1994) Improved germination of carrot at stressful high temperature by seed priming. Proc Fla State Hortic Soc 107:121–128

    Google Scholar 

  • Cantliffe DJ, Elbala M, Guedes AC, Odell GB, Perkinsveazie P, Schultheis JR, Seale DN, Shuler KD, Tanne I, Watkins JT (1981) Improving stand establishment of direct-seeded vegetables in Florida. In: Proceedings of Florida State Horticutural Society, vol 100, pp 213–216

    Google Scholar 

  • Carvalho RF, Piotto FA, Schmidt D, Peters LP, Monteiro CC, Azevedo RA (2011) Seed priming with hormones does not alleviate induced oxidative stress in maize seedlings subjected to salt stress. Sci Agric 68:598–602

    Article  CAS  Google Scholar 

  • Caseiro R, Bennett MA, Marcos-Filho J (2004) Comparison of three priming techniques for onion seed lots differing in initial seed quality. Seed Sci Technol 32:365–375

    Article  Google Scholar 

  • Castañares JL, Bouzo CA (2018) Effect of different priming treatments and priming durations on melon germination behavior under suboptimal conditions. Open Agric 3(1):386–392

    Article  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestova E, Westohoff P, Van Dorselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugar beet. Proteomics 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Cayuela E, Perez-Alfocea F, Caro M, Bolarin MC (1996) Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol Plant 96:231–236

    Article  CAS  Google Scholar 

  • Cha-um S, Supaibulwatana K, Kirdmanee C (2006) Water relation, photosynthetic ability and growth of Thai jasmine rice (Oryza sativa L. ssp. Indica cv KDML105) to salt stress by application of exogenous glycinebetaine and choline. J Agron Crop Sci 192:25–36

    Article  CAS  Google Scholar 

  • Chen K (2011) Antioxidants and dehydrin metabolism associated with osmopriming-enhanced stress tolerance of germinating spinach (Spinacia oleracea L. cv. Bloomsdale) seeds PhD. Iowa State University, Ames, Iowa, USA

    Google Scholar 

  • Chen K, Arora R (2011) Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach (Spinacia oleracea). Plant Sci 180:212–220

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trend Plant Sci 13:499–505

    Article  CAS  Google Scholar 

  • Chen K, Fessehaie A, Arora R (2013) Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biol Plant 57:193–198

    Article  CAS  Google Scholar 

  • Cheng C, Pei LM, Yin TT, Zhang KW (2018) Seed treatment with glycine betaine enhances tolerance of cotton to chilling stress. J Agric Sci 156(3):323–333

    Article  CAS  Google Scholar 

  • Copeland LO, McDonald MB (2001) Principles of seed science and technology, 4th edn. Kluwer Academic Publishers, Dordrecht, p 488

    Book  Google Scholar 

  • Corbineau F, Come D (2006) Priming: a technique for improving seed quality. Seed Test Int 132:38–40

    Google Scholar 

  • Corbineau F, Ozbincol N, Vinol D, Come D (2000) Improvement in tomato seed germination by osmopriming as related to energy metabolism. In: Black M, Bradford KJ, Vazquez-Ramos J (eds) Seed biology: advances and application. CABI, Oxon, pp 449–466

    Google Scholar 

  • Cramer GR (2002) Sodium-calcium interactions under salinity stress in Läuchli a, Lüttge u, salinity Envirnoment-plants-molecules. Kluwer Academic Publishers, Dordrecht, pp 205–227

    Google Scholar 

  • Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in tomato. J Exp Bot 57:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Das S, Dash FM, Nandi AK, Senapati N, Sarkar S, Pandey G (2014) Seed quality index an estimate used to predict response of bottle gourd seeds (Lagenaria siceraria (Mol) Standl) to hydro- and osmo-priming. Acta Adv Agric Sci 2(12):1–10

    CAS  Google Scholar 

  • Das P, Nutan KK, Singla-Pareek SL, Pareek A (2015) Oxidative environment and redox homeostasis in plants: dissecting out significant contribution of major cellular organelles. Front Environ Sci 2:70

    Article  Google Scholar 

  • Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS 15:763–774

    Article  CAS  PubMed  Google Scholar 

  • Daur I (2018) Effects of hydro and hormonal priming on quinoa (Chenopodium quinoa Willd.) seed germination under salt and drought stress. Pak J Bot 50(5):1669–1673

    CAS  Google Scholar 

  • Dawood MG, EL-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol Colomb 20:223–235

    CAS  Google Scholar 

  • Dawood MG, Sadak MS (2014) Physiological role of glycinebetaine in alleviating the deleterious effects of drought stress on canola plants (Brassica napus L.). Middle East J Agric Res 3:943–954

    Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros JV, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162(10):1114–1122

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Puppo A (2009) Reactive oxygen species in plant signaling. Springer, Dordrecht/Heidelberg/London/New York

    Book  Google Scholar 

  • Dell Aquila A, Tritto V (1991) Germination and biochemical activities in wheat seeds following delayed harvesting, aging and osmotic. Seed Sci Technol 19:73–82

    Google Scholar 

  • Demir I, Mavi K (2004) The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) seeds. Sci Hortic 102:467–473

    Article  Google Scholar 

  • Demir I, Okcu G (2004) Aerated hydration treatment for improved germination and seedling growth in aubergine (Solanum melongena) and pepper (Capsicum annum). Ann Appl Biol 144:121–123

    Article  Google Scholar 

  • Demir I, Oztokat C (2003) Effect of salt priming on germination and seedling growth at low temperature in watermelon seed during development. Seed Sci Technol 31:765–770

    Article  Google Scholar 

  • Demir I, Van de Venter HA (1999) The effect of priming treatments on the performance of watermelon (Citrullus lanatus (Thunb) Matsum and Nakai) seeds under temperature and osmotic stress. Seed Sci Technol 27:871–875

    Google Scholar 

  • Demir I, Ozuaydın I, Yasar F, Staden JV (2012) Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S Afr J Bot 78:83–87

    Article  CAS  Google Scholar 

  • Di Girolamo G, Barbanti L (2012a) Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital J Agron 7(e25):e178–e188

    Google Scholar 

  • Di Girolamo G, Barbanti L (2012b) Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital J Agron 7:8–18

    Article  Google Scholar 

  • Ding CK, Wang C (2003) The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Plant Sci 164:589–596

    Article  CAS  Google Scholar 

  • Diniz KA, Silva PA, Oliveira JA, Evangelista JRE (2009) Sweet pepper seed responses to inoculation with microorganisms and coating with micronutrients, amino acids and plant growth regulators. Sci Agric 66:293–297

    Article  CAS  Google Scholar 

  • Dkhil BB, Issa A, Denden M (2014) Germination and seedling emergence of primed okra (Abelmoschus esculentus L.) seeds under salt stress and low temperature. Am J Plant Physiol 9:38–45

    Article  Google Scholar 

  • Dong L, Hao Z, Li Z, Zhu J, Wang Q (2014) Enhancement of welsh onion (Allium fistulosum L.) seed vigor by KNO3 priming. J Agric Sci Technol 16:1345–1353

    Google Scholar 

  • Dorna H, Jarosz M, Szopinska D, Szulc I, Rosinska A (2013) Germination vigour and health of primed Allium cepa L. seeds after storage. Acta Sci Pol Hortorum Cultus 12:43–58

    Google Scholar 

  • Durner EF (2013) Principles of horticultural physiology. Cabi Publishing, Wallingford, p 416

    Book  Google Scholar 

  • Dursun A, Ekinci M (2010) Effects of different priming treatments and priming durations on germination percentage of parsley (Petroselinum crispum L.) seeds. Agric Sci 1:17–23

    CAS  Google Scholar 

  • Ebrahimi R, Ahmadizadeh M, Rahbarian P (2014) Enhancing stand establishment of tomato cultivars under salt stress condition. Southwest J Hortic Biol Environ 5(1):19–42

    Article  Google Scholar 

  • Eisvand HR, Tavakkol-Afshari R, Sharifzadeh F, Maddah-Aref H, Hesamzadeh-Hejaz SM (2010) Effects of hormonal priming and drought stress on activity and isozyme profles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum host). Seed Sci Technol 38:280–297

    Article  Google Scholar 

  • Ellis RH, Butcher PD (1988) The effects of priming and ‘natural’ differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. J Exp Bot 39:935–950

    Article  Google Scholar 

  • Ellis R, Hong TD (1994) Desiccation tolerance and potential longevity of developing seeds of rice (Oryza sativa L.). Ann Bot 73:501–506

    Article  Google Scholar 

  • Eskandari H (2013) Effects of priming technique on seed germination properties, emergence and field performance of crops: a review. Int J Agron Plant Prod 4:454–458

    Google Scholar 

  • Esmaielpour B, Ghassemi-Golezani K, Rahimzadeh Khoei F, Gregoorian V, Toorchi M (2006) The effect of NaCl priming on cucumber seedling growth under salinity stress. J Food Agric Environ 4(2):347–349

    CAS  Google Scholar 

  • Fallah S, Somayeh M, Mohammad P (2018) Seed priming improves seedling emergence and reduces oxidative stress in Nigella sativa under soil moisture stress. J Plant Nutr 41(1):29–40

    Article  CAS  Google Scholar 

  • Farahbakhsh H (2012) Germination and seedling growth in unprimed and primed seeds of fennel as affected by reduced water potential induced by NaCl. Int Res J Appl Basic Sci 3:737–744

    CAS  Google Scholar 

  • Farhoudi R (2012) Evaluation effect of KNO3 seed priming on seedling growth and cell membrane damage of sunflower (Helianthus annus) under salt stress. Am Eurasian J Agric Environ Sci 12(3):384–388

    CAS  Google Scholar 

  • Farhoudi R, Saeedipour S, Mohammadreza D (2011) The effect of NaCl seed priming on salt tolerance, antioxidant enzyme activity, proline and carbohydrate accumulation of muskmelon (Cucumis melo L.) under saline condition. Afr J Agric Res 6(6):1363–1370

    Google Scholar 

  • Farooq M, Basra SMA, Saleem BA, Nafees M, Chishti SA (2005) Enhancement of tomato seed germination and seedling vigor by osmopriming. Pak J Agric 42(3–4):36–41

    Google Scholar 

  • Farooq M, Basra SMA, Khalid A, Tabassum R, Mehmood T (2006) Nutrient homeostasis, reserves metabolism and seedling vigor as affected by seed priming in coarse rice. Can J Bot 84:1196–1202

    Article  CAS  Google Scholar 

  • Farooq M, Aziz T, Basra SMA, Cheema MA, Rehman H (2008a) Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J Agron Crop Sci 194:161–168

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Rehman H, Hussain M (2008b) Seed priming with polyamines improves the germination and early seedling growth in fine rice. J New Seeds 9:145–155

    Article  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195:237–246

    Article  CAS  Google Scholar 

  • Farooq M, Aziz T, Rehman H, Rehman A, Cheema SA, Aziz T (2011) Evaluating surface drying and re-drying for wheat seed priming with polyamines: effects on emergence, early seedling growth and starch metabolism. Acta Physiol Plant 33:1707–1713

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Siddique KHM (2012) Micronutrient application through seed treatments – a review. J Soil Sci Plant Nutr 12(1):125–142

    Article  Google Scholar 

  • Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA (2013) Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci 199:12–22

    Article  CAS  Google Scholar 

  • Farouk S (2011) Ascorbic acid and α-tocopherol minimize salt-induced wheat leaf senescence. J Stress Physiol Biochem 7(3):58–79

    Google Scholar 

  • Fazlali R, Asli DE, Moradi P (2013) The effect of seed priming by ascorbic acid on bioactive compounds of naked seed pumpkin (Cucurbita pepo var styriaca) under salinity stress. Int J Farm Allied Sci 2(17):587–590

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Gherroucha H, Samperi R, Stampachiacchiere S, Lagana A (2013) Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. J Proteomics 91:486–499

    Article  CAS  PubMed  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Laganà A (2014) Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics 108:238–257

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR, Lin GY (1997) Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience 32:296–300

    Article  Google Scholar 

  • Foti R, Aburenia K, Tigerea A, Gotosab J, Gerec J (2008) The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ 72:1127–1130

    Article  Google Scholar 

  • Frett JJ, Pill WG, Morneau DC (1991) A comparison of priming agents for tomato and asparagus seeds. HortScience 26:1158–1159

    Article  Google Scholar 

  • Furutani SC, Zandstra BH, Price HC (1986) The effects of osmotic solute composition and duration and temperature of priming on onion seed germination. Seed Sci Technol 14:545–551

    Google Scholar 

  • Gadelha CG, Miranda RS, Alencar NLM, Costa JH, Prisco JT, Gomes-Filho E (2017) Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol 212:69–79

    Article  CAS  PubMed  Google Scholar 

  • Gao YP, Young L, Bonham-Smith P, Gusta LV (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol 40:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gao YP, Bonham-Smith PC, Gusta LV (2002) The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol 159:951–958

    Article  CAS  Google Scholar 

  • Genoud T, Métraux J (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4(12):503–507

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Esmaeilpour B (2008) The effect of salt priming on the performance of differentially matured cucumber (Cucumis sativus) seeds. Notulae Bot Hortic Agrobot Cluj-Napoca 36(2):67–70

    CAS  Google Scholar 

  • Ghassemi-Golezani K, Jabbarpour S, Zehtab-Salmasi S, Mohammadi A (2010) Response of winter rapeseed (Brassica napus L.) cultivars to salt priming of seeds. Afr J Agric Res 5:1089–1094

    Google Scholar 

  • Ghebrehiwot HM, Kulkarni MG, Kirkman KP, van Staden J (2008) Smoke-water and a smokeisolated butenolide improve germination and seedling vigor of Eragrostis tef (Zucc.) trotter under high temperature and low osmotic potential. J Agron Crop Sci 194:270–277

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Giri GS, Schillinger WF (2003) Seed priming winter wheat for germination, emergence and yield. Crop Sci 43:2135–2141

    Article  Google Scholar 

  • Goel A, Goel AK, Sheoran IS (2003) Changes in oxidative stress enzymes during artificial aging in cotton (Gossypium hirsutum L.) seeds. J Plant Physiol 160:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JF, Becker AG, Cargnelutti D, Tabaldi LA, Pereira LB, Battisti V, Spanevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19(3):223–232

    Article  Google Scholar 

  • Gong HZ, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52(3):592–596

    Article  CAS  Google Scholar 

  • Gornik K, Lahuta BL (2017) Application of phytohormones during seed hydropriming and heat shock treatment on sunflower (Helianthus annuus L.) chilling resistance and changes in soluble carbohydrates. Acta Physiol Plant 39:118

    Article  CAS  Google Scholar 

  • Goud PB, Kachole MS (2011) Effect of exogenous hydrogen peroxide on peroxidase and polyphenol oxidase activities in Cajanus cajan (L.) Millsp detached leaves. Int J Curr Res 3:61–65

    Google Scholar 

  • Govinden-Soulange J, Levantard M (2008) Comparative studies of seed priming and pelleting on percentage and meantime to germination of seeds of tomato (Lycopersicon esculentum Mill). Afr J Agric Res 3(10):725–731

    Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Hu J, Wangi X, Shao C (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Dadlani M, Arun Kumar MB, Roy M, Naseem M, Choudhary VK, Maiti RK (2008) Seed priming: the aftermath. Int J Agric Environ Biotechnol 1:199–209

    Google Scholar 

  • Gupta A, Zhuo J, Zha J, Reddy S, Olp J, Pai A (2010) Effect of different intravenous iron preparations on lymphocyte intracellular reactive oxygen species generation and subpopulation survival. BMC Nephrol 17:11–16

    Google Scholar 

  • Gurusinghe SH, Bradford KJ (2001) Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. Seed Sci Res 11:121–133

    CAS  Google Scholar 

  • Gurusinghe S, Powell ALT, Bradford KJ (2002) Enhanced expression of BiP is associated with treatments that extend storage longevity of primed tomato seeds. J Am Soc Hortic Sci 127:528–534

    Article  CAS  Google Scholar 

  • Hacisalihoglu G, Kantanka S, Miller N, Gustin JL, Settles AM (2018) Modulation of early maize seedling performance via priming under sub-optimal temperatures. PLoS One 13(11):e0206861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The alleviation effect of silicon on seed germination and seedling growth of tomato under salinity stress. Veget Crops Res Bull 76:119–126

    Article  CAS  Google Scholar 

  • Haıgh AM, Barlow EWR, Mılthrope F, Sınclaır PJ (1986) Field emergence of tomato (Lycopersicon esculentum), carrot (Daucus carota) and onion (Allium cepa) seeds primed in an aerated salt solution. J Am Soc Hortic Sci 111:660–665

    Google Scholar 

  • Halmer P (2004) Methods to improve seed performance in the field. In: Benech-Arnold RL, Sánchez RA (eds) Seed physiology: applications to agriculture. Food Product Press, New York, pp 125–166

    Google Scholar 

  • Hameed A, Sheikh MA, Jamil A, Maqsood S, Basra A (2013) Seed priming with sodium silicate enhances seed germination and seedling growth in wheat (Triticum aestivum L.) under water deficit stress induced by polyethylene glycol. Pak J Life Soc Sci 11(1):19–24

    Google Scholar 

  • Hameed A, Sheikh MA, Hameed A, Farooq T, Basra SMA, Jamil A (2014) Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. Philipp Agric Sci 97:294–299

    Google Scholar 

  • Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Anwar Hossain M, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassen A, Elouaer MA, Hannachi C (2017) Seed priming to improve seedling growth of pepper cultivars exposed to salt concentrations. Int J Veg Sci 23(6):489–507

    Article  Google Scholar 

  • Hassini I, Baenas N, Moreno DA, Carvajal M, Boughanmi N, Martinez Ballesta MDC (2017) Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. J Sci Food Agric 97:2291–2299

    Article  CAS  PubMed  Google Scholar 

  • Hay FR, Probert RJ (1995) The effect of different drying conditions and maturity on desiccation tolerance and seed longevity in Digitalis purpurea L. Ann Bot 76:739–647

    Article  Google Scholar 

  • He YL, Liu YL, Chen Q, Bian AH (2002) Thermotolerance related to antioxidation induced by salicylic acid and heat hardening in tall fescue seedlings. J Plant Physiol Mol Biol 28(2):89–95

    CAS  Google Scholar 

  • Hela M, Nawel N, Imen T, Hanen Z, Imen BS, Raouia BM, Olfa B, Rym K, Mouhiba BNA, Abdelali H, Lachaâl M, Ouerghi Z (2011) Salt stress induced changes in germination, lipid peroxidation and antioxidant activities in lettuce (Lactuca sativa L.) seedlings. Afr J Biotechnol 10(65):14498–14506

    Article  Google Scholar 

  • Heydecker W, Coolbear T (1977) Seed treatments for improved performance survey and attempted prognosis. Seed Sci Technol 5:353–425

    CAS  Google Scholar 

  • Hill H, Bradford KJ, Cunningham J, Taylor AG (2008) Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Hortic 782:135–141

    Article  Google Scholar 

  • Horii A, McCue P, Shetty K (2007) Seed vigour studies in corn, soybean and tomato in response to fish protein hydrolysates and consequences on phenolic-linked responses. Bioresour Technol 98:2170–2177

    Article  CAS  PubMed  Google Scholar 

  • Hsu CC, Chen CL, Chen JJ, Sung JM (2003) Accelerated aging enhanced lipid peroxidation in bitter gourd seeds and effects of priming and hot water soaking treatments. Sci Hortic 98:201–212

    Article  CAS  Google Scholar 

  • Huang Z, Boubriak I, Osborne DJ, Dong M, Gutterman Y (2008) Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. Ann Bot 101:277–283

    Article  CAS  PubMed  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany 90:137–149

    Article  Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S, Huang J, Cui K, Nie L (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:1–12

    Article  CAS  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016a) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439

    PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016b) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116

    PubMed  PubMed Central  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2013) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–85

    Article  CAS  Google Scholar 

  • Jahromi F, Aroca R, Porcel R, Ruiz-Lozano JM (2008) Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microb Ecol 55:45–53

    Article  PubMed  Google Scholar 

  • Jain N, Van Staden J (2007) The potential of the smoke-derived compound, 3-methyl-2H-furo[2,3-c]pyran-2-one, as a priming agent for tomato seeds. Seed Sci Res 17:175–181

    Article  CAS  Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Metraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139(1):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Riadh K, Gopi R, Manivannan P, Ines J, Al-Juburi HJ, Chang-Xing Z, Hong-Bo S, Panneerselvam R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31(3):427–436

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 6:726–734

    Google Scholar 

  • Jeong Y, Kim JC, Lie J-C, Jeong YO, Cho JL (2000) Effect of priming duration and temperature on germinability of carrot, lettuce, onion and Welsh onion seeds. Korean J Hortic Sci Technol 18(3):327–333

    Google Scholar 

  • Ji CY, Jin R, Xu Z, Kim HS, Lee C-J, Kang L, Kim SE, Lee HU, Lee JS, Kang CH, Chi YH, Lee SY, Xie Y, Li H, Ma D, Kwak SS (2017) Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweet potato. BMC Plant Biol 17(1):139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang X, Li H, Song X (2016) Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pak J Bot 48(4):1345–1352

    CAS  Google Scholar 

  • Jisha KC, Puthur JT (2014) Halopriming of seeds imparts tolerance to NaCl and PEG induced stress in Vigna radiata (L.) Wilczek varieties. Physiol Mol Biol Plants 20(3):303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jisha KC, Puthur JT (2015) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253(2):277–289

    Article  PubMed  CAS  Google Scholar 

  • Jisha KC, Puthur JT (2016) Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci 23(5):242–254

    Article  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396

    Article  Google Scholar 

  • Joshi N, Jain A, Arya K (2013) Alleviation of salt stress in Cucumis sativus L. through seed priming with calcium chloride. Indian J Appl Res 3(11):22–25

    Article  Google Scholar 

  • Jyotsna V, Srivastava AK (1998) Physiological basis of salt stress resistance in pigeon pea (Cajanus cajan L.) II pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiol Biochem 25:89–94

    Google Scholar 

  • Kaewnaree P, Vichitphan S, Klanrit P, Siri B, Vichitphan K (2011) Effect of accelerated aging process on seed quality and biochemical changes in sweet pepper (Capsicum annuum Linn.) seeds. Biotechnology 2:175–182

    Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedlings leaves and roots are differently affected by salicylic acid. Physiol Plant 115:571–576

    Article  CAS  PubMed  Google Scholar 

  • Kanto U, Jutamanee K, Osotsapar Y, Chai-arree W, Jattupornpong S (2015) Promotive effect of priming with 5-aminolevulinic acid on seed germination capacity, seedling growth and antioxidant enzyme activity in rice subjected to accelerated ageing treatment. Plant Prod Sci 18:443–454

    Article  CAS  Google Scholar 

  • Karadag B, Yucel NC (2017) Salicylic acid and fish flour pre-treatments affect wheat phenolic and flavonoid compounds, lipid peroxidation levels under salt stress. Cereal Res Commun 45:192–201

    Article  CAS  Google Scholar 

  • Kasote DM, Lee JHJ, Jayaprakasha GK, Patil BS (2019) Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain Chem Eng 7(5):5142–5151

    Article  CAS  Google Scholar 

  • Kathiresan K, Kalyani V, Gnanarethium JL (1984) Effect of seed treatments on field emergence, early growth and some physiological processes of sunflower (Helianthus annuus L.). Field Crops Res 9:255–259

    Article  Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 15(3):159–163

    Google Scholar 

  • Kaymak HC, Goveng I, Yarali F, Donmez MF (2008) The effects of biopriming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk J Agric 33:173–179

    Google Scholar 

  • Kazemi K, Eskandari H (2012) Does priming improve seed performance under salt and drought stress? J Basic Appl Sci Res 2(4):3503–3507

    Google Scholar 

  • Kępczyńska E, Piękna-Grochala J, Kępczyński J (2003) Effects of matriconditioning on onion seed germination, seedling emergence and associated physical and metabolic events. J Plant Growth Regul 41:269

    Article  Google Scholar 

  • Kester ST, Geneve RL, Houtz RL (1997) Priming and accelerated ageing effect L-isoaspartyl methyltransferase activity in tomato (Lycopersicon esculentum L.) seed. J Exp Bot 48:943–949

    Article  CAS  Google Scholar 

  • Khajeh-Hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigor during germination of soyabean seeds. Seed Sci Technol 31:715–725

    Article  Google Scholar 

  • Khan AA (1992) Preplant physiological seed conditioning. In: Janick J (ed) Horticultural reviews, vol 13. Wiley, Oxford, pp 131–181

    Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30:91–89

    Article  CAS  Google Scholar 

  • Khan AA, Tao AL, Knypl JS, Borkowska B, Powell LE (1978) Osmotic conditioning of seeds: physiological and biochemical changes. Acta Hortic 83:267–278

    Article  CAS  Google Scholar 

  • Khan HA, Ayub CM, Pervez MA, Bilal RM, Shahid MA, Ziaf K (2009a) Effect of seed priming with NaCl on salinity tolerance of hot pepper (Capsicum annuum L.) at seedling stage. Soil Environ 28:81–87

    CAS  Google Scholar 

  • Khan HA, Pervez MA, Ayub CM, Ziaf K, Bilal RM, Shahid MA, Akhtar MA (2009b) Hormonal priming alleviates salt stress in hot pepper (Capsicum annuum L.). Soil Environ 28:130–135

    CAS  Google Scholar 

  • Khan HA, Ziaf K, Amjad M, Iqbal Q (2012) Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean J Agric Res 72(3):429–433

    Article  Google Scholar 

  • Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 181:309–315

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz A, Sirikci R (2011) Improving salinity tolerance of germinating seeds by exogenous application of glycinebetaine in pepper. Seed Sci Technol 39:377–388

    Article  Google Scholar 

  • Korkmaz A, Tiryaki I, Nas MN, Ozbay N (2004) Inclusion of plant growth regulators into priming solution improves low-temperature germination and emergence of watermelon seeds. Can J Plant Sci 84:1161–1165

    Article  CAS  Google Scholar 

  • Korkmaz A, Korkmaz Y, Demirkiran AZ (2010) Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot 67:495–501

    Article  CAS  Google Scholar 

  • Kranner I, Beckett RP, Minibayeva FV, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19(10):3206

    Article  PubMed Central  CAS  Google Scholar 

  • Kubala S, Wojtyla Ł, Garnczarska M (2013) Seed priming improves salt stress tolerance during germination by modulation of antioxidative capacity. Biotechnologia 94:223

    Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Lutts S, Quinet M (2015a) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015b) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Lada R, Stiles A, Surette MA, Caldwell C, Nowak J, Sturz AV, Blake TJ (2004) Stand establishment technologies for processing carrots. Acta Hortic (631):105–116

    Google Scholar 

  • Lara TS, Lira JMS, Rodrigues AC, Rakocevic M, Alvarenga AA (2014) Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination. J Agric Sci 6(2):72–80

    Google Scholar 

  • Lee SS, Kim JH (2000) Total sugars, α-amylase activity, and germination after priming of normal and aged rice seeds. Korean J Crop Sci 45:108–111

    Google Scholar 

  • Lee SS, Kim JH, Hong SB, Yuu SH, Park EH (1998) Priming effect of rice seeds on seedling establishment under adverse soil conditions. Korean J Crop Sci 43:194–198

    Google Scholar 

  • Li F, Wu X, Tsang E, Cutler AJ (2005) Transcriptional profling of imbibed Brassica napus seed. Genomics 86:718–730

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lu GY, Zhang XK, Zou CS, Cheng Y, Zheng PY (2010) Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed (Brassica napus L.). Seed Sci Technol 38:432–440

    Article  CAS  Google Scholar 

  • Li Z, Peng Y, Zhang XQ, Pan MH, Ma X, Huang LK et al (2014) Exogenous spermidine improves water stress tolerance of white clover (Trifolium repens L.) involved in antioxidant defence, gene expression and proline metabolism. Plant Omics 7:517–526

    CAS  Google Scholar 

  • Lin JM, Sung JM (2001) Pre-sowing treatments for improving emergence of bitter gourd seedlings under optimal and sub-optimal temperatures. Seed Sci Technol 29:39–50

    Google Scholar 

  • Lira JMS, Lara TS, Rodrigues AC, Dousseau S, Magalhães MM, Alvarenga AA (2015) Cross-tolerance mechanism induction in melon seeds by priming prior drying. Ciênc Agrotecnol 39(2):131–137

    Article  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, Lechowska K, Quinet M, Garnczarska M (2016) Seed priming: new comprehensive approaches for an old empirical technique. In: Araujo S, Balestrazzi A (eds) New challenges in seed biology – basic and translational research driving seed technology, IntechOpen, pp 1–47

    Google Scholar 

  • Machado Neto NB, Saturnino SM, Bomfim DC, Custodio CC (2004) Water stress induced by mannitol and sodium chloride in soybean cultivars. Braz Arch Biol Technol 47(4):521–529

    Article  CAS  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiti R, Pramanik K (2013) Vegetable seed priming: a low cost, simple and powerful techniques for farmers’ livelihood. Int J Bioresour Stress Manag 4(4):475–481

    Google Scholar 

  • Maksymiec W, Wojcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    Article  CAS  PubMed  Google Scholar 

  • Manaa A, Mimouni H, Wasti S, Gharbi E, Aschi-Smiti S, Faurobert M, Ahmed HB (2013) Comparative proteomic analysis of tomato (Solanum lycopersicum) leaves under salinity stress. Plant Omics J 6:268–277

    CAS  Google Scholar 

  • Manonmani V, Begum MAJ, Jayanthi M (2014) Halo priming of seeds. Res J Seed Sci 7:1–13

    Article  Google Scholar 

  • Masondo NA, Kulkarni MG, Finnie JF, Van Staden J (2018) Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress. Ecotoxicol Environ Saf 147:43–48

    Article  CAS  PubMed  Google Scholar 

  • Matias JR, Ribeiro RC, Aragão CA, Araújo GGL, Dantas BF (2015) Physiological changes in osmo and hydroprimed cucumber seeds germinated in biosaline water. J Seed Sci 37(1):07–15

    Article  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Memon NN, Gandahi MB, Pahoja VM, Sharif N (2013) Response of seed priming with boron on germination and seedling sprouts of broccoli. Int J Agri Sci Res 3(2):183–194

    Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Mittal R, Dubey RS (1995) Influence of sodium chloride salinity on polyphenol oxidase, indole 3-acetic acid oxidase and catalase activities in rice seedlings differing in salt tolerance. Trop Sci 35:141–149

    Google Scholar 

  • Moghanibashi M, Karimmojeni H, Nikneshan P (2013) Seed treatment to overcome drought and salt stress during germination of sunflwer (Helianthus annuus L.). J Agrobiol 30:89–96

    Google Scholar 

  • Mouradi M, Bouizgaren A, Farissi M, Makoudi B, Kabbadj A, Very AA, Sentenac H, Qaddoury A, Ghoulam C (2016) Osmopriming improvesseeds germination, growth, antioxidant responses and membrane stabilityduring early stage of Moroccan alfalfa populations under water deficit. Chilean J Agric Res 76(3):265–272

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murillo-Amador B, López-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hernández A (2002) Comparative effects of NACl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J Agron Crop Sci 188:235–247

    Article  CAS  Google Scholar 

  • Nakaune M, Hanada A, Yin YG, Matsukura C, Yamaguchi S (2012) Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiol Biotechnol 52:28–37

    Article  CAS  Google Scholar 

  • Namdari A, Baghbani A (2017) Consequences of seed priming with salicylic acid and hydro priming on Smooth Vetch seedling growth under water deficiency. J Agric Sci 9(12):259

    Google Scholar 

  • Nascimento WM (2003) Muskmelon seed germination and seedling development in response to seed priming. Sci Agric 60(1):71–75

    Article  Google Scholar 

  • Nascimento WM, West SH (2000) Drying during muskmelon (Cucumis melo L.) seed priming and its effects on seed germination and deterioration. Seed Sci Tecnhol 28(1):211–215

    Google Scholar 

  • Nascimento WM, Souza DE, Aragão FA (2004) Muskmelon seed priming in relation to seed vigor. Sci Agric 61(1):114–117

    Article  Google Scholar 

  • Nasri N, Kaddour R, Mahmoudi H, Baatour O, Bouraoui N, Lachaâl M (2011) The effect of osmopriming on germination, seedling growth and phosphatase activities of lettuce under saline condition. Afr J Biotechnol 10(65):14366–14372

    Article  CAS  Google Scholar 

  • Nawaz A, Amjad M, Jahangir MM, Khan SM, Cui H, Hu J (2012) Induction of salt tolerance in tomato (Lycopersicon esculentum Mill.) seeds through sand priming. Aust J Crop Sci 6(7):1199–1203

    CAS  Google Scholar 

  • Nawaz J, Hussain M, Jabbar A, Nadeem GA, Sajid M, Subtain MU, Shabbir I (2013) Seed priming a technique. Int J Agric Crop Sci 6(20):1373–1381

    Google Scholar 

  • Neamatollahi E, Bannayan M, Ghanbari A, Haydari M, Ahmadian A (2009) Does hydro and osmo-priming improve fennel (Foeniculum vulgare) seeds germination and seedlings growth? Notulae Bot Hortic Agrobotanici ClujNapoca 37(2):190–194

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiol 128:13–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson H, Govers A (1986) Salt priming of muskmelon seeds for low temperature germination. Sci Hortic 28:85–91

    Article  Google Scholar 

  • Nerson H (2007) Seed production and germinability of cucurbit crops. Seed Sci Biotechnol 1(1):1–10

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Omami EN (2005) Salt tolerance of amaranth as affected by seed priming, MSc thesis. University of Pretoria, South Africa

    Google Scholar 

  • Ozbay N, Susluoglu Z (2016) Assessment of growth regulator prohexadione calcium as priming agent for germination enhancement of pepper at low temperature. J Anim Plant Sci 26(6):1652–1658

    CAS  Google Scholar 

  • Ozbingol N, Corbineau F, Côme D (1998) Responses of tomato seeds to osmoconditioning as related to temperature and oxygen. Seed Sci Res 8(3):377–384

    Article  Google Scholar 

  • Pal A, Ali MA, Pal AK (2017) Effect of seed priming on reserve mobilization, water uptake and antioxidative enzyme activities in germinating seeds of groundnut under salinity stress. Int J Agric Sci 9(36):4542–4545

    CAS  Google Scholar 

  • Panda SK, Khan MH (2009) Growth, oxidative damage and antioxidant responses in greengram (Vigna radiata L.) under short-term salinity stress and its recovery. J Agron Crop Sci 195:442–454

    Article  CAS  Google Scholar 

  • Pandey GK (2017) Mechanism of hormone signaling under stress, vols 1 and 2. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Pandita VK, Anand A, Nagarajan S (2007) Enhancement of seed germination in hot pepper following presowing treatments. Seed Sci Technol 35:282–290

    Article  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Parera CA, Cantliffe DJ (1992) Enhanced emergence and seedling vigor in shrunken-2 sweet corn via seed disinfection and solid matrix priming. J Am Soc Hortic Sci 117:400–403

    Article  Google Scholar 

  • Parera CA, Cantliffe DJ (1994) Pre-sowing seed priming. Hortic Rev 16:109–141

    Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect of plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks and pathways of cross-tolerance to stress the central role of ‘redox’ and abscisic-acid-mediated controls. Plant Physiol 129:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patade VY, Sujata B, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28

    Article  CAS  Google Scholar 

  • Patade VY, Maya K, Zakwan A (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4(3):125–136

    Article  Google Scholar 

  • Patade VY, Khatri D, Manoj K, Kumari M, Ahmed Z (2012) Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Mol Biol Rep 39:10603–10613

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Roychoudhury A (2016) Seed priming with spermine ameliorates salinity stress in the germinated seedlings of two rice cultivars differing in their level of salt tolerance. Trop Plant Res 3(3):616–633

    Article  Google Scholar 

  • Paul S, Roychoudhury A (2017) Effect of seed priming with spermine/spermidine on transcriptional regulation of stress-responsive genes in salt-stressed seedlings of an aromatic rice cultivar. Plant Gene 11:133–142

    Article  CAS  Google Scholar 

  • Pereira MD, Dias DCFS, Dias LAS, Araújo EF (2009) Primed carrot seeds performance under water and temperature stress. Sci Agric 66(2):174–179

    Article  Google Scholar 

  • Pill WG (1995) Low water potential and presowing germination treatments to improve seed quality. In: Basra S (ed) Seed quality basic mechanisms and agricultural implications. Food Products Press, London, pp 319–360

    Google Scholar 

  • Pill WG, Finch-Savage WE (1988) Effects of combining priming and plant growth regulator treatments on the synchronization of carrot seed germination. Ann Appl Biol 113:383–389

    Article  CAS  Google Scholar 

  • Pill WG, Frett JJ, Morneau DC (1991) Germination and seedling emergence of primed tomato and asparagus seeds under adverse conditions. Hortic Sci 26:1160–1162

    Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of Jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp seedlings under copper stress. Am J Plant Sci 4:817–823

    Article  CAS  Google Scholar 

  • Pouramir-Dashtmian F, Khajeh-Hosseini M, Esfahani M (2014) Improving rice seedling physiological and biochemical processes under low temperature by seed priming with salicylic acid. Int J Plant Anim Environ Sci 4(2):565

    CAS  Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331:796–805

    Article  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Sigua C, Ho J, Gage DA (2000) Osmoprotectant β-alanine betaine synthesis in the Plumbaginaceae: S-adenosyl-l-methionine dependent N- methylation of β-alanine to its betaine is via N-methyl and N,N-dimethyl β-alanines. Physiol Plant 109:225–231

    Article  CAS  Google Scholar 

  • Ratikanta KM (2011) Seed priming: an efficient farmers’ technology to improve seedling vigour, seedling establishment and crop productivity. Int J Bioresour Stress Manag 2(3):297

    Google Scholar 

  • Razaji A, Farzanian M, Sayfzadeh S (2014) The effects of seed priming by ascorbic acid on some morphological and biochemical aspects of rapeseed (Brassica napus L.) under drought stress condition. Int J Biosci 4(1):432–442

    Google Scholar 

  • Rehman H, Afzal I, Farooq M, Aziz T, Ahmad SM (2012) Improving temperature stress resistance in spring maize by seed priming. In: Proceedings of 3rd international conference ‘Frontiers in agriculture’. Dankook International Cooperation on Agriculture, Dankook University, Cheonansi, Republic of Korea

    Google Scholar 

  • Rosental L, Nonogaki H, Fait A (2014) Activation and regulation of primary metabolism during seed germination. Seed Sci Res 24:1–15

    Article  CAS  Google Scholar 

  • Rowse HR (1996) Drum priming: a non-osmotic method of priming seeds. Seed Sci Technol 24(2):281–294

    Google Scholar 

  • Sadeghi S, Rahnavard A, Ashrafi ZY (2009) Study of respond seeds wheat (Triticum aestivum L.) to osmotic priming, temperatures and local seed masses. Bot Res Int 2(2):69–73

    Google Scholar 

  • Sadeghi H, Khazaei F, Yari L, Sheidaei S (2011) Effect of seed osmopriming on seed germination behaviour and vigor of soybean (Glycine max L.). J Agric Biol Sci 6:39–43

    Google Scholar 

  • Saeedipour S (2013) Effect of phytohormone seed priming on germination and seedling growth of cowpea (Vigna sinensis L.) under different duration of treatment. Int J Biosci 3(12):187–192

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Sakhabutdinova R, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol Special Issue:314–319

    Google Scholar 

  • Salama KHA, Mansour MMF (2015) Choline priming-induced plasma membrane lipid alterations contributed to improved wheat salt tolerance. Acta Physiol Plant 37:1–7

    Article  CAS  Google Scholar 

  • Salama KHA, Mansour MMF, Hassan NS (2011) Choline priming improves salt tolerance in wheat (Triticum aestivum L.). Aust J Basic Appl Sci 5:126–132

    CAS  Google Scholar 

  • Salama KHA, Ahmed HFS, El-Araby MMA (2015) Interaction of exogenous abscisic acid and salinity on the lipid root plasma membrane of Phaseolus vulgaris L. Egypt J Exp Biol (Bot) 11:189–196

    Google Scholar 

  • Saranya N, Renugadevi J, Raja K, Rajashree V, Hemalatha G (2017) Seed priming studies for vigour enhancement in onion CO onion. J Pharmacogn Phytochem 6(3):77–82

    CAS  Google Scholar 

  • Schwember AR, Bradford KJ (2005) Drying rates following priming affect temperature sensitivity of germination and longevity of lettuce seeds. Hortic Sci 40:778–781

    Google Scholar 

  • Schwember AR, Bradford KJ (2010) A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures. Plant Mol Biol 73:105–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sedghi M, Nemati A, Esmaielpour B (2010) Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emirates J Food Agric 22(2):130–139

    Article  Google Scholar 

  • Sedghi M, Amanpour-Balaneji B, Bakhshi J (2014) Physiological enhancement of medicinal pumpkin seeds (Cucurbita pepo var styriaca) with different priming methods. Iran J Plant Physiol 5(1):1209–1215

    Google Scholar 

  • Sen SK, Mandal P (2016) Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. J Cent Eur Agric 17(3):749–762

    Article  Google Scholar 

  • Senaratna T, Touchel D, Bumm E, Dixon K (2000) Acetyl salicylic acid induces multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Shafi M, Bakht J, Hassan MJ, Raziuddin M, Zhang GP (2009) Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bull Environ Contam Toxicol 82:772–776

    Article  CAS  PubMed  Google Scholar 

  • Shah AR, Ara N, Shafi G (2011) Seed priming with phosphorus increased germination and yield of okra. Afr J Agric Res 6(16):3859–3876

    Google Scholar 

  • Shahverdi MA, Omidi H, Tabatabaei SJ (2017) Effect of nutri-priming on germination indices and physiological characteristics of stevia seedling under salinity stress. J Seed Sci 39(4):353–362

    Article  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf B Biointerfaces 45(1):7–13

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. J Plant Cell Rep 26:2027–2038

    Article  CAS  Google Scholar 

  • Sharma SN, Maheshwari A (2015) Expression patterns of DNA repair genes associated with priming small and large chickpea (Cicer arietinum) seeds. Seed Sci Technol 43:250–261

    Article  Google Scholar 

  • Sharma AD, Rathore SVS, Srinivasan K, Tyagi RK (2014) Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Sci Hortic 165(22):75–81

    Article  CAS  Google Scholar 

  • Sharma KK, Singh US, Sharma P, Kumar A, Sharma L (2015) Seed treatments for sustainable agriculture – a review. J Appl Nat Sci 7:521–539

    Article  Google Scholar 

  • Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2018) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 2018:1–21

    Google Scholar 

  • Singh PK, Pandita VK, Tomar BS, Seth R (2014) Germination and field emergence in osmotic and solid matrix priming in onion (Allium cepa(. Indian J Agric Sci 84(12):1561–1564

    Google Scholar 

  • Siri B, Vichitphan K, Kaewnaree P, Vichitphan S, Klanrit P (2013) Improvement of quality, membrane integrity and antioxidant systems in sweet pepper (Capsicum annuum Linn) seeds affected by osmopriming. Aust J Crop Sci 7(13):2068–2073

    Google Scholar 

  • Sivritepe N, Sivritepe HO, Eris A (2003) The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci Hortic 97:229–237

    Article  CAS  Google Scholar 

  • Sivritepe HO, Sivritepe N, Eris A, Turhan E (2005) The effects of NaCl pretreatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581

    Article  CAS  Google Scholar 

  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 53–86

    Chapter  Google Scholar 

  • Smith PT, Comb BG (1991) Physiological and enzymatic activity of pepper seeds (Capsicum annuum) during priming. Physiol Plant 82:433–439

    Article  CAS  Google Scholar 

  • Soeda Y, Konings MCJM, Vorst O, van Houwelingen AMML, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, van der Geest AHM (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohail SA, Chaurasia AK, Bara BM (2018) Effect of different seed priming methods on germination and vigour of Kabuli Chickpea (Cicer kabulium L.) seeds. Int J Curr Microbiol App Sci 7(8):1396–1404

    Article  CAS  Google Scholar 

  • Soos V, Juhasz A, Light ME, Van Staden J, Balazs E (2009) Smoke-water- induced changes of expression pattern in Grand Rapids lettuce achenes. Seed Sci Res 19:37–49

    Article  CAS  Google Scholar 

  • Sowmya KJ, Rame G, Bhanuprakash K, Yogeesha HS, Puttaraju TB, Channakeshava BC (2013) Enhancement of seed quality through Chemopriming in cucumber (Cucumis sativus L.). Mysore J Agric Sci 47(1):22–30

    Google Scholar 

  • Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010) Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32:1135–1144

    Article  Google Scholar 

  • Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81:349–354

    Article  CAS  PubMed  Google Scholar 

  • Sun YY, Sun YJ, Wang MT, Li XY, Guo X, Hu R, Jun MA (2010) Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agron Sin 36(11):1931–1940

    Article  CAS  Google Scholar 

  • Sung Y, Cantliffe DJR, Nagata T, Nascimento WM (2008) Structural changes in lettuce seed during germination at high temperature altered by genotype, seed maturation temperature, and seed priming. J Am Soc Hortic Sci 133:167–311

    Article  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45–51

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, TariJanda LT, Pestenacz A, Paldi E (2000) Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. BioI Plant 43:637–640

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Fotopoulos V, Molassiotis A (2012) Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Front Plant Sci 3:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavili A, Zare S, Moosavi SA, Enayati A (2011) Effects of seed priming on germination characteristics of Bromus species under salt and drought conditions Amer-Eurasian. J Agric Environ Sci 10:163–168

    Google Scholar 

  • Taylor AG, Beresniewicz MM, Goffnet MC (1997) Semipermeable layer in seeds. In: Ellis RH, Black M, Murdoch AJ, Hong TD (eds) Basic and applied aspects of seeds biology. Kluwer Academic Publishing, Dordrecht, pp 429–436

    Chapter  Google Scholar 

  • Taylor AG, Allen PS, Bennet MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8:245–256

    Article  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Thomas UC, Varughese K, Thomas A, Sadanandan S (2000) Seed priming for increased vigour, viability and productivity of upland rice. Leisa India 4:14

    Google Scholar 

  • Tzortzakis NG (2009) Effect of pre-sowing treatment on seed germination and seedling vigour in endive and chicory. Hortic Sci 36(3):117–125

    Article  CAS  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The sub cellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A et al (2012) Understanding the molecular pathways associated with seed vigor. Plant Physiol Biochem 60:196–206

    Article  CAS  PubMed  Google Scholar 

  • Vranova E, Inze D, Van Brensegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53(372):1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577

    Article  CAS  PubMed  Google Scholar 

  • Wang W, He A, Peng S, Huang J, Cui K, Nie L (2018) The effect of storage condition and duration on the deterioration of primed rice seeds. Front Plant Sci 9:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterworth WM, Masnavi G, Bhardwaj RM, Jiang Q, Bray CM, West CE (2010) A plant DNA ligase is an important determinant of seed longevity. Plant J 63:848–886

    Article  CAS  PubMed  Google Scholar 

  • Watson MB, Malmberg RL (1998) Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J 13:231–239

    Article  CAS  PubMed  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J 5:60–67

    CAS  Google Scholar 

  • Welbaum GE, Bradford KJ (1989) Water relations of seed development and germination in muskmelon (Cucumis melo L.) IV characteristics of the perisperm during seed development. Plant Physiol 92:1038–1045

    Article  Google Scholar 

  • Welbaum GE, Bradford KJ (1990) Water relations of seed development and germination in muskmelon (Cucumis melo L.) IV characteristics of the perisperm during seed development. Plant Physiol 92:1038–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welbaum GE, Shen Z, Oluoch MO, Jett LM (1998) The evolution and effects of priming vegetable seeds. Seed Technol 20:209–235

    Google Scholar 

  • Wheeler TR, Ellis RH (1994) Effects of seed quality and temperature on pre-emergence root growth of seedlings on onion (Allium cepa L.). Seed Sci Technol 22:141–148

    Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Molecular processes induced in primed seeds increasing the potential to stabilize crop yields under drought conditions. J Plant Physiol 203:116–126

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wei Y, Zhu Y, Lian L, Xie H, Cai Q et al (2015) Antisense suppression of Lox3 gene expression in rice endosperm enhances seed longevity. Plant Biotechnol J 13:526–539

    Article  CAS  PubMed  Google Scholar 

  • Yacoubi R, Job C, Belghazi M, Chaibi W, Job D (2013) Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Sci Res 23:99–110

    Article  CAS  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yao Y, Zhang X (2010) Comparison of growth and physiological responses to severe drought between two altitudinal Hippoph aerhamnoides populations. Silva Fennica 44:603–614

    Google Scholar 

  • Yeoung YR, Wilson DO, Murray GA (1995) Oxygen regulates imbibition of muskmelon seeds. Seed Sci Technol 23:843–850

    Google Scholar 

  • Yi H, Liu X, Yi M, Chen G (2014) Dual role of hydrogen peroxide in Arabidopsis guard cells in response to sulfur dioxide. Adv Toxicol 407368

    Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Article  Google Scholar 

  • Younesi O, Moradi A (2015) Effect of priming of seeds of Medicago sativa ‘bami’ with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress. J Hortic Res 22:167–174

    Article  CAS  Google Scholar 

  • Yucel NC, Heybet EH (2016) Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chim Slov 63:738–746

    Article  CAS  Google Scholar 

  • Yurekli F, Porgali ZB, Turkan I (2004) Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin concentrations in two bean species subjected to salt stress. Acta Bio Cracov Ser Bot 46:201–212

    Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2018) Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress. Mol Biol Res Commun 7(2):83–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zavariyan A, Rad M, Asghari M (2015) Effect of seed priming by potassium nitrate on germination and biochemical indices in Silybum marianum L. under salinity stress. Int J Life Sci 9:23–29

    Article  Google Scholar 

  • Zhang S, Gao J, Song J, Zhang SG, Gao JY, Song JZ (1999) Effects of salicylic acid and aspirin on wheat seed germination under salt stress. Plant Physiol 35:29–32

    CAS  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58(8):811

    Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Yu J, Johnston CR, Wang Y, Zhu K, Lu F, Zhang Z, Zou J (2015) Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS One 10:e0140620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178

    Article  CAS  Google Scholar 

  • Zhong YP, Wang B, Yan JH, Cheng LJ, Yao LM, Xiao L, Wu TL (2014) DL-β-amino butyric acid induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). PLoS One 9(1):1–11

    Article  Google Scholar 

  • Zhu S, Zhang X, Luo T, Liu Q, Tang Z, Jing Z (2011) Effects of NaCl stress on seed germination, early seedling growth and physiological characteristics of cauliflower (Brassica oleracea L. var botrytis L.). Afr J Biotechnol 10(78):17940–17947

    CAS  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Omerville S (2008) The xenobiotic betaamino butyric acid enhances Arabidopsis thermo-tolerance. Plant J 53(1):144–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ibrahim, E.AA. (2019). Fundamental Processes Involved in Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_4

Download citation

Publish with us

Policies and ethics