Skip to main content

Minimization of Springback in Seamless Tube Cold Drawing Process Using Advanced Optimization Algorithms

  • Conference paper
  • First Online:
Advanced Engineering Optimization Through Intelligent Techniques

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 949))

  • 840 Accesses

Abstract

Seamless tube manufacturing is mostly done using cold drawing process. Apart from scores on tube, chattering, eccentricity, springback is also one of the severe problems induced in seamless tube drawing process. It is because of the elastic energy stored in the tubes during forming process. This paper uses Taguchi method of experimentation for optimizing process parameters viz. die semi angle, land width and drawing speed to minimize springback. The regression model of Taguchi method using Minitab 17 is employed in Matlab as an input for further advanced optimization algorithms viz. particle swarm optimization (PSO), simulated annealing (SA) and genetic algorithm (GA). The results of these algorithms show that the process parameter values of 15° die semi angle, 10 mm land width and 8 m/min drawing speed give least springback with almost 10.5% improvement over Taguchi results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karanjule, D., Bhamare, S., Rao, T.: Effect of Young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamlesss tubes. Mater. Sci. Eng. 346, 1–13 (2018). https://doi.org/10.1088/1757-899X/346/1/012043/meta

    Article  Google Scholar 

  2. Tosun, N., Pihtili, H.: The effect of cutting parameters on wire crater sizes in wire EDM. Int. J. Adv. Manuf. Technol. 21(10), 857–865 (2003). https://doi.org/10.1007/s00170-002-1404-1

    Article  Google Scholar 

  3. Das, R., Mandal, N., Doloi, B., Mondal, B.: Optimization of flank wear using Zirconia Toughened Alumina (ZTA) cutting tool: Taguchi method and regression analysis. Measurement 44(10), 2149–2155 (2011). https://doi.org/10.1016/j.measurement.2011.07.022

    Article  Google Scholar 

  4. Choudhury, A., Dingal, S., Pradhan, T., Sundar, J., Roy, S.: The application of Taguchi’s method in the experimental investigation of the laser sintering process. Int. J. Adv. Manuf. Technol. 38(9–10), 904–914 (2008). https://doi.org/10.1007/s00170-007-1154-1

    Article  Google Scholar 

  5. Ficici, F., Koksal, S., Kayikci, R., Savas, O.: Experimental optimization of dry sliding wear behavior of in situ AlB2/Al composite based on Taguchi’s method. Mater. Des. 42, 124–130 (2012). https://doi.org/10.1016/j.matdes.2012.05.048

    Article  Google Scholar 

  6. Tarng, Y., Hsiao, Y., Huang, W.: Optimization of plasma arc welding parameters by using the Taguchi method with the grey relational analysis. Mater. Manuf. Process. 23(1), 51–58 (2007). https://doi.org/10.1080/10426910701524527

    Article  Google Scholar 

  7. Kumar, A., Kumar, V., Datta, S., Mahapatra, S.: Parametric appraisal and optimization in machining of CFRP composites by using TLBO. J. Intell. Manuf. 28(8), 1769–1785 (2017). https://doi.org/10.1007/s10845-015-1050-8

    Article  Google Scholar 

  8. Patel, V., Rao, R.: Design optimization of shell and tube heat exchanger using particle swarm optimization technique. Appl. Therm. Eng. 30(11–12), 1417–1425 (2010). https://doi.org/10.1016/j.applthermaleng.2010.03.001

    Article  Google Scholar 

  9. Savsani, V., Rao, R., Vakharia, D.: Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mech. Mach. Theory 45(3), 531–541 (2010). https://doi.org/10.1016/j.mechmachtheory.2009.10.010

    Article  MATH  Google Scholar 

  10. Rao, R., Kalyankar, V.: Parameter optimization of modern machining processes using TLBO algorithm. Eng. Appl. Artif. Intell. 26(1), 524–531 (2013). https://doi.org/10.1016/j.engappai.2012.06.007

    Article  Google Scholar 

  11. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithm. Evol. Comput. 2(3), 221–248 (2007). https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  12. Haddock, J., Mittenthal, J.: Simulation optimization using simulated annealing. Comput. Ind. Eng. 22(4), 387–395 (1992). https://doi.org/10.1016/0360-8352(9290014-B)

    Article  Google Scholar 

  13. Brooks, S., Morgan, B.: Optimization using simulated annealing. J. Royal Stat. Soc. 44(2), 241–257 (1995). Doi: https://doi.org/Triyoga_Widiastomo/publication/305441015

    Google Scholar 

Download references

Acknowledgments

The authors are very much thankful to Yashashree Tubes Private Limited, F-48, M.I.D. C., Ahmednagar, M.S., India for financial assistance and permitting experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Karanjule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karanjule, D.B., Bhamare, S.S., Rao, T.H. (2020). Minimization of Springback in Seamless Tube Cold Drawing Process Using Advanced Optimization Algorithms. In: Venkata Rao, R., Taler, J. (eds) Advanced Engineering Optimization Through Intelligent Techniques. Advances in Intelligent Systems and Computing, vol 949. Springer, Singapore. https://doi.org/10.1007/978-981-13-8196-6_58

Download citation

Publish with us

Policies and ethics