Skip to main content

Use of Lichens in Biological Monitoring of Air Quality

  • Chapter
  • First Online:
Environmental Concerns and Sustainable Development

Abstract

This chapter focuses on biomonitoring of air quality using lichens in the industrial, urban and suburban areas in cities and in the vicinity of pollution sources, mainly based on the studies carried out in the last decades. Also lichen diversity studies in natural areas and in polluted sites, analytical methods and statistical analyses used in these studies are discussed. In addition, the text covers complementary information on the subject, for instance, environmental and anthropogenic factors which are effective on pollution sensitivity of lichen communities, negative effects of pollution on structure of lichen, metal uptake mechanisms and comparative analysis of data relating to changes in lichen vitality parameters. In particular, it is emphasized how to utilize the lichens featuring bioindicators and biomonitors to determine air quality in terms of quantities and impacts of airborne pollutants such as sulphur dioxide, heavy metals, particulate matters and radionuclides. With respect to lichen biomonitoring, the appropriate biological methods, their advantages and disadvantages, past to present studies on this subject in the world, the assessment of the relevant literature and the reliability of the obtained results are reviewed from a broad perspective. It is envisaged that this compilation will serve as a guiding source for biologic monitoring of air quality and creation of management and conservation strategies with lichens today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamo P, Giordano S, Naimo D, Bargagli R (2008) Geochemical properties of airborne particulate matter (PM10) collected by automatic device and biomonitors in a Mediterranean urban environment. Atmos Environ 42:346–357

    Article  CAS  Google Scholar 

  • Ahmadjian V (1982) Algal/fungal symbiosis, progress in physiological research, vol 1. Elsevier Biomedical Press, Amsterdam, pp 79–233

    Google Scholar 

  • Akçin G, Saltabaş O, Yeşilçimen F (2001) Biosorption of heavy metal from aqueous solution by dried lichens. Int J Chem 11(3):141–146

    Google Scholar 

  • Aptroot A, Van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with trentepohlia phycobionts. Environ Pollut 146:293–298

    Article  CAS  Google Scholar 

  • Augusto S, Ma’Guas M, Branquinho C (2009) Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: potential for intercalibration. Ecotoxicology 18:1036–1042

    Article  CAS  Google Scholar 

  • Augusto S, Máguas C, Branquinho C (2013) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – a review. Environ Pollut 180:330–338

    Article  CAS  Google Scholar 

  • Bačkor M, Fahselt D (2004) Using EDX-microanalysis and X-ray mapping to demonstrate metal uptake by lichens. Biologia, Bratislava 59(1):39–45

    Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53(2):214–222

    Article  CAS  Google Scholar 

  • Bačkor M, Kováčik J, Piovár J, Pisani T, Loppi S (2010) Physiological aspects of cadmium and nickel toxicity in the lichens Peltigera rufescens and Cladina arbuscula Subsp. mitis. Water Air Soil Pollut 207:253–262

    Article  CAS  Google Scholar 

  • Balarama Krishna MV, Karunasagar D, Arunachalam J (2004) Sorption characteristics of inorganic, methyl and elemental mercury on lichens and mosses: implication in biogeochemical cycling of mercury. J Atmos Chem 49:317–328

    Article  CAS  Google Scholar 

  • Bargagli R, Monaci F, Borghini F, Bravi F, Agnorelli C (2002) Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former Mining District in Italy. Environ Pollut 116:279–287

    Article  CAS  Google Scholar 

  • Başkaran M, Kelley JJ, Naidu AS, Holleman DF (1991) Environmental radiocesium in subarctic and arctic alaska following chernobyl. Arctic 4(4):346–350

    Google Scholar 

  • Behxhet M, Hajdari A, Lokös L, Krasniqi Z (2013) Lichen diversity value and heavy metal concentrations in mosses around the lignite power plants ‘Kosova’. Appl Ecol Environ Res 11:43–52

    Article  Google Scholar 

  • Biazrov G (1994) The radionuclides in lichen thalli in chernobyl and East ural areas after nuclear accidents. Phyton 34(1):85–94

    CAS  Google Scholar 

  • Blasco M, Domeno C, Lopez P, Nerin C (2011) Behaviour of different lichen species as biomonitors of air pollution by PAHs in natural ecosystems. J Environ Monit 13:2588–2596

    Article  CAS  Google Scholar 

  • Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK (2010) Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of ghana using epiphytic lichens. Nucl Inst Methods Phys Res B 268:1492–1501

    Article  CAS  Google Scholar 

  • Boonpeng C, Polyiam W, Sriviboon C, Sangiamdee D, Watthana S, Nimis PL, Boonpragob K (2017) Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-8893-9

    Article  CAS  Google Scholar 

  • Branquinho C, Brown DH (1994) A method for studying the cellular location of lead in lichens. Lichenologist 26:83–89

    Article  Google Scholar 

  • Branquinho C, Catarino F, Brown DH, Pereira MJ, Soares A (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution. Sci Total Environ 232:67–77

    Article  CAS  Google Scholar 

  • Branquinho C, Matos P, Pinho P (2015) Lichens as ecological indicators to track atmospheric changes: future challenges. In: Indicators and surrogates of biodiversity and environmental change. CSIRO Publishingpp, Clayton, pp 77–90

    Google Scholar 

  • Brown DH, Beckett RP (1984) Uptake and effect of cations on lichen metabolism. Lichenologist 16:173–188

    Article  CAS  Google Scholar 

  • Bustamante EN, Monge-Nájera J, Méndez-Estrada VG (2013) Use of a geographic information system and lichens to map air pollution in a tropical city: San José, Costa Rica. Rev Biol Trop 61(2):557–563

    Google Scholar 

  • Caggiano R, Trippetta S, Sabia S (2015) Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the agri valley (southern Italy). Nat Hazards Earth Syst Sci 15:325–333. https://doi.org/10.5194/nhess-15-325-2015

    Article  Google Scholar 

  • Cen S (2015) Biological monitoring of air pollutants and its influence on human beings. Open Biomed Eng J 9:219–223

    Article  CAS  Google Scholar 

  • Cislaghi C, Nimis PL (1997) Lichens, air pollution and lung cancer. Nature 387:463–464

    Article  CAS  Google Scholar 

  • Çobanoğlu G (2015) The use of lichens for biomonitoring of atmospheric pollution. J Eng Nat Sci 33(4):591–613

    Google Scholar 

  • Çobanoğlu G, Kurnaz K (2017) Biomonitoring of air quality with epiphytic lichen Physcia adscendens (Fr.) H.Olivier in Istanbul, Turkey. Fresenius Environ Bull (FEB) 26(12):7296–7308

    Google Scholar 

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ Pollut 114(3):471–492

    Article  CAS  Google Scholar 

  • Conti ME, Finoia MG, Bocca B, Mele G, Alimonti A, Pino A (2012) Atmospheric background trace elements deposition in Tierra del Fuego region (Patagonia, Argentina), using transplanted Usnea barbata lichens. Environ Monit Assess 184:527–538

    Article  CAS  Google Scholar 

  • Deduke C, Timsina B, Piercey-Normore MD (2012) Effect of environmental change on secondary metabolite production in lichen-forming fungi. In: Young S (ed) International perspectives on global environmental change. InTech, Rijeka, pp 197–230

    Google Scholar 

  • Doğrul Demiray A, Yolcubal İ, Akyol NH, Çobanoğlu G (2012) Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecol Indic 18:632–643

    Article  CAS  Google Scholar 

  • Evju M, Bruteig IE (2013) Lichen community change over a 15-year time period: effects of climate and pollution. Lichenologist 45(1):35–50

    Article  Google Scholar 

  • Farkas E, Pátkai T (1989) Lichens as indicators of air pollution in the Budapest agglomeration II. Energy dispersive X-ray microanalysis of Hypogymnia physodes (L.) Nyl. Thalli. Acta Bot Hungar 35:55–71

    Google Scholar 

  • Feige GB, Niemann L, Jahnke S (1990) Lichens and mosses silent Chronists of the chernobyl accident. Contributions to lichenology. In honour of a. Hessen. Bibliotheca Lichenologica 38:63–77

    Google Scholar 

  • Freitas MC, Catarino FM, Branquinho C, Maguas C (1993) Preparation of a lichen reference material. J Radioanal Nucl Chem 169(1):47–55

    Article  CAS  Google Scholar 

  • Freitas M, Costa N, Rodrigues M, Marques J, Da Silva MV (2011) Lichens as bio indicators of atmospheric pollution in Porto, Portugal. J Biodivers Ecol Sci 1(1):29–39

    Google Scholar 

  • Gaare E (1987) The chernobyl accident: can lichens be used to characterize a radiocesium contaminated range? Rangifer 7(2):46–50

    Article  Google Scholar 

  • Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20(4):309–371

    Article  CAS  Google Scholar 

  • Gauslaa Y (1985) The ecology of Lobarion pulmonariae and Parmelion caperatae in Quercus dominated forests in South-West Norway. Lichenologist 17:117–140

    Article  Google Scholar 

  • Gilbert OL (1965) Lichens as indicators of air pollution in the Tyne valley. In: Goodman GT et al (eds) Ecology and the industrial society. Blackwell Scientific Publications, Oxford, pp 35–47

    Google Scholar 

  • Gilbert OL (1970) Further studies on the effect of sulphur dioxide on lichens and bryophytes. New Phytol 69(3):605–634

    Article  Google Scholar 

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Damh M, De Temmerman L, Fernández JA, Frolova M, Frontasyeva M, González-Miqueo L, Grodzinska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnússon SH, Mankovská B, Pesch R, Rühling Å, Santamaria JM, Schröder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156

    Article  CAS  Google Scholar 

  • Hauck M, Hesse V, Jung R, Zoller T, Runge M (2001) Long-distance transported Sulphur as a limiting factor for the abundance of Lecanora conizaeoides in montane spruce forests. Lichenologist 33(3):267–269

    Article  Google Scholar 

  • Hauck M, Otto PI, Dittrich S, Jacob M, Bade C, Dörfler I, Leuschner C (2011) Small increase in substratum pH causes the dieback of one of Europe’s most common lichens, Lecanora conizaeoides. Ann Bot 108:359–366

    Article  CAS  Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:145–148

    Article  CAS  Google Scholar 

  • Henderson A (2000) Literature on air pollution and lichens XLIX. Lichenologist 32(1):89–102

    Article  Google Scholar 

  • Herzig R, Liebendörfer L, Urech M, Ammann K, Cuecheva M, Landolt W (1989) Passive biomonitoring with lichens as a part of an integrated biological measuring system for monitoring air pollution in Switzerland. Int J Environ Anal Chem 35:43–57

    Article  CAS  Google Scholar 

  • Hoodaji M, Ataabadi M, Najafi P (2012) In Dr. Mukesh Khare (ed) Biomonitoring of airborne heavy metal contamination, air pollution – monitoring, modelling, health and control, ISBN: 978-953-51-0381-3

    Google Scholar 

  • Huckaby LS (1993) In: Huckaby LS (ed) Lichens as bioindicators of air quality, USDA Forest Service General Technical, RM-224. Rocky Mountain Forest and Range Experiment Station, Forest Service, Fort Collins

    Google Scholar 

  • Hutchinson J, Maynard D, Geiser L (1996) Air quality and lichens- a literature review emphasizing the Pacific northwest, USA. USDA Forest Service. http://gis.nacse.org/lichenair/index.php?page=literature

  • İçel Y, Çobanoğlu G (2009) Biomonitoring of atmospheric heavy metal pollution using lichens and mosses in the city of Istanbul, Turkey. Fresenius Environ Bull 18(11):2066–2071

    Google Scholar 

  • Iurian AR, Hofmann W, Lettner H, Türk R, Cosma C (2011) Long term study of Cs-137 concentrations in lichens and mosses. Rom J Phys 56(7–8):983–992

    CAS  Google Scholar 

  • Kasama T, Murakami T, Ohnuki T (2003) Accumulation mechanisms of uranium, copper and iron by lichen Trapelia involute. Biomineralization (BİO2001): formation, diversity, evolution and application, proceedings of the 8th international symposium on biomineralization. Tokai University Press, Kanagawa, pp 298–301

    Google Scholar 

  • Kermit T, Gauslaa Y (2001) The vertical gradient of bark pH of twigs and macrolichens in a Picea abies canopy not affected by acid rain. Lichenologist 33(4):353–359

    Article  Google Scholar 

  • Klimek B, Tarasek A, Hajduk J (2015) Trace element concentrations in lichens collected in the Beskidy mountains, the outer western Carpathians. Bull Environ Contam Toxicol 94:532–536

    Article  CAS  Google Scholar 

  • Kulikova NN, Suturin AN, Saibatalova EV, Boiko SM, Vodneva EN, Timoshkin OA, Lishtva AV (2011) Geologic and biogeochemical role of Crustose aquatic lichens in Lake Baikal. Geochem Int 4(1):66–75

    Article  CAS  Google Scholar 

  • LeBlanc FSC, De Sloover J (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can J Bot 48:1485–1496

    Article  Google Scholar 

  • Loppi S, Riccobono F, Zhang ZH, Savic S, Ivanov D, Pirintsos SA (2003) Lichens as biomonitors of uranium in the Balkan area. Environ Pollut 125:277–280

    Article  CAS  Google Scholar 

  • Lucadamo L, Corapi A, Loppi S, De Rosa R, Barca D, Vespasiano G, Gallo L (2016) Spatial variation in the accumulation of elements in Thalli of the lichen Pseudevernia furfuracea (L.) Zopf transplanted around a biomass power Plant in Italy. Arch Environ Contam Toxicol 70(3):506–521

    Article  CAS  Google Scholar 

  • Malaspina P, Tixi S, Brunialti G, Frati L, Paoli L, Giordani P, Modenesi P, Loppi S (2014) Biomonitoring urban air pollution using transplanted lichens: element concentrations across seasons. Environ Sci Pollut Res 21:12836–12842

    Article  CAS  Google Scholar 

  • Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals. In: Subramanian KS, Iyengar GV (eds) Environmental biomonitoring – exposure assessment and specimen banking, ACS Symposium Series 654. American Chemical Society, Washington, DC, pp 18–29

    Google Scholar 

  • Nash TH (2008) Lichen biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nash TH, Gries C (1991) Lichens as indicators of air pollution. In: Hutzinger O (ed) The handbook of environmental chemistry, Part C, vol 4. Springer, Berlin, pp 1–29

    Google Scholar 

  • Nieboer E, Fletcher GG, Thomassen Y (1999) Relevance of reactivity determinants to exposure assessment and biological monitoring of the elements. J Environ Monit 1:1–14

    Article  CAS  Google Scholar 

  • Nimis PL, Castello M, Perotti M (1990) Lichens as biomonitors of sulphur dioxide pollution in La Spezia (northern Italy). Lichenologist 22(3):333–344

    Article  Google Scholar 

  • Nimis PL, Scheidegger C, Wolseley PA (2002) Monitoring with lichens—monitoring lichens. Kluwer Academic Publishers, Dordrecht, pp 273–279

    Book  Google Scholar 

  • Oksanen J, Laara E, Zobel K (1991) Statistical analysis of bioindicator value of epiphytic lichens. Lichenologist 23(2):167–180

    Article  Google Scholar 

  • Osyczka P, Boron P, Lenart-Boron A, Rola K (2018) Modifications in the structure of the lichen Cladonia thallus in the aftermath of habitat contamination and implications for its heavy-metal accumulation capacity. Environ Sci Pollut Res 25:1950–1961

    Article  CAS  Google Scholar 

  • Paoli L, Munzi S, Guttová A, Senko D, Sardella G, Loppi S (2015) Lichens as suitable indicators of the biological effects of atmospheric pollutants around a municipal solid waste incinerator (S Italy). Ecol Indic 52:362–370

    Article  CAS  Google Scholar 

  • Petrova SP, Yurukova LD, Velcheva IG (2015) Lichen-bags as a biomonitoring technique in an urban area. Ecol Environ Res 13(4):915–923

    Article  Google Scholar 

  • Piovar J, Stavrou E, Kadukova J, Kimakova T, Bačkor M (2011) Influence of long-term exposure to copper on the lichen photobiont Trebouxia erici and the free-living algae Scenedesmus quadricauda. Plant Growth Regul 63:81–88

    Article  CAS  Google Scholar 

  • Pipiška M, Koèiová M, Horník M, Augustin J (2005) Lesny J influence of time, temperature, pH and inhibitors on bioaccumulation of radiocaesium – 137Cs by lichen Hypogymnia physodes. Nukleonika 50(1):29–37

    Google Scholar 

  • Protano C, Owczarek M, Fantozzi L, Guidotti M, Vitali M (2015) Transplanted lichen Pseudovernia furfuracea as a multi-tracer monitoring tool near a solid waste incinerator in Italy: assessment of airborne incinerator-related pollutants. Bull Environ Contam Toxicol 95:644–653

    Article  CAS  Google Scholar 

  • Ramzaev V, Mishine A, Golikov V, Brown JE (2007) Per strand surface ground contamination and soil vertical distribution of 137Cs around two underground nuclear explosion sites in the Asian Arctic, Russia. J Environ Radioact 92:123–143

    Article  CAS  Google Scholar 

  • Rani M, Shukla V, Upreti DK, Rajwar GS (2011) Periodical monitoring with lichen, Phaeophyscia hispidula (Ach.) Moberg in Dehradun city, Uttarakhand, India. Environmentalist 31:376–381. https://doi.org/10.1007/s10669-011-9349-2

    Article  Google Scholar 

  • Ratier A, Dron J, Revenko G, Austruy A, Dauphin CH, Chaspoul F, Wafo E (2018) Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns. Environ Sci Pollut Res 25:8364–8376. https://doi.org/10.1007/s11356-017-1173-x

    Article  CAS  Google Scholar 

  • Rinino S, Bombardi V, Giordani P, Tretiach M, Crisafulli P, Monaci F, Modenesi P (2005) New histochemical techniques for the localization of metal İons in the lichen Thallus. Lichenologist 37(5):463–466

    Article  Google Scholar 

  • Rola K, Osyczka P, Kafe A (2016) Different heavy metal accumulation strategies of epilithic lichens colonising artificial post-smelting wastes. Arch Environ Contam Toxicol 70:418–428

    Article  CAS  Google Scholar 

  • Rossbach M, Jayasekera R, Kniewald G, Thang NH (1999) Large scale air monitoring: lichen vs. air particulate matter analysis. Sci Total Environ 232:59–66

    Article  CAS  Google Scholar 

  • Seaward MRD (1989, March–April) Lichens as monitors of recent changes in air pollution. Plants Today, pp 64–69

    Google Scholar 

  • Seaward MRD (1995) Use and abuse of heavy metal bioassays in environmental monitoring. Sci Total Environ 176:129–134

    Article  CAS  Google Scholar 

  • Sernander R (1926) Stockholm’s Nature. Almquist and Wiksells, Uppsala

    Google Scholar 

  • Sevgi O, Çobanoğlu G, Sevgi E (2016) Effect of Forest habitat on the distribution of lichen species in Şerif Yüksel research Forest (Bolu, Turkey). Pak J Bot 48(2):581–588

    CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazie NK (2016) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Showman RE (1975) Lichens as indicators air quality around a coal-fired power generating plant. Bryologist 78(1):1–6

    Article  Google Scholar 

  • Showman RE (1988) Mapping air quality with lichens, the north American experience. Lichens, bryophytes and air quality. Bibliotheca Lichenologica 30:91–107

    Google Scholar 

  • Shukla V, Upreti DK (2009) Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen, Phaeophyscia hispidula of DehraDun City, Garhwal Himalayas. Environ Monit Assess 149:1–7. https://doi.org/10.1007/s10661-008-0225-6

    Article  CAS  Google Scholar 

  • Shukla V, Patel DK, Upreti DK, Yunus M (2012) Lichens to distinguish urban from industrial PAHs. Environ Chem Lett 10:159–164

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK, Bajpai R (2014) Lichens to biomonitor the environment. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1503-5

    Book  Google Scholar 

  • Siddig AAH, Ellison AM, Ochs A, Villar Leeman C, Lau MK (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223–230

    Article  Google Scholar 

  • Singh SM, Sharma J, Gawas-Sakhalkar P, Upadhyay AK, Naik S, Pedneker SM, Ravindra R (2012) Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess 185:1367–1376. https://doi.org/10.1007/s10661-012-2638-5

    Article  CAS  Google Scholar 

  • Sujetoviene G, Sliumpaite I (2013) Response of Evernia prunastri transplanted to an urban area in Central Lithuania. Atmos Pollut Res 4:222–228. https://doi.org/10.5094/APR.2013.023

    Article  CAS  Google Scholar 

  • Svoboda D (2007) Evaluation of the European method for mapping lichen diversity (LDV) as an indicator of environmental stress in the Czech Republic. Biologia, Bratislava, Sec Bot 62(4):424–431. https://doi.org/10.2478/s11756-007-0085-5

    Article  Google Scholar 

  • Taylor HW, Svoboda J, Henry GHR, Wein RW (1988) Post-chernobyl 134Cs and 137Cs levels at some localities in northern Canada. Arctic 41(4):293–296

    Article  Google Scholar 

  • Toma N, Ghetea L, Nitu R, Corol DI (2001) Progress and perspectives in the biotechnology of lichens. Rom Biotechnol Lett 6(1):1–15

    Google Scholar 

  • Topçuoğlu S, Zeybek U, Küçükcezzar R, Güngör N, Bayülgen N, Cevher E, Güvener B, John V, Güven KC (1992) The influence of chernobyl on the radiocesium contamination in lichens in Turkey. Toxicol Environ Chem 35:161–165

    Article  Google Scholar 

  • Tsekova K, Christova D, Ianis M (2006) Heavy metal biosorption sites in Penicillium cyclopium. J Appl Sci Environ Manag 10(3):117–121

    Google Scholar 

  • Türk R, Wirth V (1975) The pH dependence of SO2 damage to lichens. Oecologia 19:285–291

    Article  Google Scholar 

  • Uğur A, Özden B, Saç MM, Yener G (2003) Biomonitoring of Po and Pb using lichens and mosses around a Uraniferous coal-fired power plant in Western Turkey. Atmos Environ 37:2237–2245

    Article  CAS  Google Scholar 

  • Upreti DK, Shukla V, Divakar PK, Bajpai R (2015) Recent advances in lichenology modern methods and approaches in biomonitoring and bioprospection, vol 1. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2181-4

    Book  Google Scholar 

  • Vallero D (2008) Fundamentals of air pollution, 4th edn. Academic, London

    Google Scholar 

  • Van der Gucht K, Hoffmann M (1990) The impact of air pollution on the occurrence of corticolous and saxicolous lichens in the industrial area north of Ghent (Belgium). Bryol Lichenol Belgium 12:111–126

    Google Scholar 

  • Van Herk CM (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33(5):419–441

    Article  Google Scholar 

  • Van Herk CM, Aptroot A, Van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34(2):141–154

    Article  Google Scholar 

  • Van Herk CM, Mathijssen-Spiekman EAM, de Zwart D (2003) Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35(4):347–359

    Article  Google Scholar 

  • Vannini A, Paoli L, Ceccarelli S, Sorbo S, Basile A, Carginale V, Nali C, Lorenzini G, Pica M, Loppi S (2017) Physiological and ultrastructural effects of acute ozone fumigation in the lichen Xanthoria parietina: the role of parietin and hydration state. Environ Sci Pollut Res 25:8104–8112. https://doi.org/10.1007/s11356-017-9545-9

    Article  CAS  Google Scholar 

  • Walser T, Schwabe F, Thöni L, De Temmerman L, Hellweg S (2013) Nanosilver emissions to the atmosphere: a new challenge? ICHMET 2012, E3S web of conferences 1, 14003. https://doi.org/10.1051/e3sconf/20130114003

    Article  CAS  Google Scholar 

  • White RG, Holleman F, Allaye-Chan C (1986) Radiocesium concentrations in the lichen-reindeer/caribou food chain: before and after chernobyl. Rangifer 1:24–29

    Article  Google Scholar 

  • Williamson BJ, Purvis OW, Mikhailova IN, Spiro B, Udachin V (2008) The lichen transplant methodology in the source apportionment of metal deposition around a copper smelter in the former mining town of Karabash, Russia. Environ Monit Assess 141:227–236

    Article  CAS  Google Scholar 

  • Will-Wolf S, Jovan S, Amacher MC (2017) Lichen elements as pollution indicators: evaluation of methods for large monitoring programmes. Lichenologist 49(4):415–424

    Article  Google Scholar 

  • Winner WE, Atkinson CJ, Nash TH (1988) Comparisons of SO2 absorption capacities of mosses, lichens, and vascular plants in diverse habitats. Lichens, bryophytes and air quality. Bibliotheca Lichenologica 30:217–230

    Google Scholar 

  • Wirth V (1988) Phytosociological approaches to air pollution monitoring with lichens. In: Nash TH III (ed) Lichens, Bryophytes and air quality. Bibliotheca Lichenologica 30:91–107, J. Cramer, Berlin/Stuttgart

    Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace element air pollution: Principles, possibilities and perspectives. Environ Pollut 120(1):11–21

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kinoshita Y, Thor GR, Hasumi M, Kinoshita K, Koyoma K, Takahashi K, Yoshimura I (2002) Isofuranonaphthoquinone derivatives from cultures of the lichen Arthonia cinnabarina (DC.) Wallr. Phytochemistry 60:741–745

    Article  CAS  Google Scholar 

  • Yazıcı K, Ertugrul B, Damla N, Apaydın G (2008) Radioactive contamination in lichens collected from Trabzon and Rize in the eastern Black Sea region, Turkey, and a comparison with that of 1995. Bull Environ Contam Toxicol 80:475–479

    Article  CAS  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16(8):441–453

    Article  Google Scholar 

  • Zedda L (2002) The epiphytic lichens on Quercus in Sardinia (Italy) and their value as ecological indicators. Englera 24:1–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülşah Çobanoğlu Özyiğitoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Çobanoğlu Özyiğitoğlu, G. (2020). Use of Lichens in Biological Monitoring of Air Quality. In: Shukla, V., Kumar, N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-5889-0_3

Download citation

Publish with us

Policies and ethics