Skip to main content
Log in

Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lichens and cryoconite (rounded or granular, brownish-black debris occurring in holes on the glacier surface) from Ny-Ålesund were used for understanding the elemental deposition pattern in the area. Lichen samples collected from low-lying coastal region and cryoconite samples from high altitudinal glacier area were processed and analysed for elements such as aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) through inductively coupled plasma mass spectrometry. Results showed that heavy metals, Al and Fe, are present in high concentration in the cryoconite samples. Al was also present in high amounts in seven of the eight lichen samples studied. The general scheme of elements in the decreasing order of their concentrations for most of the cryoconite samples was Al > Fe > Mn > Zn > V > Pb > Cr > Ni > Cu > Co > As > Cs > Cd while that for the lichen samples was Al > Fe > Zn > Mn > Pb > Cu > Cs > Cr > Ni > V > Co > As > Cd. Similarity in trends in the two sample types confirms that the environment indeed contains these elements in that order of concentration which overtime got accumulated in the samples. Overall comparison showed most elements to be present in high concentrations in the cryoconite samples as compared to the lichen samples. Within the lichens, elemental accumulation data suggests that the low-lying site (L-2) from where Cladonia mediterranea sample was collected was the most polluted accumulating a number of elements at high concentrations. The probable reasons for such deposition patterns in the region could be natural (crustal contribution and sea salt spray) and anthropogenic (local and long-distance transmission of dust particles). In the future, this data can form a baseline for monitoring quantum of atmospheric heavy metal deposition in lichens and cryoconite of Svalbard, Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abollino, O., Aceto, M., Buoso, S., Gasparon, M., Green, W. J., Malandrino, M., & Mentasti, E. (2004). Distribution of major, minor and trace elements in lake environments of Antarctica. Antarctic Science, 16, 277–291.

    Article  Google Scholar 

  • Aslan, A., Budak, G., & Karabulut, A. (2004). The amounts Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). Journal of Quantitative Spectroscopy and Radioactive Transfer, 88, 423–431.

    Article  CAS  Google Scholar 

  • Benson, C. (1987). Problems of air quality in local arctic and sub-arctic areas and regional problems of arctic haze. In B. Stonehouse (Ed.), Arctic Air Pollution–Studies in Polar Research (pp. 69–84). Cambridge: Cambridge Books.

    Chapter  Google Scholar 

  • Bergamaschi, L., Rizzio, E., Giaveri, G., Profumo, A., Loppi, S., & Gallorini, M. (2004). Determination of baseline element composition of lichens using samples from high elevations. Chemosphere, 55, 933–993.

    Article  CAS  Google Scholar 

  • Blackmith Institute Project (2006). World's worst polluted places—the top ten. A project of the Black Smith Institute. http://www.blacksmithinstitute.org/top10/10worst2.pdf. Accessed 29 December 2010.

  • Cabrerizo, A., Dachs, J., Barceló, D., & Jones, K. C. (2012). Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses. Environmental Science & Technology, 46, 1396–1405.

    Article  CAS  Google Scholar 

  • Chiarenzelli, J., Aspler, L., Dunn, C., Cousens, B., Ozarko, D., & Powis, K. (2001). Multi-element and rare earth element composition of lichens, mosses, and vascular plants from the Central Barrenlands, Nunavut, Canada. Applied Geochemistry, 16, 245–270.

    Article  CAS  Google Scholar 

  • Digiovanni, F., & Fellin, P. (2006). Transboundary air pollution. In H. I. Inyang & J. L. Daniels (Eds.), Environmental Monitoring. Oxford, UK: Encyclopedia of Life Support Systems (EOLSS) Publishers.

    Google Scholar 

  • Fountain, A. G., Nylen, T. H., Tranter, M., & Bagshaw, E. (2008). Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 113, G01S92. doi:10.1029/2007JG000430.

    Article  Google Scholar 

  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • Hong, S., Lluberas, A., Lee, G., & Park, J. K. (2002). Natural and anthropogenic heavy metal deposition to the snow in King George Island, Antarctic Peninsula. Ocean Polar Research, 24, 279–287.

    Article  CAS  Google Scholar 

  • Lim, H. S., Han, M. J., Seo, D. C., Kim, J. H., Lee, J., Park, H., Hur, J.-S., Cheong, Y. H., Heo, J. S., Yoon, H., & Cho, J.-S. (2009). Heavy metal concentrations in the fruticose lichen Usnea aurantiacoatra from King George Island, South Shetland Islands, West Antarctica. Journal of the Korean Society for Applied Biological Chemistry, 52, 503–508.

    Article  CAS  Google Scholar 

  • Loppi, S., Giordani, P., Brunialti, G., Isocrono, D., & Piervittori, R. (2002). Identifying deviations from naturality of lichen diversity for bioindication purposes. In P. L. Nimis, C. Scheidegger, & P. Wolseley (Eds.), Monitoring with lichens- monitoring lichens (pp. 281–284). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Naeth, M. A., & Wilkinson, S. R. (2008). Lichens as biomonitors of air quality around a Diamond Mine, Northwest Territories, Canada. Journal of Environmental Quality, 37, 1625–1684.

    Article  Google Scholar 

  • Nieboer, E., & Richardson, D. H. S. (1981). Lichens as monitors of atmospheric deposition. In S. J. Eisenreich (Ed.), Atmospheric pollutants in natural waters (pp. 339–388). Ann Arbor MI: Ann Arbor Science Publishers.

    Google Scholar 

  • Nieboer, E., Richardson, D. H. S., & Tomassini, F. D. (1978). Mineral uptake and release by lichens: an overview. The Bryologist, 81, 226–246.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1979). Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature, 279, 409–411.

    Article  CAS  Google Scholar 

  • Olech, M., & Alstrup, V. (1989). Lichens new to Spitsbergen. Graphis Scripta, 2, 146–148.

    Google Scholar 

  • Olech, M., Osyczka, P., & Dutkiewicz, E. M. (2000). Local environmental pollution with heavy metals in the Admiralty Bay region (South Shetland, Antarctica). Polish Polar Studies, 28, 99–103.

    Google Scholar 

  • Osyczka, P., Dutkiewicz, E. M., & Olech, M. (2007). Trace elements concentrations in selected moss and lichen species collected within Antarctic Research Stations. Polish Journal of Ecology, 55, 39–48.

    CAS  Google Scholar 

  • Paoli, L., Corsini, A., Bigagli, V., Vannini, J., Bruscoli, C., & Loppi, S. (2012). Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution, 161, 70–75.

    Article  CAS  Google Scholar 

  • Riget, F., Asmund, G., & Aastrup, P. (2000). The use of lichen (Cetraria nivalis) and moss (Rhacomitrium lanuginosum) as monitors for atmospheric deposition in Greenland. Science of the Total Environment, 245, 137–148.

    Article  CAS  Google Scholar 

  • Scerbo, R., Ristori, T., Possenti, L., Lampugnani, L., Barale, R., & Barghigiani, C. (2002). Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Livorno Province (Tuscany, Italy). Science of the Total Environment, 241, 91–106.

    Article  Google Scholar 

  • Shaw, D. M., Reilly, G. A., Muysson, J. R., Pattenden, G. E., & Campbell, F. E. (1967). An estimate of the chemical composition of the Canadian Precambrian Shield. Canadian Journal of Earth Sciences, 4, 829–854.

    Article  CAS  Google Scholar 

  • Shaw, D. M., Dostal, J., & Keays, R. R. (1976). Additional estimates of continental surface Precambrian shield composition in Canada. Geochimica et Cosmochimica Acta, 40, 73–84.

    Article  CAS  Google Scholar 

  • Shevchenko, V. P., Pokrovsky, O. S., Zamber, N. S., Konov, K. G., & Starodymova, D. P. (2010). Lichens as biomonitor of atmospheric aerosol composition in the Northwest European Russia. Geophysical Research Abstracts, 12, EGU2010–EGU2852.

    Google Scholar 

  • Søndergaard, J., Johansen, P., Asmund, G., & Rigét, F. (2011). Trends of lead and zinc in resident and transplanted Flavocetraria nivalis lichens near a former lead–zinc mine in West Greenland. Science of the Total Environment, 409, 4063–4071.

    Article  Google Scholar 

  • Thomson, J. W. (1984). American Arctic lichens 1. The macrolichens. New York: Columbia University Press.

    Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • Xu, Y., Simpson, A. J., Eyles, N., & Simpson, M. J. (2010). Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains. Organic Geochemistry, 41, 177–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Shailesh Nayak, Secretary, Ministry of Earth Sciences, Government of India for encouragement and research facilities. We are also thankful to The Director, National Research Centre for Grapes, Pune, India for analytical facilities. This is NCAOR publication No. 12/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Mohan Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.M., Sharma, J., Gawas-Sakhalkar, P. et al. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess 185, 1367–1376 (2013). https://doi.org/10.1007/s10661-012-2638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2638-5

Keywords

Navigation