Skip to main content

Plasmids and Their Hosts

  • Chapter
  • First Online:
DNA Traffic in the Environment

Abstract

Plasmids have a key role in the rapid evolution and adaptation of their hosts by conferring new phenotypes upon them. It is therefore important to understand the relationships between plasmids and their host organisms and “who can carry which.” Here, factors that determine and affect the host ranges of plasmids are reviewed, including features of replication, maintenance, conjugative transfer, and the effects on host fitness caused by plasmid carriage. Recent trials to identify the unknown hosts of plasmids found in natural environments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FACS:

Fluorescence activated cell sorter

FP:

Fluorescence protein

GC:

Guanine and cytosine

H-NS:

Histone-like nucleoid-structuring

MDA:

Multiple displacement amplification

MOB:

Mobility

MPF:

Mating pair formation

NAP:

Nucleoid-associated protein

oriT :

Origin of transfer

oriV :

Origin of vegetative replication

PBRT:

PCR-based replicon typing systems

pMLST:

Plasmid multilocus sequence typing

RCR:

Rolling-circle replication

T4CP:

Type IV coupling protein

T4SS:

Type IV secretion system

TA:

Toxin-antitoxin

References

  1. Kado CI. Historical events that spawned the field of plasmid biology. Microbiol Spectr. 2014;2. https://doi.org/10.1128/microbiolspec.PLAS-0019-2013.

  2. Hulter N, Ilhan J, Wein T, Kadibalban AS, Hammerschmidt K, Dagan T. An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol. 2017;38:74–80. https://doi.org/10.1016/j.mib.2017.05.001.

    Article  CAS  PubMed  Google Scholar 

  3. World Health Organization. Handle antibiotics with care: tripartite brochure, 2017. http://www.who.int/antimicrobial-resistance/OIE-FAO-WHO-AMR-LEAFLET-INFOGRAPHIC.pdf?ua=1.

  4. Jain A, Srivastava P. Broad host range plasmids. FEMS Microbiol Lett. 2013;348:87–96. https://doi.org/10.1111/1574-6968.12241.

    Article  CAS  PubMed  Google Scholar 

  5. Konieczny I, Bury K, Wawrzycka A, Wegrzyn K. Iteron plasmids. Microbiol Spectr. 2014; 2(6). https://doi.org/10.1128/microbiolspec.PLAS-0026-2014.

  6. Giraldo R, Fernandez-Tresguerres ME. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid. 2004;52:69–83. https://doi.org/10.1016/j.plasmid.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  7. Rakowski SA, Filutowicz M. Plasmid R6K replication control. Plasmid. 2013;69:231–42. https://doi.org/10.1016/j.plasmid.2013.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cesareni G, Helmer-Citterich M, Castagnoli L. Control of ColE1 plasmid replication by antisense RNA. Trends Genet. 1991;7:230–5.

    Article  CAS  Google Scholar 

  9. Polisky B. ColE1 replication control circuitry: sense from antisense. Cell. 1988;55:929–32.

    Article  CAS  Google Scholar 

  10. Lilly J, Camps M. Mechanisms of theta plasmid replication. Microbiol Spectr. 2015; 3.

    Google Scholar 

  11. Khan SA. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid. 2005;53:126–36. https://doi.org/10.1016/j.plasmid.2004.12.008.

    Article  CAS  PubMed  Google Scholar 

  12. Ruiz-Maso JA, Macho NC, Bordanaba-Ruiseco L, Espinosa M, Coll M, Del Solar G. Plasmid rolling-circle replication. Microbiol Spectr. 2015; 3. PLAS-0035-2014. https://doi.org/10.1128/microbiolspec.PLAS-0035-2014.

  13. Baxter JC, Funnell BE. Plasmid partition mechanisms Microbiol Spectr. 2014; 2. https://doi.org/10.1128/microbiolspec.PLAS-0023-2014.

  14. Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70(5):768–84. https://doi.org/10.1016/j.molcel.2018.01.003.

    Article  CAS  PubMed  Google Scholar 

  15. Novick RP. Plasmid incompatibility. Microbiol Rev. 1987;51:381–95.

    Google Scholar 

  16. Fricke WF, et al. Comparative genomics of the IncA/C multidrug resistance plasmid family. J Bacteriol. 2009;191:4750–7. https://doi.org/10.1128/JB.00189-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Llanes C, Gabant P, Couturier M, Bayer L, Plesiat P. Molecular analysis of the replication elements of the broad-host-range RepA/C replicon. Plasmid. 1996;36:26–35. https://doi.org/10.1006/plas.1996.0028.

    Article  CAS  PubMed  Google Scholar 

  18. Papagiannitsis CC, Tzouvelekis LS, Kotsakis SD, Tzelepi E, Miriagou V. Sequence of pR3521, an IncB plasmid from Escherichia coli encoding ACC-4, SCO-1, and TEM-1 beta-lactamases. Antimicrob Agents Chemother. 2011;55:376–81. https://doi.org/10.1128/AAC.00875-10.

    Article  CAS  PubMed  Google Scholar 

  19. Praszkier J, Wei T, Siemering K, Pittard J. Comparative analysis of the replication regions of IncB, IncK, and IncZ plasmids. J Bacteriol. 1991;173:2393–7.

    Article  CAS  Google Scholar 

  20. Coetzee JN, Bradley DE, Lecatsas G, du Toit L, Hedges RW. Bacteriophage D: an IncD group plasmid-specific phage. J Gen Microbiol. 1985;131:3375–83. https://doi.org/10.1099/00221287-131-12-3375.

    Article  CAS  PubMed  Google Scholar 

  21. Manwaring NP, Skurray RA, Firth N. Nucleotide sequence of the F plasmid leading region. Plasmid. 1999;41:219–25. https://doi.org/10.1006/plas.1999.1390.

    Article  CAS  PubMed  Google Scholar 

  22. Haines AS, Jones K, Cheung M, Thomas CM. The IncP-6 plasmid Rms149 consists of a small mobilizable backbone with multiple large insertions. J Bacteriol. 2005;187:4728–38. https://doi.org/10.1128/JB.187.14.4728-4738.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sherburne CK, et al. The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res. 2000;28:2177–86.

    Article  CAS  Google Scholar 

  24. Sampei G, Furuya N, Tachibana K, Saitou Y, Suzuki T, Mizobuchi K, Komano T. Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid. 2010;64:92–103. https://doi.org/10.1016/j.plasmid.2010.05.005.

    Article  CAS  PubMed  Google Scholar 

  25. Bellanger X, Payot S, Leblond-Bourget N, Guedon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev. 2014;38:720–60. https://doi.org/10.1111/1574-6976.12058.

    Article  CAS  PubMed  Google Scholar 

  26. Carraro N, Poulin D, Burrus V. Replication and active partition of integrative and conjugative elements (ICEs) of the SXT/R391 family: the line between ICEs and conjugative plasmids is getting thinner. PLoS Genet. 2015;11:e1005298. https://doi.org/10.1371/journal.pgen.1005298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guglielmini J, Quintais L, Garcillán-Barcia MP, de la Cruz F, Rocha EP. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 2011;7:e1002222. https://doi.org/10.1371/journal.pgen.1002222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy DB, Pembroke JT. Monitoring of chromosomal insertions of the IncJ elements R391 and R997 in Escherichia coli K-12. FEMS Microbiol Lett. 1999;174:355–61.

    Article  CAS  Google Scholar 

  29. Borrell L, Yang J, Pittard AJ, Praszkier J. Interaction of initiator proteins with the origin of replication of an IncL/M plasmid. Plasmid. 2006;56:88–101. https://doi.org/10.1016/j.plasmid.2006.04.002.

    Article  CAS  PubMed  Google Scholar 

  30. Foster GC, McGhee GC, Jones AL, Sundin GW. Nucleotide sequences, genetic organization, and distribution of pEU30 and pEL60 from Erwinia amylovora. Appl Environ Microbiol. 2004;70:7539–44. https://doi.org/10.1128/AEM.70.12.7539-7544.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimada N, et al. Complete nucleotide sequence of pKOI-34, an IncL/M plasmid carrying blaIMP-34 in Klebsiella oxytoca isolated in Japan. Antimicrob Agents Chemother. 2016;60:3156–62. https://doi.org/10.1128/AAC.02507-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zoueva OP, Iyer VN, Matula TI, Kozlowski M. Analysis of pCU1 replication origins: dependence of oriS on the plasmid-encoded replication initiation protein RepA. Plasmid. 2003;49:152–9. https://doi.org/10.1016/s0147-619x(02)00151-8.

    Article  CAS  PubMed  Google Scholar 

  33. Humphrey B, et al. Fitness of Escherichia coli strains carrying expressed and partially silent IncN and IncP1 plasmids. BMC Microbiol. 2012;12:53. https://doi.org/10.1186/1471-2180-12-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pansegrau W, et al. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol. 1994;239:623–63. https://doi.org/10.1006/jmbi.1994.1404.

    Article  CAS  PubMed  Google Scholar 

  35. Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene. 1989;75:271–88.

    Article  CAS  Google Scholar 

  36. Papagiannitsis CC, Miriagou V, Giakkoupi P, Tzouvelekis LS, Vatopoulos AC. Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST147, encoding the VIM-1 metallo-beta-lactamase. J Antimicrob Chemother. 2013;68:2259–62. https://doi.org/10.1093/jac/dkt196.

    Article  CAS  PubMed  Google Scholar 

  37. Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid. 2004;52:182–202. https://doi.org/10.1016/j.plasmid.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  38. Kamio Y, Tabuchi A, Itoh Y, Katagiri H, Terawaki Y. Complete nucleotide sequence of mini-Rts1 and its copy mutant. J Bacteriol. 1984;158:307–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Murata T, et al. Complete nucleotide sequence of plasmid Rts1: implications for evolution of large plasmid genomes. J Bacteriol. 2002;184:3194–202. https://doi.org/10.1128/jb.184.12.3194-3202.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hedges RW. R factors from Proteus mirabilis and P. vulgaris. J Gen Microbiol. 1975;87:301–11. https://doi.org/10.1099/00221287-87-2-301.

    Article  CAS  PubMed  Google Scholar 

  41. Revilla C, et al. Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob Agents Chemother. 2008;52:1472–80. https://doi.org/10.1128/AAC.00982-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kelley WL, Bastia D. Conformational changes induced by integration host factor at origin gamma of R6K and copy number control. J Biol Chem. 1991;266:15924–37.

    CAS  PubMed  Google Scholar 

  43. Lobocka MB, et al. Genome of bacteriophage P1. J Bacteriol. 2004;186:7032–68. https://doi.org/10.1128/JB.186.21.7032-7068.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiong J, Alexander DC, Ma JH, Deraspe M, Low DE, Jamieson FB, Roy PH. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96. Antimicrob Agents Chemother. 2013;57:3775–82. https://doi.org/10.1128/AAC.00423-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iyobe S, Hasuda K, Fuse A, Mitsuhashi S. Demonstration of R factors from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1974;5:547–52.

    Article  CAS  Google Scholar 

  46. Sagai H, Hasuda K, Iyobe S, Bryan LE, Holloway BW, Mitsuhashi S. Classification of R plasmids by incompatibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1976;10:573–8.

    Article  CAS  Google Scholar 

  47. Maeda K, Nojiri H, Shintani M, Yoshida T, Habe H, Omori T. Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol. 2003;326:21–33. https://doi.org/10.1016/S0022-2836(02)01400-6.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi Y, Shintani M, Li L, Yamane H, Nojiri H. Carbazole-degradative IncP-7 plasmid pCAR1.2 is structurally unstable in Pseudomonas fluorescens Pf0-1, which accumulates catechol, the intermediate of the carbazole degradation pathway. Appl Environ Microbiol. 2009;75:3920–9. https://doi.org/10.1128/aem.02373-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Finger J, Krishnapillai V. Host range, entry exclusion, and incompatibility of Pseudomonas aeruginosa FP plasmids. Plasmid. 1980;3:332–42.

    Article  CAS  Google Scholar 

  50. Greated A, Lambertsen L, Williams PA, Thomas CM. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol. 2002;4:856–71.

    Article  CAS  Google Scholar 

  51. Sota M, et al. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol. 2006;188:4057–67. https://doi.org/10.1128/JB.00185-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cain D, Holloway BW. Prime plasmids derived from the IncP-10 plasmid R91-5 in Pseudomonas putida. FEMS Microbiol Lett. 1984;24:97–101. https://doi.org/10.1111/j.1574-6968.1984.tb01252.x.

    Article  CAS  Google Scholar 

  53. Medeiros AA, Cohenford M, Jacoby GA. Five novel plasmid-determined beta-lactamases. Antimicrob Agents Chemother. 1985;27:715–9.

    Article  CAS  Google Scholar 

  54. Bradley DE. Specification of the conjugative pili and surface mating systems of Pseudomonas plasmids. J Gen Microbiol. 1983;129:2545–56. https://doi.org/10.1099/00221287-129-8-2545.

    Article  CAS  PubMed  Google Scholar 

  55. Bryan LE, Semaka SD, Van den Elzen HM, Kinnear JE, Whitehouse RL. Characteristics of R931 and other Pseudomonas aeruginosa R factors. Antimicrob Agents Chemother. 1973;3:625–37.

    Article  CAS  Google Scholar 

  56. Boronin AM. Diversity of Pseudomonas plasmids: to what extent? FEMS Microbiol Lett. 1992;100:461–7. https://doi.org/10.1016/0378-1097(92)90246-K.

    Article  CAS  PubMed  Google Scholar 

  57. Kwong SM, Lim R, Lebard RJ, Skurray RA, Firth N. Analysis of the pSK1 replicon, a prototype from the staphylococcal multiresistance plasmid family. Microbiology. 2008;154:3084–94. https://doi.org/10.1099/mic.0.2008/017418-0.

    Article  CAS  PubMed  Google Scholar 

  58. Ruby C, Novick RP. Plasmid interactions in Staphylococcus aureus: nonadditivity of compatible plasmid DNA pools. Proc Natl Acad Sci U S A. 1975;72:5031–5.

    Article  CAS  Google Scholar 

  59. Khan SA, Novick RP. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid. 1983;10:251–9. https://doi.org/10.1016/0147-619X(83)90039-2.

    Article  CAS  PubMed  Google Scholar 

  60. Shaw WV, Brenner DG, LeGrice SF, Skinner SE, Hawkins AR. Chloramphenicol acetyltransferase gene of staphylococcal plasmid pC221. Nucleotide sequence analysis and expression studies. FEBS Lett. 1985;179:101–6.

    Article  CAS  Google Scholar 

  61. Projan SJ, Moghazeh S, Novick RP. Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. Nucleic Acids Res. 1988;16:2179–87.

    Article  CAS  Google Scholar 

  62. Boe L, Gros MF, te Riele H, Ehrlich SD, Gruss A. Replication origins of single-stranded-DNA plasmid pUB110. J Bacteriol. 1989;171:3366–72.

    Article  CAS  Google Scholar 

  63. O’Brien FG, Price C, Grubb WB, Gustafson JE. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother. 2002;50:313–21.

    Article  Google Scholar 

  64. Horinouchi S, Weisblum B. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol. 1982a;150:815–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ehret M, Matzura H. Replication control of the Staphylococcus aureus chloramphenicol resistance plasmids pC223 and pUB112 in Bacillus subtilis. Nucleic Acids Res. 1988;16:2045–62.

    Article  CAS  Google Scholar 

  66. Projan SJ, Novick R. Comparative analysis of five related staphylococcal plasmids. Plasmid. 1988;19:203–21. https://doi.org/10.1016/0147-619X(88)90039-X.

    Article  CAS  PubMed  Google Scholar 

  67. Smith MC, Thomas CD. An accessory protein is required for relaxosome formation by small staphylococcal plasmids. J Bacteriol. 2004;186:3363–73. https://doi.org/10.1128/JB.186.11.3363-3373.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Horinouchi S, Weisblum B. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol. 1982b;150:804–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Iordǎnescu S, Surdeanu M. New incompatibility groups for Staphylococcus aureus plasmids. Plasmid. 1980;4:256–60. https://doi.org/10.1016/0147-619X(80)90064-5.

    Article  PubMed  Google Scholar 

  70. McKenzie T, Hoshino T, Tanaka T, Sueoka N. The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid. 1986;15:93–103.

    Article  CAS  Google Scholar 

  71. McKenzie T, Hoshino T, Tanaka T, Sueoka N. Correction. A revision of the nucleotide sequence and functional map of pUB110. Plasmid. 1987;17:83–5.

    Article  CAS  Google Scholar 

  72. Balson DF, Shaw WV. Nucleotide sequence of the rep gene of staphylococcal plasmid pCW7. Plasmid. 1990;24:74–80.

    Article  CAS  Google Scholar 

  73. Udo EE, Grubb WB. A new incompatibility group plasmid in Staphylococcus aureus. FEMS Microbiol Lett. 1991;62:33–6.

    Article  CAS  Google Scholar 

  74. Thompson JK, Collins MA. Completed sequence of plasmid pIP501 and origin of spontaneous deletion derivatives. Plasmid. 2003;50:28–35. https://doi.org/10.1016/s0147-619x(03)00042-8.

    Article  CAS  PubMed  Google Scholar 

  75. Lawley T, Frost LS, Wilkins BM. Bacterial conjugation in gram-negative bacteria. In: Funnell BE, Phillips GJ, editors. Plasmid biology. Washington DC: ASM press; 2004. p. 203–26. https://doi.org/10.1128/9781555817732.ch9.

    Chapter  Google Scholar 

  76. Thomas CM, Haines AS. Plasmids of the genus Pseudomonas. In: Ramos J-L, editor. Pseudomonas: volume 1 genomics, life style and molecular architecture. Boston: Springer US; 2004. p. 197–231. https://doi.org/10.1007/978-1-4419-9086-0_7.

    Chapter  Google Scholar 

  77. Taylor DE, Gibreel A, Tracz DM, Lawley TD. Antibiotic resistance plasmids. In: Funnell BE, Phillips GJ, editors. Plasmid biology. Washington DC: ASM press; 2004. p. 473–92. https://doi.org/10.1128/9781555817732.ch23.

    Chapter  Google Scholar 

  78. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev. 2010;74:434–52. https://doi.org/10.1128/MMBR.00020-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Guglielmini J, Neron B, Abby SS, et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 2014;42:5715–27.

    Article  CAS  Google Scholar 

  80. Jensen LB, Garcia-Migura L, Valenzuela AJ, Løhr M, Hasman H, Aarestrup FM. A classification system for plasmids from enterococci and other gram-positive bacteria. J Microbiol Methods. 2010;80:25–43. https://doi.org/10.1016/j.mimet.2009.10.012.

    Article  CAS  PubMed  Google Scholar 

  81. Lozano C, García-Migura L, Aspiroz C, Zarazaga M, Torres C, Aarestrup FM. Expansion of a plasmid classification system for gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins. Appl Environ Microbiol. 2012;78:5948–55. https://doi.org/10.1128/AEM.00870-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53:2227–38. https://doi.org/10.1128/AAC.01707-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol. 2015a;6:242. https://doi.org/10.3389/fmicb.2015.00242.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Johnson TJ, Lang KS. IncA/C plasmids: an emerging threat to human and animal health? Mob Genet Elem. 2012;2:55–8. https://doi.org/10.4161/mge.19626.

    Article  Google Scholar 

  85. Loftie-Eaton W, Rawlings DE. Diversity, biology and evolution of IncQ-family plasmids. Plasmid. 2012;67:15–34. https://doi.org/10.1016/j.plasmid.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

  86. Haines AS, Cheung M, Thomas CM. Evidence that IncG (IncP-6) and IncU plasmids form a single incompatibility group. Plasmid. 2006;55:210–5. https://doi.org/10.1016/j.plasmid.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

  87. Adams V, Watts TD, Bulach DM, Lyras D, Rood JI. Plasmid partitioning systems of conjugative plasmids from Clostridium perfringens. Plasmid. 2015;80:90–6. https://doi.org/10.1016/j.plasmid.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  88. Watts TD, Johanesen PA, Lyras D, Rood JI, Adams V. Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies. Plasmid. 2017;91:68–75. https://doi.org/10.1016/j.plasmid.2017.03.008.

    Article  CAS  PubMed  Google Scholar 

  89. Rozwandowicz M, et al. Plasmids of distinct IncK lineages show compatible phenotypes. Antimicrob Agents Chemother. 2017;61:AAC–01954. https://doi.org/10.1128/AAC.01954-16.

    Article  Google Scholar 

  90. Ambrose SJ, Harmer CJ, Hall RM. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible. Plasmid. 2018;96–97:7–12. https://doi.org/10.1016/j.plasmid.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  91. Garcillán-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev. 2011;35:936–56. https://doi.org/10.1111/j.1574-6976.2011.00291.x.

    Article  CAS  PubMed  Google Scholar 

  92. Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev. 2009;33:657–87.

    Article  Google Scholar 

  93. Bradley DE, Taylor DE, Cohen DR. Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J Bacteriol. 1980;143:1466–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nakazawa S, et al. Different transferability of incompatibility (Inc) P-7 plasmid pCAR1 and IncP-1 plasmid pBP136 in stirring liquid conditions. PLoS One. 2017;12:e0186248. https://doi.org/10.1371/journal.pone.0186248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugative type IV secretion systems in gram-positive bacteria. Plasmid. 2013;70:289–302. https://doi.org/10.1016/j.plasmid.2013.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kurenbach B, Bohn C, Prabhu J, Abudukerim M, Szewzyk U, Grohmann E. Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid. 2003;50:86–93.

    Article  CAS  Google Scholar 

  97. Kurenbach B, et al. The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. Microbiology. 2006;152:637–45. https://doi.org/10.1099/mic.0.28468-0.

    Article  CAS  PubMed  Google Scholar 

  98. Thoma L, Muth G. Conjugative DNA-transfer in Streptomyces, a mycelial organism. Plasmid. 2016;87-88:1–9. https://doi.org/10.1016/j.plasmid.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  99. Thoma L, Dobrowinski H, Finger C, Guezguez J, Linke D, Sepulveda E, Muth G. A multiprotein DNA translocation complex directs intramycelial plasmid spreading during Streptomyces conjugation. MBio. 2015;6:e02559–14. https://doi.org/10.1128/mBio.02559-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Banuelos-Vazquez LA, Torres Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid. 2017;91:82–9. https://doi.org/10.1016/j.plasmid.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  101. Gibert M, Juarez A, Madrid C, Balsalobre C. New insights in the role of HtdA in the regulation of R27 conjugation. Plasmid. 2013;70:61–8. https://doi.org/10.1016/j.plasmid.2013.01.009.

    Article  CAS  PubMed  Google Scholar 

  102. Gibert M, Paytubi S, Beltran S, Juarez A, Balsalobre C, Madrid C. Growth phase-dependent control of R27 conjugation is mediated by the interplay between the plasmid-encoded regulatory circuit TrhR/TrhY-HtdA and the cAMP regulon. Environ Microbiol. 2016;18:5277–87. https://doi.org/10.1111/1462-2920.13579.

    Article  CAS  PubMed  Google Scholar 

  103. Kulinska A, Godziszewska J, Wojciechowska A, Ludwiczak M, Jagura-Burdzy G. Global transcriptional regulation of backbone genes in broad-host-range plasmid RA3 from the IncU group involves segregation protein KorB (ParB family). Appl Environ Microbiol. 2016;82:2320–35. https://doi.org/10.1128/AEM.03541-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ludwiczak M, Dolowy P, Markowska A, Szarlak J, Kulinska A, Jagura-Burdzy G. Global transcriptional regulator KorC coordinates expression of three backbone modules of the broad-host-range RA3 plasmid from IncU incompatibility group. Plasmid. 2013;70:131–45. https://doi.org/10.1016/j.plasmid.2013.03.007.

    Article  CAS  PubMed  Google Scholar 

  105. Sandt CH, Herson DS. Mobilization of the genetically engineered plasmid pHSV106 from Escherichia coli HB101(pHSV106) to Enterobacter cloacae in drinking water. Appl Environ Microbiol. 1991;57:194–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Taki K, Abo T, Ohtsubo E. Regulatory mechanisms in expression of the traY-I operon of sex factor plasmid R100: involvement of traJ and traY gene products. Genes Cells. 1998;3:331–45.

    Article  CAS  Google Scholar 

  107. Danino VE, Wilkinson A, Edwards A, et al. Recipient‐induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum‐sensing relay. Mol Microbiol. 2003;50:511–25.

    Article  CAS  Google Scholar 

  108. Gubbins MJ, Lau I, Will WR, et al. The positive regulator, TraJ, of the Escherichia coli F plasmid is unstable in a cpxA* background. J Bacterial. 2002;184:5781–8.

    Article  CAS  Google Scholar 

  109. Camacho EM, Casadesus J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol. 2002;44:1589–98.

    Article  CAS  Google Scholar 

  110. Camacho EM, Serna A, Casadesus J. Regulation of conjugal transfer by Lrp and dam methylation in plasmid R100. Int Microbiol. 2005;8:279–85.

    CAS  PubMed  Google Scholar 

  111. Garcillan-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids? Plasmid. 2008;60:1–18. https://doi.org/10.1016/j.plasmid.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  112. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303:298–304. https://doi.org/10.1016/j.ijmm.2013.02.001.

    Article  CAS  PubMed  Google Scholar 

  113. Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP, de la Cruz F. Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol. 2017;38:106–13. https://doi.org/10.1016/j.mib.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  114. Garcillan-Barcia MP, de la Cruz F. Ordering the bestiary of genetic elements transmissible by conjugation. Mobile Genet Elem. 2013;3:e24263. https://doi.org/10.4161/mge.24263.

    Article  Google Scholar 

  115. Orlek A, et al. Ordering the mob: insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid. 2017;91:42–52. https://doi.org/10.1016/j.plasmid.2017.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. https://doi.org/10.1186/1471-2105-11-595.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Beuls E, Modrie P, Deserranno C, Mahillon J. High-salt stress conditions increase the pAW63 transfer frequency in Bacillus thuringiensis. Appl Environ Microbiol. 2012;78:7128–31. https://doi.org/10.1128/AEM.01105-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schuurmans JM, van Hijum SA, Piet JR, Handel N, Smelt J, Brul S, ter Kuile BH. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid. 2014;72:1–8. https://doi.org/10.1016/j.plasmid.2014.01.002.

    Article  CAS  PubMed  Google Scholar 

  119. Verma T, Ramteke PW, Garg SK. Effect of ecological factors on conjugal transfer of chromium-resistant plasmid in Escherichia coli isolated from tannery effluent. Appl Biochem Biotechnol. 2002;102–103:5–20.

    Article  Google Scholar 

  120. Sakuda A, et al. Divalent cations increase the conjugation efficiency of the incompatibility P-7 group plasmid pCAR1 among different Pseudomonas hosts. Microbiology. 2018;164:20–7. https://doi.org/10.1099/mic.0.000583.

    Article  CAS  PubMed  Google Scholar 

  121. Shintani M, Matsui K, Takemura T, Yamane H, Nojiri H. Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples. Appl Microbiol Biotechnol. 2008b;80:485–97. https://doi.org/10.1007/s00253-008-1564-5.

    Article  CAS  PubMed  Google Scholar 

  122. Shintani M, Fukushima N, Tezuka M, Yamane H, Nojiri H. Conjugative transfer of the IncP-7 carbazole degradative plasmid, pCAR1, in river water samples. Biotechnol Lett. 2008a;30:117–22. https://doi.org/10.1007/s10529-007-9519-y.

    Article  CAS  PubMed  Google Scholar 

  123. Johnston C, Martin B, Polard P, Claverys JP. Postreplication targeting of transformants by bacterial immune systems? Trends Microbiol. 2013;21:516–21. https://doi.org/10.1016/j.tim.2013.08.002.

    Article  CAS  PubMed  Google Scholar 

  124. Dillon SC, Dorman CJ. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol. 2010;8:185–95. https://doi.org/10.1038/nrmicro2261.

    Article  CAS  PubMed  Google Scholar 

  125. Ali SS, Xia B, Liu J, Navarre WW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol. 2012;15:175–81. https://doi.org/10.1016/j.mib.2011.12.014.

    Article  CAS  PubMed  Google Scholar 

  126. Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid. 2014;75:1–11. https://doi.org/10.1016/j.plasmid.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  127. Doyle M, Fookes M, Ivens A, Mangan MW, Wain J, Dorman CJ. An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science. 2007;315:251–2. https://doi.org/10.1126/science.1137550.

    Article  CAS  PubMed  Google Scholar 

  128. Yun CS, et al. Pmr, a histone-like protein H1 (H-NS) family protein encoded by the IncP-7 plasmid pCAR1, is a key global regulator that alters host function. J Bacteriol. 2010;192:4720–31. https://doi.org/10.1128/jb.00591-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shintani M, Suzuki-Minakuchi C, Nojiri H. Nucleoid-associated proteins encoded on plasmids: occurrence and mode of function. Plasmid. 2015b;80:32–44. https://doi.org/10.1016/j.plasmid.2015.04.008.

    Article  CAS  PubMed  Google Scholar 

  130. Forns N, Banos RC, Balsalobre C, Juarez A, Madrid C. Temperature-dependent conjugative transfer of R27: role of chromosome- and plasmid-encoded Hha and H-NS proteins. J Bacteriol. 2005;187:3950–9. https://doi.org/10.1128/JB.187.12.3950-3959.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nojiri H. Structural and molecular genetic analyses of the bacterial carbazole degradation system. Biosci Biotechnol Biochem. 2012;76:1–18. https://doi.org/10.1271/bbb.110620.

    Article  CAS  PubMed  Google Scholar 

  132. Suzuki-Minakuchi C, et al. Effects of three different nucleoid-associated proteins encoded on IncP-7 plasmid pCAR1 on host Pseudomonas putida KT2440. Appl Environ Microbiol. 2015;81:2869–80. https://doi.org/10.1128/AEM.00023-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yun CS, et al. MvaT family proteins encoded on IncP-7 plasmid pCAR1 and the host chromosome regulate the host transcriptome cooperatively but differently. Appl Environ Microbiol. 2016;82:832–42. https://doi.org/10.1128/AEM.03071-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fernandez-Alarcon C, Singer RS, Johnson TJ. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS One. 2011;6:e23415. https://doi.org/10.1371/journal.pone.0023415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lang KS, Johnson TJ. Characterization of Acr2, an H-NS-like protein encoded on A/C2-type plasmids. Plasmid. 2016;87-88:17–27. https://doi.org/10.1016/j.plasmid.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  136. San Millan A, MacLean RC. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr. 2017; 5. https://doi.org/10.1128/microbiolspec.MTBP-0016-2017.

  137. San Millan A, Pena-Miller R, Toll-Riera M, Halbert ZV, McLean AR, Cooper BS, MacLean RC. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat Commun. 2014;5:5208. https://doi.org/10.1038/ncomms6208.

    Article  CAS  PubMed  Google Scholar 

  138. San Millan A, Toll-Riera M, Qi Q, MacLean RC. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun. 2015;6:6845. https://doi.org/10.1038/ncomms7845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sota M, Yano H, Hughes JM, Daughdrill GW, Abdo Z, Forney LJ, Top EM. Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME J. 2010;4:1568–80. https://doi.org/10.1038/ismej.2010.72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yano H, et al. Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol. 2016;101:743–56. https://doi.org/10.1111/mmi.13407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Stalder T, Rogers LM, Renfrow C, Yano H, Smith Z, Top EM. Emerging patterns of plasmid-host coevolution that stabilize antibiotic resistance. Sci Rep. 2017;7:4853. https://doi.org/10.1038/s41598-017-04662-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H. Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol. 2007;189:6849–60. https://doi.org/10.1128/jb.00684-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shintani M, et al. Response of the Pseudomonas host chromosomal transcriptome to carriage of the IncP-7 plasmid pCAR1. Environ Microbiol. 2010;12:1413–26. https://doi.org/10.1111/j.1462-2920.2009.02110.x.

    Article  CAS  PubMed  Google Scholar 

  144. Takahashi Y, et al. Modulation of primary cell function of host Pseudomonas bacteria by the conjugative plasmid pCAR1. Environ Microbiol. 2015;17:134–55. https://doi.org/10.1111/1462-2920.12515.

    Article  CAS  PubMed  Google Scholar 

  145. Martinez-Garcia E, Jatsenko T, Kivisaar M, de Lorenzo V. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol. 2015;17:76–90. https://doi.org/10.1111/1462-2920.12492.

    Article  CAS  PubMed  Google Scholar 

  146. Martinez-Garcia E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories. 2014;13:159. https://doi.org/10.1186/s12934-014-0159-3.

    Article  CAS  Google Scholar 

  147. Shintani M. The behavior of mobile genetic elements (MGEs) in different environments. Biosci Biotechnol Biochem. 2017;81:854–62. https://doi.org/10.1080/09168451.2016.1270743.

    Article  CAS  PubMed  Google Scholar 

  148. Becq J, Churlaud C, Deschavanne P. A benchmark of parametric methods for horizontal transfers detection. PLoS One. 2010;5:e9989. https://doi.org/10.1371/journal.pone.0009989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Karlin S. Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol. 2001;9:335–43.

    Article  CAS  Google Scholar 

  150. Muto A, Osawa S. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A. 1987;84:166–9.

    Article  CAS  Google Scholar 

  151. Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 2005;33:1141–53. https://doi.org/10.1093/nar/gki242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dutta C, Paul S. Microbial lifestyle and genome signatures. Curr Genomics. 2012;13:153–62. https://doi.org/10.2174/138920212799860698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hildebrand F, Meyer A, Eyre-Walker A. Evidence of selection upon genomic GC-content in bacteria. PLoS Genet. 2010;6:e1001107. https://doi.org/10.1371/journal.pgen.1001107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu H, Zhang Z, Hu S, Yu J. On the molecular mechanism of GC content variation among eubacterial genomes. Biol Direct. 2012;7:2. https://doi.org/10.1186/1745-6150-7-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhao X, Zhang Z, Yan J, Yu J. GC content variability of eubacteria is governed by the pol III alpha subunit. Biochem Biophys Res Commun. 2007;356:20–5. https://doi.org/10.1016/j.bbrc.2007.02.109.

    Article  CAS  PubMed  Google Scholar 

  156. Rocha EP, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18:291–4. https://doi.org/10.1016/S0168-9525(02)02690-2.

    Article  CAS  PubMed  Google Scholar 

  157. van Passel MW, Bart A, Luyf AC, van Kampen AH, van der Ende A. Compositional discordance between prokaryotic plasmids and host chromosomes. BMC Genomics. 2006;7:26. https://doi.org/10.1186/1471-2164-7-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nishida H. Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Int J Evol Biol. 2012;2012:342482. https://doi.org/10.1155/2012/342482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Karlin S, Campbell AM, Mrazek J. Comparative DNA analysis across diverse genomes. Annu Rev Genet. 1998;32:185–225. https://doi.org/10.1146/annurev.genet.32.1.185.

    Article  CAS  PubMed  Google Scholar 

  160. Mrazek J. Phylogenetic signals in DNA composition: limitations and prospects. Mol Biol Evol. 2009;26:1163–9. https://doi.org/10.1093/molbev/msp032.

    Article  CAS  PubMed  Google Scholar 

  161. Campbell A, Mrazek J, Karlin S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci U S A. 1999;96:9184–9.

    Article  CAS  Google Scholar 

  162. Suzuki H, Sota M, Brown C, Top E. Using mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res. 2008;36:e147. https://doi.org/10.1093/nar/gkn753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Norberg P, Bergstrom M, Jethava V, Dubhashi D, Hermansson M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun. 2011;2:268. https://doi.org/10.1038/ncomms1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Suzuki H, Yano H, Brown CJ, Top EM. Predicting plasmid promiscuity based on genomic signature. J Bacteriol. 2010;192:6045–55. https://doi.org/10.1128/Jb.00277-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Behura SK, Severson DW. Codon usage bias: causative factors, quantification methods and genome-wide patterns: with emphasis on insect genomes. Biol Rev Camb Philos Soc. 2013;88:49–61. https://doi.org/10.1111/j.1469-185X.2012.00242.x.

    Article  PubMed  Google Scholar 

  166. Ermolaeva MD. Synonymous codon usage in bacteria. Curr Issues Mol Biol. 2001;3:91–7.

    CAS  PubMed  Google Scholar 

  167. Peixoto L, Zavala A, Romero H, Musto H. The strength of translational selection for codon usage varies in the three replicons of Sinorhizobium meliloti. Gene. 2003;320:109–16.

    Article  CAS  Google Scholar 

  168. Davis JJ, Olsen GJ. Modal codon usage: assessing the typical codon usage of a genome. Mol Biol Evol. 2010;27:800–10. https://doi.org/10.1093/molbev/msp281.

    Article  CAS  PubMed  Google Scholar 

  169. Lafay B, Lloyd AT, McLean MJ, Devine KM, Sharp PM, Wolfe KH. Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res. 1999;27:1642–9.

    Article  CAS  Google Scholar 

  170. McInerney JO. Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci U S A. 1998;95:10698–703.

    Article  CAS  Google Scholar 

  171. Guo FB, Yuan JB. Codon usages of genes on chromosome, and surprisingly, genes in plasmid are primarily affected by strand-specific mutational biases in Lawsonia intracellularis. DNA Res. 2009;16:91–104. https://doi.org/10.1093/dnares/dsp001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. French S. Consequences of replication fork movement through transcription units in vivo. Science. 1992;258:1362–5.

    Article  CAS  Google Scholar 

  173. Rocha EP, Danchin A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet. 2003;34:377–8. https://doi.org/10.1038/ng1209.

    Article  CAS  PubMed  Google Scholar 

  174. Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 2010;6:e1000810. https://doi.org/10.1371/journal.pgen.1000810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zheng WX, Luo CS, Deng YY, Guo FB. Essentiality drives the orientation bias of bacterial genes in a continuous manner. Sci Rep. 2015;5:16431. https://doi.org/10.1038/srep16431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Arakawa K, Tomita M. Measures of compositional strand bias related to replication machinery and its applications. Curr Genomics. 2012;13:4–15. https://doi.org/10.2174/138920212799034749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sernova NV, Gelfand MS. Identification of replication origins in prokaryotic genomes. Brief Bioinform. 2008;9:376–91. https://doi.org/10.1093/bib/bbn031.

    Article  CAS  PubMed  Google Scholar 

  178. Arakawa K, Suzuki H, Tomita M. Quantitative analysis of replication-related mutation and selection pressures in bacterial chromosomes and plasmids using generalised GC skew index. BMC Genomics. 2009;10:640. https://doi.org/10.1186/1471-2164-10-640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20:262–7. https://doi.org/10.1016/j.tim.2012.04.003.

    Article  CAS  PubMed  Google Scholar 

  180. Chiu CM, Thomas CM. Evidence for past integration of IncP-1 plasmids into bacterial chromosomes. FEMS Microbiol Lett. 2004;241:163–9. https://doi.org/10.1016/j.femsle.2004.10.016.

    Article  CAS  PubMed  Google Scholar 

  181. Lavigne JP, Vergunst AC, Bourg G, O'Callaghan D. The IncP island in the genome of Brucella suis 1330 was acquired by site-specific integration. Infect Immun. 2005;73:7779–83. https://doi.org/10.1128/IAI.73.11.7779-7783.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Stenger DC, Lee MW. Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids. Appl Environ Microbiol. 2011;77:2522–6. https://doi.org/10.1128/AEM.02789-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fondi M, et al. Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evol Biol. 2010;10:59. https://doi.org/10.1186/1471-2148-10-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E. Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci U S A. 2010;107:127–32. https://doi.org/10.1073/pnas.0908978107.

    Article  PubMed  Google Scholar 

  185. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32:3380–7. https://doi.org/10.1093/bioinformatics/btw493.

    Article  CAS  PubMed  Google Scholar 

  186. Lanza VF, de Toro M, Garcillan-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet. 2014;10:e1004766. https://doi.org/10.1371/journal.pgen.1004766.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Rozov R, Brown Kav A, Bogumil D, Shterzer N, Halperin E, Mizrahi I, Shamir R. Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics. 2017;33:475–82. https://doi.org/10.1093/bioinformatics/btw651.

    Article  CAS  PubMed  Google Scholar 

  188. Carattoli A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58:3895–903. https://doi.org/10.1128/AAC.02412-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46(6):e35. https://doi.org/10.1093/nar/gkx1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhou F, Xu Y. cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics. 2010;26:2051–2. https://doi.org/10.1093/bioinformatics/btq299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Arredondo-Alonso S, Willems RJ, van Schaik W, Schurch AC. On the (im)possibility of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genomics. 2017;3:e000128. https://doi.org/10.1099/mgen.0.000128.

    Article  Google Scholar 

  192. Kyrpides NC, et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS Biol. 2014;12:e1001920. https://doi.org/10.1371/journal.pbio.1001920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60. https://doi.org/10.1128/JB.00345-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Christensen B, Sternberg C, Andersen J, Eberl L, Moller S, Givskov M, Molin S. Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol. 1998;64:2247–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Christensen B, Sternberg C, Molin S. Bacterial plasmid conjugation on semi-solid surfaces monitored with the green fluorescent protein (GFP) from Aequorea victoria as a marker. Gene. 1996;173:59–65. https://doi.org/10.1016/0378-1119(95)00707-5.

    Article  CAS  PubMed  Google Scholar 

  196. Haagensen JA, Hansen SK, Johansen T, Molin S. In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol. 2002;42:261–8. https://doi.org/10.1111/j.1574-6941.2002.tb01016.x.

    Article  CAS  PubMed  Google Scholar 

  197. Musovic S, Dechesne A, Sørensen J, Smets BF. Novel assay to assess permissiveness of a soil microbial community toward receipt of mobile genetic elements. Appl Environ Microbiol. 2010;76:4813–8. https://doi.org/10.1128/AEM.02713-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Musovic S, Oregaard G, Kroer N, Sørensen S. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol. 2006;72:6687–92. https://doi.org/10.1128/AEM.00013-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Hutchison CA 3rd, Smith HO, Pfannkoch C, Venter JC. Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci U S A. 2005;102:17332–6. https://doi.org/10.1073/pnas.0508809102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Klumper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sorensen SJ, Smets BF. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 2015;9:934–45. https://doi.org/10.1038/ismej.2014.191.

    Article  CAS  PubMed  Google Scholar 

  201. Shintani M, et al. Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol. 2014;80:138–45. https://doi.org/10.1128/AEM.02571-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Niki H, Hiraga S. Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell. 1997;90:951–7.

    Article  CAS  Google Scholar 

  203. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, Wagner M. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol. 2007;9:1878–89. https://doi.org/10.1111/j.1462-2920.2007.01352.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The writing of this chapter was partly supported by JSPS KAKENHI Grant Numbers 15H05618 and 15KK0278 (to M. S.) and research funds from Keio University Academic Development Funds for Individual Research and from the Yamagata Prefectural Government and the City of Tsuruoka (to H.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Shintani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shintani, M., Suzuki, H. (2019). Plasmids and Their Hosts. In: Nishida, H., Oshima, T. (eds) DNA Traffic in the Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-3411-5_6

Download citation

Publish with us

Policies and ethics