Skip to main content

Plasmids of the Genus Pseudomonas

  • Chapter
Pseudomonas

Abstract

Genomic study of the genus Pseudomonas depends on knowledge of not only chromosomal sequences of the major species comprising the genus, but also the mobile genetic elements (MGEs) that carry key determinants within and between species. MGEs include plasmids that replicate autonomously in the cytoplasm of their host, temperate phage that can coexist with their host as prophage either integrated into the chromosome or as a plasmid, and trans-posable elements that can facilitate the movement of DNA between locations independently from homologous recombination. MGEs can vary in size from the smallest insertion sequence (IS) to the largest mega-plasmid (>400 kb). MGEs are often but not always associated with DNA identified as mobile or recently transferred on the basis of genomic comparisons. For Escherichia coli, where there are now complete genome sequences for a number of strains of this one species, it is clear that 5–10% of the genome can differ between strains. Comparisons between the genomes of Pseudomonas species discussed elsewhere in this volume is revealing equivalent differences. There is a scaffold of genomic functions present in all members of a species or genus but in addition there is extra DNA present in some strains but not others. In some cases the differences may be due to loss of DNA, but in many it is due to acquisition of horizontally transferred DNA. If one sums the DNA that is associated with such elements across the many strains that comprise a species this can equal or exceed another whole chromosome. The DNA that is accessible to the whole species, while not present fully in any one strain, but that has the means to move into adjacent strains or species, is defined as the horizontal gene pool (HGP). One purpose of this chapter is to help readers think about the HGP of the genus Pseudomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akhtar P., 2002, PhD. Birmingham.

    Google Scholar 

  2. Adamczyk M., Jonczyk M., Thomas CM., and Jagura-Burdzy G., 2003, The kfrA Operon of IncP-1 plasmid R751 contributes to its segregational stability. Submitted.

    Google Scholar 

  3. Altenschmidt U., Eckerskorn C., and Fuchs G., 1990, Evidence that enzymes of a novel aerobic 2-amino-benzoate metabolism in denitrifying Pseudomonas are coded on a small plasmid. Eur. J. Biochem., 194:647–653.

    Article  PubMed  CAS  Google Scholar 

  4. Antoine R. and Locht C., 1992, Isolation and molecular characterisation of a novel broad-host-range plasmid from Bordetella bronchisceptica with sequence similarity to plasmids from gram-positive organisms. Mol. Microbiol., 6:1785–1799.

    Article  PubMed  CAS  Google Scholar 

  5. Aoki T., Egusa S., Ogata Y., and Watanabe T., 1971, Detection of resistance factors in fish pathogen Aeromonas liquefaciens. J. Gen. Microbiol., 65:343–349.

    Article  PubMed  CAS  Google Scholar 

  6. Bale M.J., Fry J.C., and Day M.J., 1987, Plasmid transfer between strains of Pseudomonas aeruginosa on membrane filters attached to river stones. J. Gen. Microbiol., 133:3099–3107.

    PubMed  CAS  Google Scholar 

  7. Bale M.J., Fry J.C., and Day M.J., 1988, Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl. Environ. Microbiol., 54:972–978.

    PubMed  CAS  Google Scholar 

  8. Bartosik D., Witkowska M., Baj J., and Wlodarczyk M., 2001, Characterization and sequence analysis of the replicator region of the novel plasmid pALC1 from Paracoccus alcaliphilus. Plasmid, 45:222–226.

    Article  PubMed  CAS  Google Scholar 

  9. Becker E.C and Meyer R.J., 1997, Acquisition of resistance genes by the IncQ plasmid R1162 is limited by its high copy number and lack of a partitioning mechanism. J. Bacteriol., 179:5947–5950.

    PubMed  CAS  Google Scholar 

  10. Bender C.L., Malvick D.K., and Mitchell R.E., 1989, Plasmid-mediated production of the Phytotoxin coronatine in Pseudomonas syringae pv tomato. J. Bacteriol, 171:807–812.

    PubMed  CAS  Google Scholar 

  11. Bignell C. and Thomas C.M., 2001, The bacterial ParA-ParB partitioning proteins. J. Biotechnol, 91:1–34.

    Article  PubMed  CAS  Google Scholar 

  12. Boronin A.M., 1992, Diversity of Pseudomonas plasmids—To what extent? FEMS Microbiol. Lett., 100:461–467.

    CAS  Google Scholar 

  13. Boronin A.M., Naumova R.P., Grishchenkow V.G., and Ilijinskaya O.N., 1984, Plasmids specifying η-caprolactam degradation in Pseudomonas strains. FEMS Microbiol. Lett., 22:167–170.

    CAS  Google Scholar 

  14. Boulnois G.J., Varley J.M., Sharpe G.S., and Franklin F.C.H., 1985, Transposon donor plasmids, based on ColIb-P9, for use in Pseudomonas putida and a variety of other Gramnegative bacteria. Mol. Gen. Genet., 200:65–67.

    Article  PubMed  CAS  Google Scholar 

  15. Bryan L.E., Semaka S.D., Van Den Elzen H.M., Kinnear J.E., and Whitehouse R.L.S., 1973, Characterisation of R931 and other Pseudomonas aeruginosa R-factors. Antimicrob. Agents Chemother., 3:625–637.

    Article  PubMed  CAS  Google Scholar 

  16. Bryan L.E., Shahrabadi M.S., and Van der Elzen H.M., 1974, Gentamicin resistance in Pseudomonas aeruginosa: R-factor mediated resistance. Antimicrob. Agents Chemother., 6:191–199.

    Article  PubMed  CAS  Google Scholar 

  17. Cabezón E., Sastre J.I., and de la Cruz F., 1997, Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet., 254:400–406.

    Article  PubMed  Google Scholar 

  18. Campbell J.I.A., Jacobsen C.S., and Sorensen J., 1995, Species variation and plasmid incidence among fluorescent Pseudomonas strains isolated from agricultural and industrial soils. FEMS Microbiol. Ecol., 18:51–62.

    Article  CAS  Google Scholar 

  19. Caspi R., Helinski D.R., Pacek M., and Konieczny I., 2000, Interactions of DnaA proteins from distantly related bacteria with the replication origin of the broad host range plasmid RK2. J. Biol. Chem., 275:18454–18461.

    Article  PubMed  CAS  Google Scholar 

  20. Caspi R., Pacek M, Consiglieri G., Helinski D.R., Toukdarian A., and Konieczny I., 2001, A broad host range replicon with different requirements for replication initiation in three bacterial species. EMBOJ., 20:3262–3271.

    Article  CAS  Google Scholar 

  21. Charnock C, 1997, Characterization of the cryptic plasmids of the Pseudomonas alcaligenes type strain. Plasmid, 37:189–198.

    Article  PubMed  CAS  Google Scholar 

  22. Christensen B.B., Sternberg C, Andersen J.B., Eberl L., Moller S., Givskov M., and Molin S., 1998, Establishment of new genetic traits in a microbial biofllm community. Appl. Environ. Microbiol, 64:2247–2255.

    PubMed  CAS  Google Scholar 

  23. Christensen B.B., Sternberg C, and Molin S., 1996, Bacterial plasmid conjugation on semi-solid surfaces monitored with green fluorescent protein (GFP) from Aequorea victoria as a marker. Gene, 173:59–65.

    Article  PubMed  CAS  Google Scholar 

  24. Christie P.J. and Vogel J.P., 2000, Bacterial type IV secretion: Conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol., 8:354–360.

    Article  PubMed  CAS  Google Scholar 

  25. Clennel A.M., Johnston B., and Rawlings D.E., 1995, Structure and function of Tn5467, a Tn21-like transposon located on the Thiobacillus ferrooxidans broad-host-range plasmid pTF-FC2. Appl Environ. Microbiol, 61:4223–4229.

    PubMed  CAS  Google Scholar 

  26. Couturier M., Bex F., Berquist P.L., and Maas W., 1988, Identification and classification of bacterial plasmids. Microbiol. Rev., 52:375–395.

    PubMed  CAS  Google Scholar 

  27. Cross M.A., Warne S.R., and Thomas C.M., 1986, Analysis of the vegetative replication origin of broad-host-range plasmid RK2 by transposon mutagenesis. Plasmid, 15:132–146.

    Article  PubMed  CAS  Google Scholar 

  28. Dahlberg C., Linberg C., Torsvik V.L., and Hermansson M., 1997, Conjugative plasmids isolated from bacteria in marine environments show various degrees of homology to each other and are not closely related to well-characterized plasmids. Appl. Environ. Microbiol., 63:4692–4697.

    PubMed  CAS  Google Scholar 

  29. del Solar G., Giraldo R., Ruiz-Echevarria M.J., Espinosa M., and Diaz-Orejas R., 1998, Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev., 62:434–464.

    PubMed  Google Scholar 

  30. Doran K.S., Helinski DR., and Konieczny I., 1999, Host-dependent requirement for specific DnaA boxes for plasmid RK2 replication. Mol. Microbiol., 33:490–498.

    Article  PubMed  CAS  Google Scholar 

  31. Droge M., Puhler A., and Selbitschka W., 2000, Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol. Gen. Genet., 263:471–482.

    Article  PubMed  CAS  Google Scholar 

  32. Dunn N.W and Gunsalus I.C., 1973, Transmissible plasmid coding early enzymes of napthalene oxidation in Pseudomonas putida. J. Bacteriol., 114:974–979.

    PubMed  CAS  Google Scholar 

  33. Durland R.H. and Helinski D.R., 1987, The sequence encoding the 43-Kilodalton TrfA protein is required for efficient replication or maintenance of minimal RK2 replicons in Pseudomonas aeruginosa. Plasmid, 18:164–169.

    Article  PubMed  CAS  Google Scholar 

  34. Easter C.L., Schwab H., and Helinski D.R., 1998, Role of the parCBA operon of the broad-host-range plasmid RK2 in stable plasmid maintenance. J. Bacteriol., 180:6023–6030.

    PubMed  CAS  Google Scholar 

  35. Easter C.L., Sobecky P.A., and Helinski D.R., 1997, Contribution of different segments of the par region to stable maintenance of the broad-host-range plasmid RK2. J. Bacteriol., 179:6472–6479.

    PubMed  CAS  Google Scholar 

  36. Eberhard G. W., 1989, Why do bacterial plasmids carry some genes and not others? Plasmid, 21:167–174.

    Article  PubMed  CAS  Google Scholar 

  37. Eckhardt T., 1978, A rapid method for the identification of plasmid desoxyribonucleic acid. Plasmid, 1:584–588.

    Article  PubMed  CAS  Google Scholar 

  38. Espinosa M., Cohen S., Couturier M., del Solar G., Diaz-Orejas R., Giraldo R., Jannière L., Miller C., Osborn M., and Thomas C.M., 2000, Plasmid replication and copy number control. In C.M. Thomas (ed.), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 1–47. Harwood Academic Press Amsterdam.

    Google Scholar 

  39. Femandez-Tresguerres M.E., Martin M., Garcia de Viedma D., Giraldo R., and Diaz-Orejas R., 1995, Host growth temperature and a conservative amino-acid substitution in the replication protein of pPSlO influence plasmid host-range. J. Bacteriol., 177:4377–4384.

    Google Scholar 

  40. Fry J.C. and Day M.J., 1990, Plasmid transfer in the epilithon. In J.C. Fry and M.J. Day (eds), Bacterial Genetics in Natural Environments, pp. 55–80. Cambridge University Press, Cambridge, England.

    Chapter  Google Scholar 

  41. Fu J.F., Chang H.C., Chen Y.M., Chang Y.S., and Liu S.T., 1996, Characterization of the replicon of plasmid pSW500 of Erwinia stewartii. Mol. Gen. Genet., 250:699–704.

    PubMed  CAS  Google Scholar 

  42. Fueki T. and Yamaguchi K., 2001, The structure and function of the replication initiator protein (Rep) of pSC101: An analysis based on a novel positive-selection system for the replication-deficient mutants. J. Biochem., 130:399–405.

    Article  PubMed  CAS  Google Scholar 

  43. Gardner M.N., Deane S.M., and Rawlings D.E., 2001, Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J. BacterioL, 183:3303–3309.

    Article  PubMed  CAS  Google Scholar 

  44. Gerdes K., Ayora S., Canosa I., Ceglowski P., Diaz-Orejas R., Franch T., Gultyaev A.P., Bugge Jensen R., Kobayashi I., Macpherson C., Summers D., Thomas C.M., and Zielenkiewicz U., 2000, Plasmid maintenance systems. In CM. Thomas (ed.), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 49–85. Harwood Academic Press Amsterdam.

    Google Scholar 

  45. Gerdes K., Moller-Jensen J., and Jensen R.B., 2000, Plasmid and chromosome partitioning: Surprises from phylogeny. Mol. Microbiol., 37:455–466.

    Article  PubMed  CAS  Google Scholar 

  46. Ghigo J., M., 2001, Natural conjugative plasmids induce bacterial biofilm development. Nature, 412:442–445.

    Article  PubMed  CAS  Google Scholar 

  47. Gibbon M.J., Sesma A., Canal A., Wood J.R., Hidalgo E., Brown J., Vivian A., and Murillo J., 1999, Replication regions from plant-pathogenic Pseudomonas syringae plasmids are similar to ColE2-related replicons. Microbiol-UK, 145:325–334.

    Article  CAS  Google Scholar 

  48. Gotz A., Pukall R., Smit E., Tietze E., Prager R., Tschape H., vanElsas J.D., and Smalla, K., 1996, Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol., 62:2621–2628.

    PubMed  CAS  Google Scholar 

  49. Greated A., Lambertsen L., Williams P.A., and Thomas C.M., 2002, The complete nucleotide sequence of TOL plasmid pWW0. Environ. Microbiol., 4:856–871.

    Article  PubMed  CAS  Google Scholar 

  50. Greated A. and Thomas C.M., 1999, A pair of PCR primers for IncP-9 plasmids. Microbiol-UK, 145:3003–3004.

    Google Scholar 

  51. Greated A., Titok M., Krasowiak R., Fairclough R.J., and Thomas C.M., 2000, The replication and stable-inheritance functions of IncP-9 plasmid pM3. Microbiol-UK, 146:2249–2258.

    CAS  Google Scholar 

  52. Guhathakurta A. and Summers D., 1995, Involvement of ArgR and PepA in the pairing of ColE1 dimer resolution sites. Microbiol-UK, 141:1163–1171.

    Article  CAS  Google Scholar 

  53. Guiney G.D., 1982, Host range of the conjugation and replication functions of the Escherichia coli sex plasmid Flac. J. Mol Biol, 162:699–703.

    Article  PubMed  CAS  Google Scholar 

  54. Hansen J.B. and Olsen R.H., 1978, Isolation of large plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J. Bacteriol., 135:227–238.

    PubMed  CAS  Google Scholar 

  55. Hedges R.W. and Jacoby G.A., 1980, Compatiblility and molecular properties of plasmid Rmsl49 in Pseudomonas aeruginosa and Escherichia coli. Plasmid, 3:1–6.

    Article  PubMed  CAS  Google Scholar 

  56. Heeb S., Itoh Y., Nishijyo T., Schnider U., Keel C., Wade J., Walsh U., O’Gara F., and Haas D., 2000, Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Mol. Plant-Microbe Interact, 13:232–237.

    Article  PubMed  CAS  Google Scholar 

  57. Hill K.E., Fry J.C, Weightman A.J., Day M.J., Bradley D.J., and Cousland B., 1995, Retrotransfer of IncP1-like plasmids from aquatic bacteria. Lett. Appl Microbiol., 20:317–322.

    Article  CAS  Google Scholar 

  58. Hill K.E., Weightman A.J., and Fry J.C., 1992, Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl. Environ. Microbiol., 58:1292–1300.

    PubMed  CAS  Google Scholar 

  59. Hiraga S.-I., Sugiyama T., and Itoh T., 1994, Comparative analysis of the replication regions of eleven ColE2-related plasmids. J. Bacteriol., 176:7233–7243.

    PubMed  CAS  Google Scholar 

  60. Holtwick R., von Wallbrunn A., Keweloh H., and Meinhardt F., 2001, A novel rolling-circle-replicating plasmid from Pseudomonas putida P8: Molecular characterization and use as vector. Microbiol.-UK, 147:337–344.

    CAS  Google Scholar 

  61. Ingram L., Sykes R.B., Grinstead J., Saunders J.R., and Richmond M.H., 1972, A trans-missible resistance element from a strain of Pseudomonas aeruginosa containing no detectable extrachromosomal DNA. J. Gen. Microbiol., 72:269–279.

    Article  PubMed  CAS  Google Scholar 

  62. Itoh Y., Watson J.M., Haas D., and Leisinger T., 1984, Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid, 11:206–220.

    Article  PubMed  CAS  Google Scholar 

  63. Jacoby A.G., 1974, Properties of R-plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 6:239–252.

    Article  PubMed  CAS  Google Scholar 

  64. Jacoby A.G., 1986, Resistance plasmids of Pseudomonas. In J.R. Sokatch (ed.), The Bacteria, Vol. X, pp. 265–293. Academic Press New York.

    Google Scholar 

  65. Jacoby G.A., Sutton L., Knobel L., and Mammen P., 1983, Properties of IncP-2 plasmids of Pseudomonas spp. Antimicrob. Agents Chemother., 24:168–175.

    Article  PubMed  CAS  Google Scholar 

  66. Jacoby G.A., Weiss R., Korfhagen T.R., Krishnapillai V., Jacob A.E., and Hedges R.W., 1978, An explanation for the apparent host specificity of Pseudomonas plasmid R91 expression. J. Bacteriol., 136:1159–1164.

    PubMed  CAS  Google Scholar 

  67. Jansons I., Touchie G., Sharp R., Almquist K., Farinha M.A., Lam J.S., and Kropinski A.M., 1994, Deletion and transposon mutagenesis and sequence-analysis of the pRO1600 oriR region found in the broad-host-range plasmids of the pQF Series. Plasmid, 31:265–274.

    Article  PubMed  CAS  Google Scholar 

  68. Jiang Y., Pogliano J., Helinski D.R., and Konieczny I., 2002, ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol., 44:971–979.

    Article  PubMed  CAS  Google Scholar 

  69. Kado C.I. and Liu S.T., 1981, Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol., 145:1365–1373.

    PubMed  CAS  Google Scholar 

  70. Kalyaeva E., Bass I., Kholodii G., and Nikiforov V., 2002, A broad host range plasmid vector that does not encode replication proteins. FEMS Microbiol. Lett., 211:91–95.

    Article  PubMed  CAS  Google Scholar 

  71. Kobayashi N. and Bailey M.J., 1994, Plasmids isolated from the sugar-beet phyllosphere show little or no homology to molecular probes currently available for plasmid typing. Microbiol.-UK, 140:289–296.

    Article  CAS  Google Scholar 

  72. Komori H., Matsunaga F., Higuchi Y., Ishiai M., Wada C., and Miki K., 1999, Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 angstrom resolution. EMBOJ., 18:4597–4607.

    Article  CAS  Google Scholar 

  73. Konieczny I. and Helinski D.R., 1997, Helicase delivery and activation by DnaA and TrfA proteins during the initiation of replication of the broad host-range plasmid RK2. J. Biol. Chem., 272:33312–33318.

    Article  PubMed  CAS  Google Scholar 

  74. Krasowiak R., Smalla K., Sokolov S., Kosheleva I., Sevastyanovich Y, Titok M., and Thomas CM., 2002, PCR primers for detection and characterisation of IncP-9 plasmids. FEMS Microbiol. EcoL, 42:217–225.

    Article  PubMed  CAS  Google Scholar 

  75. Kruger R. and Filutowicz M., 2000, Dimers of Pi protein bind the A+T-rich region of the R6K gamma origin near the leading-strand synthesis start sites: Regulatory implications. J. BacterioL, 182:2461–2467.

    Article  PubMed  CAS  Google Scholar 

  76. Kwong S.M., Yeo C.C., Chuah D., and Poh C.L., 1998, Sequence analysis of plasmid pRA2 from Pseudomonas alcaligenes NCIB 9867 (P25X) reveals a novel replication region. FEMS Microbiol. Lett, 158:159–165.

    Article  PubMed  CAS  Google Scholar 

  77. Kwong S.M., Yeo C.C., Suwanto A., and Poh C.L., 2000, Characterization of the endogenous plasmid from Pseudomonas alcaligenes NCIB 9867: DNA sequence and mechanism of transfer. J. Bacteriol., 182:81–90.

    Article  PubMed  CAS  Google Scholar 

  78. Lawley T.D., Gordon G.S., Wright A., and Taylor D.E., 2002, Bacterial conjugative transfer: visualization of successful mating pairs and plasmid establishment in live Escherichia coli. Mol. Microbiol., 44:947–956.

    Article  PubMed  CAS  Google Scholar 

  79. Lilley A.K., Bailey M.J., Day M.J., and Fry J.C., 1996, Diversity of mercury resistance plasmids obtained by exogenous isolation from the bacteria of sugar beet in three successive years. FEMS Microbiol. Ecol., 20:211–227.

    Article  CAS  Google Scholar 

  80. Lianes C, Gabant P., Couturier M., and Michelbriand Y., 1994, Cloning and characterization of the IncA/C plasmid RA1 replicon. J. Bacteriol., 176:3403–3407.

    Google Scholar 

  81. Lorenz M.G. and Wackernagel W., 1994, Bacterial gene-transfer by natural genetic-transformation in the environment. Microbiol. Rev., 58:563–602.

    PubMed  CAS  Google Scholar 

  82. Lu Y.B., Datta H.J., and Bastia D., 1998, Mechanistic studies of initiator-initiator interaction and replication initiation. EMBO J., 17:5192–5200.

    Article  PubMed  CAS  Google Scholar 

  83. Maeda K., Nojiri H., Shintani M., Yoshida T., Habe H., and Omori T., 2003, Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J. Mol. Biol., 326:21–33.

    Article  PubMed  CAS  Google Scholar 

  84. Maestro B., Sanz J.M., Diaz-Orejas R., and Fernandez-Tresguerres E., 2003. Modulation of pPS10 host range by plasmid-encoded RepA initiator protein. J. Bacteriol., 185:1367–1375.

    Article  PubMed  CAS  Google Scholar 

  85. Maestro B., Sanz J.M., Faelen M., Couturier M., Diaz-Orejas R., and Fernandez-Tresguerres E., 2002, Modulation of pPS10 host range by DnaA. Mol. Microbiol., 46:223–234.

    Article  PubMed  CAS  Google Scholar 

  86. Marques M.V, da Silva A.M., and Gomes S.L., 2001, Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa. Plasmid, 45:184–199.

    Article  PubMed  CAS  Google Scholar 

  87. Martinez B., Tomkins J., Wackett L.P., Wing R., and Sadowsky M.J., 2001, Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J. Bacteriol., 183:5684–5697.

    Article  PubMed  CAS  Google Scholar 

  88. Meyer R.J. and Hinds M., 1982, Multiple mechanisms for expression of incompatibility by broad host range plasmid RK2. J. BacterioL, 152:1078–1090.

    PubMed  CAS  Google Scholar 

  89. Moore R.J. and Krishnapillai V., 1982, Tn7 and Tn501 insertions into Pseudomonas aeruginosa plasmid R91-5: Mapping of two transfer regions. J. Bacteriol., 149:276–183.

    PubMed  CAS  Google Scholar 

  90. Nieto C, Giraldo R., Fernandez-Tresguerres E., and Diaz R., 1992, Genetic and functional analysis of the basic replicon of pPSlO, a plasmid specific for Pseudomonas isolated from Pseudomonas syringae-pathovar-Savastanoi. J. Mol. Biol., 223:415–426.

    Article  PubMed  CAS  Google Scholar 

  91. Olsen R.H., Debusscher G., and McCombie W.R., 1982, Development of broad-host-range vectors and gene banks — self-cloning of the Pseudomonas aeruginosa PAO chromosome. J. Bacteriol., 150:60–69.

    PubMed  CAS  Google Scholar 

  92. Pansegrau W., Lanka E., Barth P.T., Figurski D.H., Guiney D.G., Haas D., Helinski D.R., Schwab H., Stanisich V.A., and Thomas C.M., 1994, Complete nucleotide sequence of Birmingham IncP-α plasmids—Compilation and comparative analysis. J. Mol. Biol., 239:623–663.

    Article  PubMed  CAS  Google Scholar 

  93. Partridge S.R., Collis C.M., and Hall R.M., 2002, Class 1 integron containing a new gene cassette aadA10 associated with Tn1404 from R151. Antimicrob. Agents Chemother., 46:2400–2408.

    Article  PubMed  CAS  Google Scholar 

  94. Pemberton J.M. and Clark A.J., 1973, Detection and characterisation of plasmids in Pseudomonas aeruginosa strains PAO. J. Bacteriol., 114:424–433.

    PubMed  CAS  Google Scholar 

  95. Peters M., Jogi E., Suitso I., Punnisk T., and Nurk A., 2001, Features of the replicon of plasmid pAM10.6 of Pseudomonas fluorescens. Plasmid, 46:25–36.

    Article  PubMed  CAS  Google Scholar 

  96. Rawlings D.E., Dorrington R.A., Rohrer J., and Clennel A.M., 1993, A molecular analysis of a broad-host-range plasmid isolated from Thiobacillus ferrooxidans. FEMS Microbiol. Rev., 11:3–8.

    Article  CAS  Google Scholar 

  97. Rawlings D.E. and Tietze E., 2001, Comparative biology of IncQ and IncQ-like plasmids. Microbiol. Mol. Biol. Rev., 65:481–496.

    Article  PubMed  CAS  Google Scholar 

  98. Rohmer L., Kjemtrup S., Marchesini P., and Dangl J.L., 2003, Nucleotide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Mol. Microbiol., 47:1545–1562.

    Article  PubMed  CAS  Google Scholar 

  99. Sagai H., Hasuda K., Iyobe S., Bryan L.E., Holloway B.W., and Mitsuhashi S., 1976, Classification of R plasmids by incompatibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 10:573–578.

    Article  PubMed  CAS  Google Scholar 

  100. Saunders N.J. and L. Snyder, A.S., 2002, The minimal mobile element. Microbiology, 148:3756–3760.

    PubMed  CAS  Google Scholar 

  101. Scherzinger E., Haring V., Lurz R., and Otto S., 1991, Plasmid RSF1010 DNA-replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res., 19:1203–1211.

    Article  PubMed  CAS  Google Scholar 

  102. Schlüter A., Heuer H., Szczepanowski R., Forney L.J., Thomas C.M., Pühler A., and Top E.M., 2003, The 64,508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a wastewater treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology, 149:3139–3153.

    Article  PubMed  CAS  Google Scholar 

  103. Schneiker S., Keller M., Droge M., Lanka E., Puhler A., and Selbitschka W., 2001, The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res., 29:5169–5181.

    Article  PubMed  CAS  Google Scholar 

  104. Scholz P., Haring V., Murillo J., Wittmann-Liebold B., and Ashman K., 1989, Complete nucleotide sequence and gene organisation of the broad host range plasmid RSF1010. Gene, 75:271–288.

    Article  PubMed  CAS  Google Scholar 

  105. Sesma A., Sundin G.W, and M.J., 2000, Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Microbiol.-UK, 146:2375–2384.

    CAS  Google Scholar 

  106. Sesma A., Sundin G.W., and Murillo J., 1998, Closely related plasmid replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behaviour. Appl Environ. Microbiol., 64:3948–3953.

    PubMed  CAS  Google Scholar 

  107. Sharma R., Kachroo A., and Bastia D., 2001, Mechanistic aspects of DnaA-RepA inter-action as revealed by yeast forward and reverse two-hybrid analysis. EMBO J., 20:4577–4587.

    Article  PubMed  CAS  Google Scholar 

  108. Shingler V. and Thomas C.M., 1989, Analysis of nonpolar insertion mutations in the trfA gene of IncP Plasmid-RK2 which affect its broad-host-range property. Biochim. Biophys. Acta., 1007:301–308.

    Article  PubMed  CAS  Google Scholar 

  109. Shingler V. and Thomas C.M., 1984, Analysis of the trfA region of broad host-range plasmid-RK2 by transposon mutagenesis and identification of polypeptide products. J. Mol. Biol, 175:229–249.

    Article  PubMed  CAS  Google Scholar 

  110. Sia E.A., Roberts R.C., Easter C., Helinski D.R., and Figurski D.H., 1995, Different relative importance of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2. J. Bacteriol., 177:2789–2797.

    PubMed  CAS  Google Scholar 

  111. Sikorski J., Graupner S., Lorenz M.G., and Wackernagel W., 1998, Natural genetic trans-formation of Pseudomonas stutzeri in a non-sterile soil. Microbiol.-UK, 144:569–576.

    Article  CAS  Google Scholar 

  112. Smalla K., Heuer H., Gotz A., Niemeyer D., Krogerrecklenfort E., and Tietze E., 2000, Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl. Environ. Microbiol., 66:4854–4862.

    Article  PubMed  CAS  Google Scholar 

  113. Smalla K., Krogerrecklenfort E., Heuer H., Dejonghe W., Top E., Osborn M., Niewint J., Tebbe C., Barr M., Bailey M., Greated A., Thomas C., Turner S., Young P., Nikolakopoulou D., Karagouni A., Wolters A., van Elsas J.D., Dronen K., Sandaa R., Borin S., Brabhu J., Grohmann E., and Sobecky P., 2000, PCR-based detection of mobile genetic elements in total community DNA. Microbiol.-UK, 146:1256–1257.

    CAS  Google Scholar 

  114. Smit E., Wolters A., and van Elsas J.D., 1998, Self-transmissible mercury resistance plasmids with gene-mobilizing capacity in soil bacterial populations: influence of wheat roots and mercury addition. Appl. Environ. Microbiol., 64:1210–1219.

    PubMed  CAS  Google Scholar 

  115. Smith C.A., Pinkney M., Guiney D.G., and Thomas C.M., 1993, The ancestral IncP replication system consisted of contiguous oriV and trfA segments as deduced from a comparison of the nucleotide-sequences of diverse IncP plasmids. J. Gen. Microbiol., 139:1761–1766.

    Article  PubMed  CAS  Google Scholar 

  116. Smith C.A. and Thomas C.M., 1984, Nucleotide sequence of the trfA gene of broad hostrange plasmid RK2. J. Mol. Biol., 175:251–262.

    Article  PubMed  CAS  Google Scholar 

  117. Sobecky P.A., Mincer T.J., Chang M.C., and Helinski D.R., 1997, Plasmids isolated from marine sediment microbial communities contain replication and incompatibility regions unrelated to those of known plasmid groups. Appl. Environ. Microbiol., 63:888–895.

    PubMed  CAS  Google Scholar 

  118. Stassen A.P.M., Schoenmakers E., Yu M.X., Schoenmakers J.G.G., and Konings R.N.H., 1992, Nucleotide sequence of the genome of the filamentous bacteriophage-12-2 — module evolution of the filamentous phage genome. J. Mol. Evol., 34:141–152.

    Article  PubMed  CAS  Google Scholar 

  119. Stuart-Keil K.G., Hohnstock A.M., Drees K.P., Herrick J.B., and Madsen E.L., 1998, Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar contaminated site are homologous to pDTGl from Pseudomonas putida NCIB 9816-4. Appl. Environ. Microbiol., 64:3633–3640.

    PubMed  CAS  Google Scholar 

  120. Summers A.O. and Jacoby G.A., 1978, Plasmid-determined resistance to boron and chromium compounds in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 13:637–640.

    Article  PubMed  CAS  Google Scholar 

  121. Summers D.K., Beton C.W.H., and Withers H.L., 1993, Multicopy plasmid instability—the dimer catastrophe hypothesis. Mol Microbiol, 8:1031–1038.

    Article  PubMed  CAS  Google Scholar 

  122. Tauch A., Schluter A., Bischoff N., Goesmann A., Meyer F., and Puhler A., 2003, The 79,370-bp conjugative plasmid pB4 consists of an IncP-1 β backbone loaded with a Chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla(NPS-1), and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol. Genet. Genom., 268:570–584.

    CAS  Google Scholar 

  123. Tauch A., Schneiker S., Selbitschka W., Puhler A., van Overbeek L.S., Smalla K., Thomas C.M., Bailey M.J., Forney L.J., Weightman A., Ceglowski P., Pembroke T., Tietze E., Schroder G., Lanka E., and van Elsas J.D., 2002, The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiol.-SGM, 148:1637–1653.

    CAS  Google Scholar 

  124. Thomas C.M., 2000, Paradigms of plasmid organization. Mol. Microbiol., 37:485–491.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas C.M., Cross M.A., Hussain A.A.K., and Smith C.A., 1984, Analysis of copy number control elements in the region of the vegetative replication origin of the broad hostrange Plasmid RK2. EMBO J., 3:57–63.

    PubMed  CAS  Google Scholar 

  126. Thomas C.M. and A. Hussain, A.K., 1984, The korB gene of broad host range plasmid RK2 is a major copy number control element which may act together with trfB by limiting trfA expression. EMBO J., 3:1513–1519.

    PubMed  CAS  Google Scholar 

  127. Thomas C.M., Stalker D.M., and Helinski D.R., 1981, Replication and Incompatibility properties of segments of the origin region of replication of the broad host range plasmid Rk2. Mol. Gen. Genet., 181:1–7.

    Article  PubMed  CAS  Google Scholar 

  128. Thomas C.M. and Thorsted P., 1994, PCR probes for promiscuous plasmids. Microbiol.-UK, 140:1.

    Article  CAS  Google Scholar 

  129. Thorsted P.B., Macartney D.P., Akhtar P., Haines A.S., Ali N., Davidson P., Stafford T., Pocklington M.J., Pansegrau W., Wilkins B.M., Lanka E., and Thomas C.M., 1998, Complete sequence of the IncP beta plasmid R751: implications for evolution and organisation of the IncP. backbone. J. Mol. Biol., 282:969–990.

    Article  PubMed  CAS  Google Scholar 

  130. Titok M., Maksimava N.P., and Fomichev Y.K., 1991, Characteristics of the broad host range IncP-9 R plasmid pM3. Mol. Genet. Microbiol. Virol., 8:18–23.

    Google Scholar 

  131. Top E., Desmet I., Verstraete W., Dijkmans R., and Mergeay M., 1994, Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl. Environ. Microbiol., 60:831–839.

    PubMed  CAS  Google Scholar 

  132. Top E., Moenne-Loccoz Y., Pembroke T., and Thomas C.M., 2000, Phenotypic traits conferred by plasmids. In C.M. Thomas (ed.), The Horizontal Gene Pool: Bacterial plasmids and Gene Spread, pp. 249–285. Harwood Academic Publishers Amsterdam.

    Google Scholar 

  133. Top E.M., Holben W.E., and Forney L.J., 1995, Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl. Environ. Microbiol., 61:1691–1698.

    PubMed  CAS  Google Scholar 

  134. Turner S.X., Lilley A.K., and Bailey M.J., 2002, Two dnaB genes are associated with the origin of replication of pQBR55, an exogenously isolated plasmid from the rhizosphere of sugar beet. FEMS Microbiol. Ecol., 42:209–215.

    Article  PubMed  CAS  Google Scholar 

  135. van Elsas J.D., Gardener B.B.M., Wolters A.C., and Smit E., 1998, Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl. Environ. Microbiol., 64:880–889.

    PubMed  Google Scholar 

  136. Viegas C.A., Lilley A.K., Bruce K., and Bailey M.J., 1997, Description of a novel plasmid replicative origin from a genetically distinct family of conjugative plasmids associated with phytosphere microflora. FEMS Microbiol. Lett., 149:121–127.

    Article  PubMed  CAS  Google Scholar 

  137. Vivian A., Murillo J., and Jackson R.W, 2001, The roles of plasmids in phytopathogenic bacteria: Mobile arsenals? Microbiol.-UK, 147:763–780.

    CAS  Google Scholar 

  138. West S.E., Schweizer H.P., Dali C., Sample A.K., and Runyen-Janecky L.J., 1994, Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene, 148:81–86.

    Article  PubMed  CAS  Google Scholar 

  139. White G.P. and Dunn N.W., 1978, Compatibility and sex specific phage plating characteristics of the TOL and NAH catabolic plasmids. Genet. Res., 32:207–213.

    Article  PubMed  CAS  Google Scholar 

  140. Whittle G., Katz M.E., Clayton E.H., and Cheetham B.F., 2000, Identification and characterization of a native Dichelobacter nodosus plasmid, pDN1. Plasmid, 43:230–234.

    Article  PubMed  CAS  Google Scholar 

  141. Wilkins B.M., Chilley P.M., Thomas A.T., and Pocklington M.J., 1996, Distribution of restriction enzyme recognition sequences on broad host range plasmid RP4: Molecular and evolutionary implications. J. Mol. Biol., 258:447–456.

    Article  PubMed  CAS  Google Scholar 

  142. Wilson J.W. and Figurski D.H., 2002, Host-specific incompatibility by 9-bp direct repeats indicates a role in the maintenance of broad-host-range plasmid RK2. Plasmid, 47:216–223.

    Article  PubMed  CAS  Google Scholar 

  143. Wilson J.W., Sia E.A., and Figurski D.H., 1997, The kilE locus of promiscuous IncP α plasmid RK2 is required for stable maintenance in Pseudomonas aeruginosa. J. Bacteriol., 179:2339–2347.

    PubMed  CAS  Google Scholar 

  144. Zechner E., de la Cruz F., Eisenbrandt R., Grahn A.M., Koraimann G., Lanka E., Muth, G., Pansegrau W., Thomas C.M., Wilkins B.M., and Zatyka M., 2000, Conjugative-DNA transfer process. In C.M. Thomas (ed.), The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, pp. 87–174. Harwood Academic Publishers Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, C.M., Haines, A.S. (2004). Plasmids of the Genus Pseudomonas . In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics