Skip to main content

Response of Tea Plants to Drought Stress

  • Chapter
  • First Online:
Stress Physiology of Tea in the Face of Climate Change

Abstract

The tea plant (Camellia sinensis L.) is an important economic crop that is widely cultivated in the tropics and subtropics of Asia. As tea plants are a rain-fed perennial crop, both excessive soil moisture and water deficit can cause water stress in the plants. The most common water stress encountered is moisture deficit, known as drought stress, one of the most adverse factors that severely impairs tea plant growth and development, and limits its distribution, performance, yield, and quality. However, few studies have systematically reported the effects of water stress, especially drought stress, on the tea plant. In this chapter, therefore, we review the current state of drought stress and its progress in tea plants, with the aim being to explore the various morphological, physiological, biochemical, and molecular responses to such stress found in this species. Previous studies have demonstrated some key features in cultivated tea plants challenged by drought stress, such as (1) deep root systems, smaller and succulent leaves, and thickening of cuticle and palisade tissue; (2) water deficit, impairment in photosynthesis and respiration, stomatal closure, reduction of carbohydrate synthesis, acceleration of proteolysis, changes in lipid components in the normal cell wall structure; (3) protein denaturation of the plant tissues constituents, protoplast condensation, and the loss of cell wall semi-permeability; (4) enhanced free radical content, antioxidative systems, and osmoprotectant contents; (5) changes in the contents of minerals required for nutrition, hormones, polyphenols, and amino acids; (6) and changes in the transcription levels of many regulatory and functional genes. Understanding these response mechanisms of tea plants to drought stress is essential for improving the drought resistance of these plants by carrying out appropriate strategies such as mass screening and breeding; marker-assisted breeding; and exogenous application of osmoprotectants and hormones to seeds, seedlings, or growing tea plants, as well as undertaking genetic engineering for drought resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams MD, Kubiske ME, Steiner KC (1990) Drought adaptations and responses in five genotypes of Fraxinus Pennsylvanica Marsh: photosynthesis, water relations and leaf morphology. Tree Physiol 6:305–315

    Article  CAS  PubMed  Google Scholar 

  • Abreu ME, Munne-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    Article  CAS  Google Scholar 

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Ahmadi AA (1998) Effect of post-anthesis water stress on yield regulating processes in wheat (Triticum aestivum L.). Ph. D. Thesis. University of London, Wye College, Wye, Ashford

    Google Scholar 

  • Ahmedi CB, Rouina BB, Sensoy S, Boukhris M, Abdallah FB (2009) Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ Exp Bot 67:345–352

    Article  CAS  Google Scholar 

  • Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36–42

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    Article  CAS  Google Scholar 

  • Arivalagan M, Somasundaram R (2017) Alteration of photosynthetic pigments and antioxidant systems in tomato under drought with Tebuconazole and Hexaconazole applications. J Sci Agric 1:146

    Google Scholar 

  • Asada K (1994) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bower JR (eds) Photoinhibition of photosynthesis. Bios Scientific Publishers, Oxford, pp 131–145

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine, betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200:535–546

    Article  Google Scholar 

  • Bacelar EA, Colrreia CM, Mouninho-Pereira JM, Goncalves BC, Lopes JI, Torres-Pereira JM (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239

    Article  PubMed  Google Scholar 

  • Baldini E, Facini O, Nerozzi F, Rossi F, Rotondi A (1997) Leaf characteristics and optical properties of different woody species. Trees 12:73–81

    Article  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Bano A, Hansen H, Dorffling K, Hahn H (1994) Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants. Phytochemistry 37:345–347

    Article  CAS  Google Scholar 

  • Barora AC (1994) Gas exchange in tea (Camellia sinensis L.) under water stress. Two Bud 41:19–24

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crop Res 97:248–253

    Article  Google Scholar 

  • Bolhar-Nordenkampf HR (1987) Shoot morphology and leaf anatomy in relation to photosynthesis. In: Techniques in Bioproductivity and Photosynthesis. Pergamon Press, Oxford, pp 107–117

    Google Scholar 

  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379

    Article  CAS  Google Scholar 

  • Burgess PJ, Carr MKV (1993) Responses of tea (Camellia sinensis) clones to drought. I. Yield, dry matter production and partitioning. Asp Appl Biol 34:249–258

    Google Scholar 

  • Cechin I, Rossi SC, Oliveira VC, Fumis TF (2006) Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44:143–146

    Article  CAS  Google Scholar 

  • Chakraborty V, Dutta S, Chakraborty BN (2002) Responses of tea plant to water stress. Biol Plant 45:557–562

    Article  CAS  Google Scholar 

  • Chartzoulakis K, Patakas A, Bosabalidis A (1999) Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ Exp Bot 42:113–120

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Periera S (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:446–473

    Article  CAS  Google Scholar 

  • Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira F (2007) Polyphenols as potential indicators for drought tolerance in tea (Camellia sinensis L.). Biosci Biotechnol Biochem 71:2190–2197

    Article  CAS  PubMed  Google Scholar 

  • Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira F, Wanyoko JK (2008) Shoot epicatechin and epigallocatechin contents respond to water stress in tea [Camellia sinensis (L.) O. Kuntze]. Biosci Biotechnol Biochem 72:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El AA (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  CAS  Google Scholar 

  • Das A, Das S, Mondal TK (2012) Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol 30:1088–1101

    Article  CAS  Google Scholar 

  • Das A, Mukhopadhyay M, Sarkar B, Saha D, Mondal TK (2015) Influence of drought stress on cellular ultrastructure and antioxidant system in tea cultivars with different drought sensitivities. J Environ Biol 36:875–882

    CAS  PubMed  Google Scholar 

  • Davies W, Zhang J (1991) Root signals and the regulation of growth and the development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Del Blanco IA, Rajaram S, Kronstad WE, Reynolds MP (2000) Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci 40:1257–1263

    Article  Google Scholar 

  • Demiral T, Turkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1110

    Article  CAS  PubMed  Google Scholar 

  • Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:794–804

    CAS  PubMed  Google Scholar 

  • Ennajeh M, Tounekti T, Vadel AM, Khemira H, Cochard H (2008) Water relations and drought-induced embolism in two olive (Olea europaea L.) varieties ‘Meski’ and ‘Chemlali’ under severe drought conditions. Tree Physiol 28:971–976

    Article  PubMed  Google Scholar 

  • Ennajeh M, Vadel AM, Cochard H, Khemira H (2010) Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Pomol Hortic Sci 85:289–294

    Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM, Knight MR (2005) ROS perception in Arabidopsis thaliana: the ozone induced calcium response. Plant J 41:615–626

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195:237–246

    Article  CAS  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer-Verlag, Berlin/Heidelberg, pp 1–33

    Google Scholar 

  • Farooqui AHA, Kumar R, Fatima S, Sharma S (2000) Responses of different genotypes of lemon grass (Cymbopogon flexuosus and C. pendulus) to water stress. J Plant Biol 27:277–282

    Google Scholar 

  • Figueiredo MVB, Buritya AH, Martınez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Foyer CH, Fletcher JM (2001) Plant antioxidants: colour me healthy. Biologist 48:115–120

    CAS  PubMed  Google Scholar 

  • Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008) Influence of silicon on sunflower cultivars under drought stress, II: Essential and non-essential element uptake determined by polarized energy dispersive X-ray fluorescence. Commun Soil Sci Plant Anal 39:1904–1927

    Article  CAS  Google Scholar 

  • Gupta S, Bharalee R, Bhorali P, Das SK, Bhagawati P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Borchetia S, Kalita MC, Handique AK, Das S (2013) Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol Biotechnol 53:237–248

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Boem FH, Thomas GW (1999) Phosphorus nutrition and water deficits in field grown soybeans. Plant Soil 207:87–96

    Article  Google Scholar 

  • Handique AC (1992) Some silent features in the study of drought resistance in tea. Two Bud 39:16–18

    Google Scholar 

  • Handique AC, Manivel L (1990) Selection criteria for drought tolerance in tea. Assam Rev. Tea News 79:18–21

    Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans: a climatological, biogeography and mechanistic appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53:1503–1514

    CAS  PubMed  Google Scholar 

  • Hu H, Sparks D (1991) Zinc deficiency inhibits chlorophyll synthesis and gas exchange in ʻStuartʼ pecan. Hortic Sci 26:267–268

    CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Iturriaga G, Suãrez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in high salt-tolerant plants. In: Pesserkali M (ed) Handbook of photosynthesis. Marshal Dekar, Baton Rouge, pp 56–65

    Google Scholar 

  • Jain NK (1999) Global advances in tea science. Aravali Books International, NewDelhi

    Google Scholar 

  • Jebara S, Jebara M, Limam F, Aouani ME (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936

    Article  CAS  PubMed  Google Scholar 

  • Jeyaramraja PR, Meenakshi SN, Kumar RS, Joshi SD, Ramasubramanian B (2005) Water deficit induced oxidative damage in tea (Camellia sinensis) plants. J Plant Physiol 162:413–419

    Article  CAS  Google Scholar 

  • Kaplan F, Guy CL (2004) Beta-amylase induction and the protective role of maltose during temperature shock. Plant Physiol 135:1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787

    Article  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj T, Gajjeraman P, Palanisamy S, Subhas Chandrabose SR, Azad Mandal AK (2011) Identification of differentially expressed genes in dormant (banjhi) bud of tea [Camellia sinensis (L.) O. Kuntze] using subtractive hybridization approach. Plant Physiol Bioch 49:565–571

    Article  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Oxborough K, Morison JI, Baker NR (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J Exp Bot 54:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Li P, Koornneef M (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci U S A 108:3436–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP, Ye W, Wang M, Yan XD (2009) Climate change and drought: a risk assessment of crop yield impacts. Clim Res 39:31–46

    Article  CAS  Google Scholar 

  • Lin SK, Lin J, Liu QL, Ai YF, Ke YQ, Chen C, Zhang ZY, He H (2014) Time-course of photosynthesis and non-structural carbon compounds in the leaves of tea plants (Camellia sinensis L.) in response to deficit irrigation. Agr Water Manage 144:98–106

    Article  Google Scholar 

  • Lindemose S, Oshea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SC, Yao MZ, Ma CL, Jin JQ, Ma JQ, Li CF, Chen L (2015) Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Sci Hortic 184:129–141

    Article  CAS  Google Scholar 

  • Liu SC, Xu YX, Ma JQ, Wang WW, Chen W, Huang DJ, Fang J, Li XJ, Chen L (2016) Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress. Physiol Plant 158:435–451

    Article  CAS  PubMed  Google Scholar 

  • Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119:1091–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Maritim TK, Kamunya SM, Mireji P, Mwendia V, Muoki RC, Cheruiyot EK, Wachira FN (2015) Physiological and biochemical responses of tea (Camellia sinensis L. O Kuntze) to water-deficit stress. J Hortic Sci Biotechnol 90:395–400

    Article  CAS  Google Scholar 

  • Masoumi A, Nabati J, Mohammad K (2017) The influence of drought stress on photosynthetic pigments and some metabolic contents of two Kochia scoparia ecotypes in saline condition. Adv Biores 8:55–61

    Google Scholar 

  • Mediavilla S, Escudero A, Heilmeier H (2001) Internal leaf anatomy and photosynthetic resource-use efficiency: interspecific and intraspecific comparisons. Tree Physiol 21:251–259

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Yadav SK (2012) Characterization of novel small RNAs from tea (Camellia sinensis L.). Mol Biol Rep 39:3977–3986

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Muoki RC, Paul A, Kumar S (2012) A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein 3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr. Genomics 12:565–571

    CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Netto LA, Jayaram KM, Puthur JT (2010) Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency. Physiol Mol Biol Plants 16:359–367

    Article  PubMed  Google Scholar 

  • Nevo E, Bolshakova MA, Martyn GI, Musatenko LI, Sytnik K, Pavléek T, Behatav A (2000) Drought and light anatomical adaptive leaf strategies in three woody species caused by microclimatic selection at “Evolution Canyon” Israel. Israel J Plant Sci 48:33–46

    Google Scholar 

  • Ng’etich WK, Stephens W (2001) Responses of tea to environment in Kenya. 1. Genotype x environment interactions for total dry matter production and yield. Exp Agric 37:333–342

    Google Scholar 

  • Nixon DJ, Burgess PJ, Sanga BNK, Carr MKV (2001) A comparison of the responses of mature and young clonal tea to drought. Exp Agric 37:391–402

    Article  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492

    Article  CAS  Google Scholar 

  • Panda RK, Stephens W, Matthews R (2003) Modelling the influence of irrigation on the potential yield of tea (Camellia sinensis) in North-East India. Exp Agric 39:181–198

    Article  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove Bruguiera parviflora. Trees Struct Funct 18:167–174

    Article  CAS  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP (2007) Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotech Rep 1:37–48

    Article  Google Scholar 

  • Pastenes C, Pimentel P, Lillo J (2005) Leaf movements and photoinhibition in relation to water stress in field-grown beans. J Exp Bot 56:425–433

    Article  CAS  PubMed  Google Scholar 

  • Patra B, Ray S, Richter A, Majumder AL (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245:143–152

    Article  CAS  PubMed  Google Scholar 

  • Pego JV, Smeekens SCM (2000) Plant fructokinases: a sweet family get-together. Trends Plant Sci 5:531–536

    Article  CAS  PubMed  Google Scholar 

  • Pita P, Pardos JA (2001) Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol 21:599–607

    Article  CAS  PubMed  Google Scholar 

  • Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Article  Google Scholar 

  • Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. The Arabidopsis Book 6:e0117

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rhodes D, Samaras T (1994) Genetic control of osmoregulation in plants. In: Strange SK (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, pp 347–361

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivero RM, Shulaev V, Blumwald E (2009) Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol 150:1530–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rontein D, Bassat G, Hanson HD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  CAS  PubMed  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160:415–423

    Article  CAS  PubMed  Google Scholar 

  • Samarah NH, Alqudah AM, Amayreh JA, McAndrews GM (2009) The effect of late-terminal drought stress on yield components of four barley cultivars. J Agron Crop Sci 195:427–441

    Article  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl transferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1459

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants–biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  CAS  PubMed  Google Scholar 

  • Sharma PN, Kumar S (2005) Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J Bios 30:231–235

    Article  CAS  Google Scholar 

  • Sharma PN, Kumar N, Bisht SS (1994) Effect of zinc deficiency on chlorophyll contents, photosynthesis, and water relations of cauliflower plants. Photosynthetica 30:353–359

    CAS  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15:267–280

    Article  Google Scholar 

  • Singh B, Singh G (2004) Influence of soil water regime on nutrient mobility and uptake by Dalbergia sissoo seedlings. Trop Ecol 45:337–340

    Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Stoop JHM, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Tambussi EA, Bartoli CG, Beltrano J, Guiamet JJ, Arans JL (2000) Oxidative damage to thylakoid proteins in water stressed leaves of wheat (Triticum aestivum). Physiol Plant 108:398–404

    Article  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    Article  CAS  Google Scholar 

  • Tony M, Samson K, Charles M, Paul M, Richard M, Mark W, Stomeo F, Sarah S, Martina K, Francis W (2016) Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis. J Plant Biotechnol 43:302–310

    Article  Google Scholar 

  • Upadhyaya H, Panda SK (2004a) Responses of Camellia sinensis to drought and rehydration. Biol Plant 48:597–600

    Article  Google Scholar 

  • Upadhyaya H, Panda SK (2004b) Antioxidant efficiency and biochemical variations in five clones of Camellia sinensis L. Physiol Mol Biol Plants 10:115–120

    CAS  Google Scholar 

  • Upadhyaya H, Panda SK (2013) Abiotic stress responses in tea [Camellia sinensis L (O) Kuntze]: an overview. Rev Agr Sci 1:1–10

    Article  Google Scholar 

  • Upadhyaya H, Panda SK, Dutta BK (2008) Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant 30:457–468

    Article  CAS  Google Scholar 

  • Upadhyaya H, Dutta BK, Panda SK (2013) Zinc modulates drought-induced biochemical damages in tea [Camellia sinensis (L) O Kuntze]. J Agric Food Chem 61:6660–6670

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhu Y, Wang L, Liu X, Liu Y, Phillips J, Deng X (2009) A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta 230:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Xin H, Wang M, Ma Q, Wang L, Kaleri NA, Wang Y, Li X (2016) Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality. Front Plant Sci 7:385

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fan K, Wang J, Ding ZT, Wang H, Bi CH, Zhang YW, Sun HW (2017) Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. J Plant Physiol 219:91–99

    Article  CAS  PubMed  Google Scholar 

  • Wijeratne MA, Fordhan R, Anandacumaraswamy A (1998) Water relations of clonal tea (Camellia sinensis L.) with reference to drought resistance: II. Effect of water stress. Trop Agri Res Exten 1:74–80

    Google Scholar 

  • Zheng C, Wang Y, Ding Z, Zhao L (2016) Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in Camellia sinensis. Front Plant Sci 7:1858

    PubMed  PubMed Central  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic Res 1:14029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu M, Simons B, Zhu N, Oppenheimer DG, Chen S (2010) Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. J Proteome 73:790–805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qian, W., Hu, J., Zhang, X., Zhao, L., Wang, Y., Ding, Z. (2018). Response of Tea Plants to Drought Stress. In: Han, WY., Li, X., Ahammed, G. (eds) Stress Physiology of Tea in the Face of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-13-2140-5_4

Download citation

Publish with us

Policies and ethics