Skip to main content

Wavefunctions and Optical Gain in \( \text{In}_{0.3} {\text{Ga}}_{0.7} {\text{As}}/{\text{GaAs}}_{0.4} {\text{Sb}}_{0.6} \) Type-II Double Quantum Well Nanoheterostructure Under External Uniaxial Strain

  • Conference paper
  • First Online:
Engineering Vibration, Communication and Information Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 478))

Abstract

Variations in wavefunction confinement under external uniaxial strain are observed to affect the optical gain obtained in type-II quantum well nanodimension heterostructures. This paper reports the wavefunctions and optical gain realized in \( {\text{In}}_{0.3} {\text{Ga}}_{0.7} {\text{As}}/{\text{GaAs}}_{0.4} {\text{Sb}}_{0.6} \) type-II double QW heterostructure under uniaxial strain along [001]. Energy bands, wavefunctions of confinement states in the structure and optical gain of the heterostructure under electromagnetic field perturbation are presented. The \( 6 \times 6 \) k·p Hamiltonian matrix is considered, and Luttinger–Kohn model has been applied for the electronic band structure calculations. Optical gain spectra of the double QW nanoheterostructure under external uniaxial strain of 1, 2 and 5 GPa, respectively, is calculated. The optical gain curve shows a significant improvement in gain under external uniaxial strain along [001] at 300 K. For a charge carrier injection of \( 8 \times 10^{12} /{\text{cm}}^{2} \), the optical gain is 9170 in x polarization. The heterostructure is seen to be operating in the energy range of 0.65–0.8 eV (1549–1907 nm). Thus, a wide range wavelength tuning can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyo, S.K., Pan, W.: Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb. J. Appl. Phys. 118(19), 195705 (2015)

    Article  Google Scholar 

  2. Gruendl, T., Grasse, C., Sprengel, S., Vizbaras, K., Boehm, G., Meyer, R., Amann, M.C.: Type-II quantum wells for InP based mid-IR devices. In: Conference Proceedings of ‘Mid Infrared Optoelectronics: Materials and Devices’, pp. 115–116 (2012)

    Google Scholar 

  3. Sprengel, S., Veerabathran, G.K., Alexander, A., Köninger, A., Boehm, G., Grasse, C., Amann, M.C.: InP-based type-II heterostructure lasers for wavelengths up to 2.7 μm. Proc. SPIE 9382, 93820U (2015)

    Google Scholar 

  4. Sprengel, S., Grasse, C., Wiecha, P., Andrejew, A., Gruendl, T., Boehm, G., Meyer, R., Amann, M.C.: InP-based type-II quantum-well lasers and LEDs. IEEE J. Sel. Top. Quantum Electron. 19(4), 1900909 (2013)

    Article  Google Scholar 

  5. Chang, C.H., Li, Z.L., Hong-Ting, L., Pan, C.H., Lee, C.P., Lin, G., Lin, S.D.: Low-threshold short-wavelength infrared InGaAs/GaAsSb ‘W’-type QW laser on InP substrate. IEEE Photon. Technol. Lett. 27(3), 225–228 (2015)

    Article  Google Scholar 

  6. Chang, C.H., Li, Z.L., Pan, C.H., Hong-Ting, L., Lee, C.P., Lin, S.D.: Room-temperature mid-infrared “M”-type GaAsSb/InGaAs quantum well lasers on InP substrate. J. Appl. Phys. 115(6), 063104 (2014)

    Article  Google Scholar 

  7. Nirmal, H.K., Nisha, Y., Dalela, S., Rathi, A., Siddiqui, M.J., Alvi, P.A.: Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40 Sb0.60 nano-heterostructure under high pressure. Phys. E Low Dimens. Syst. Nanostruct. 80, 36–42 (2016)

    Article  Google Scholar 

  8. Pan, C.H., Chang, C.H., Lee, C.P.: Room temperature optically pumped 2.56-lasers with “W” type InGaAs/GaAsSb quantum wells on InP substrates. IEEE Photon. Technol. Lett. 24(13), 1145–1147 (2012)

    Article  Google Scholar 

  9. Chen, B., Jiang, W.Y., Holmes Jr, A.L.: Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes. Opt. Quant Electron 44(3–5), 103–109 (2012)

    Article  Google Scholar 

  10. Singh, A.K., Riyaj, M., Anjum, S.G., Nisha, Y., Rathi, A., Siddiqui, M.J., Alvi, P.A.: Anisotropy and optical gain improvement in type-II \( {\text{In}}_{0.3} {\text{Ga}}_{0.7} {\text{As}}/{\text{GaAs}}_{0.4} {\text{Sb}}_{0.6} \) nano-scale heterostructure under external uniaxial strain. Superlattices Microstruct. 98, 406–415 (2016)

    Google Scholar 

  11. Hu, J., Xu, X.G., Stotz, J.A.H., Watkins, S.P., Curzon, A.E., Thewalt, M.L.W., Matine, N., Bolognesi, C.R.: Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metal organic vapor phase epitaxy. Appl. Phys. Lett. 73(19), 2799–2801 (1998)

    Article  Google Scholar 

  12. Pan, C.H., Lee, C.P.: Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications. J. Appl. Phys. 113(4), 043112 (2013)

    Article  Google Scholar 

  13. Chen, B., Holmes, A.L., Khalfin, V., Kudryashov, I., Onat, B.M.: Modeling of the type-II InGaAs/GaAsSb quantum well designs for mid-infrared laser diodes by k·p method. Laser Technol. Def. Secur. VIII 8381, 83810F. International Society for Optics and Photonics (2012)

    Google Scholar 

  14. Jin, C., QingQing, X., Chen, J.X.: Growth mechanism and optical properties of InGaAs/GaAsSb Su-perlattice structures. Sci. China Phys. Mech. Astron 58(4), 1–5 (2015)

    Article  Google Scholar 

  15. Bogdanov, E.V., Kissel, H., Kolokolov, K.I., Ya, N.: Minina: TM/TE polarization tuning and switching in tensile strained p-AlGaAs/GaAsP/n-AlGaAs heterostructures by uniaxial compression. Semicond. Sci. Technol. 31(3) 035008 (2016)

    Article  Google Scholar 

  16. Minina, N.Y., Bogdanov, E.V., Shirokov, S.S.: Uniaxial compression influence on valence sub-bands energy spectrum and electroluminescence in n-AlGaAs/GaAsP/p-AlGaAs diode structures. J. Phys. Conf. Ser. 377(1), 012096. IOP Publishing (2012)

    Google Scholar 

  17. Bogdanov, E.V., Minina, N.Y., Tomm, J.W., Kissel, H.: Effect of uniaxial stress on electroluminescence, valence band modification, optical gain, and polarization modes in tensile strained p-AlGaAs/GaAsP/n-AlGaAs laser diode structures: numerical calculations and experimental results. J. Appl. Phys. 112(9), 093113 (2012)

    Article  Google Scholar 

  18. Andreev, E.V., Bogdanov, E.V., Kissel, H., Kolokolov, K.I., Minina, N.Y., Shirokov, S.S., Yunovich, A.E.: Electroluminescence and band structure in p-AlxGa1-xAs/GaAs1-yPy/n-AlxGa1-xAs under uniaxial compression. High Press. Res. 29(4), 495–499 (2009)

    Article  Google Scholar 

  19. Riyaj, M., Singh, A.K., Sandhya, K., Rathi, A., Alvi, P.A.: Optical properties of type-I GaAsP/AlGaAs nano-heterostructure under external uniaxial strain. In: AIP Conference Proceedings, vol. 1832, no. 1, p. 120022. AIP Publishing (2017)

    Google Scholar 

  20. Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97(4) 869 (1955)

    Article  Google Scholar 

  21. Luttinger, J.M.: Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev. 102(4), 1030 (1956)

    Article  Google Scholar 

  22. Chang, C.S., Chuang, S.L.: Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE J. Sel. Topics Quantum Electron. 1(2), 218–229 (1995)

    Article  Google Scholar 

  23. Chuang, S.L.: Physics of Optoelectronic Devices. Wiley (1995)

    Google Scholar 

  24. Zhao, H., Arif, R.A., Ee, Y.K., Tansu, N.: Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for lasers and light-emitting diodes. IEEE J. Quantum Electron. 45(1), 66–78 (2009)

    Article  Google Scholar 

  25. Sun, Y., Thompson, S.E., Nishida, T.: Strain effect in semiconductors: theory and device applications. Springer Science & Business Media (2009)

    Google Scholar 

  26. Harrison, P.: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley (2005)

    Google Scholar 

  27. Zory, P.S.: Quantum Well Lasers. Academic Press (1993)

    Google Scholar 

  28. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Konstantin I. Kolokolov (Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia) for his kind support to the research work. Amit Rathi and A.K. Singh acknowledge the financial support from Manipal University, Jaipur 303007, Rajasthan, India under the project seed grant: MUJ/REGR/1467/13. P.A. Alvi would also like to thank ‘Banasthali Center for Research & Education in Basic Sciences’ under the CURIE program supported by the Department of Science and Technology (DST), Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A.K., Rathi, A., Riyaj, M., Alvi, P.A. (2019). Wavefunctions and Optical Gain in \( \text{In}_{0.3} {\text{Ga}}_{0.7} {\text{As}}/{\text{GaAs}}_{0.4} {\text{Sb}}_{0.6} \) Type-II Double Quantum Well Nanoheterostructure Under External Uniaxial Strain. In: Ray, K., Sharan, S., Rawat, S., Jain, S., Srivastava, S., Bandyopadhyay, A. (eds) Engineering Vibration, Communication and Information Processing. Lecture Notes in Electrical Engineering, vol 478. Springer, Singapore. https://doi.org/10.1007/978-981-13-1642-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1642-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1641-8

  • Online ISBN: 978-981-13-1642-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics