Skip to main content
Log in

Growth mechanism and optical properties of InGaAs/GaAsSb Su-perlattice structures

  • Article
  • Optics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we report the growth of GaAsSb and its crystalline property under various Sb2/As2 flux ratios and growth temperatures. We simulated the incorporation difference between Sb2 and As2 by using a non-equilibrium thermodynamic model. Our study of GaAsSb growth has successfully yielded, high quality InGaAs/GaAsSb Type II superlattice for which the optical properties were characterized by photoluminescence at different excitation power and temperature. A blue-shift in luminescence peak energy with excitation power was observed and was described by a non-equilibrium carrier density model. We measured and analyzed the dependences of peak energy and integrated intensity on temperature. Two thermal processes were observed from intensity dependent photoluminescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deutsch1 C, Benz1 A, Detz H, et al. Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP. Appl Phys Lett, 2010, 97: 261110–3

    Article  ADS  Google Scholar 

  2. Deutsch1 C, Kral M l, Detz H, et al. High performance InGaAs/GaAsSb terahertz quantum cascade lasers operating up to 142 K. Appl Phys Lett, 2012, 101: 211117–4

    Article  ADS  Google Scholar 

  3. Maëro S, Vaulchier L, Guldner Y, et al. Magnetic-field assisted performance of InGaAs/GaAsSb terahertz quantum cascade lasers. Appl Phys Lett, 2013, 103: 051116–4

    Article  ADS  Google Scholar 

  4. Deutsch C, Detz H, Zederbauer T, et al. Probing scattering mechanisms with symmetric quantum cascade lasers. Opt Express, 2013, 21: 7209–7215

    Article  ADS  Google Scholar 

  5. Chen W, Chen B, Yuan J, et al. Bulk and interfacial deep levels observed in In0.53Ga0.47As/GaAs0.5Sb0.5 multiple quantum well photodiode. Appl Phys Lett, 2012, 101: 052107–5

    Article  ADS  Google Scholar 

  6. Chen B, Yuan J, Holmes A L. Dark current modeling of InP based SWIR and MWIR InGaAs/GaAsSb type-II MQW photodiodes. Opt Quantum Electron, 2013, 45: 271–277

    Article  Google Scholar 

  7. Sidhu R, Duan N, Campbel J C, et al. A long-wavelength photodiode on InP using lattice-matched GaInAs-GaAsSb type-II quantum wells. IEEE Photon Technol Lett, 2005, 17: 2715–2717

    Article  ADS  Google Scholar 

  8. Sidhu R, Zhang L, Tan N, et al. 2.4 μm cutoff wavelength avalanche photodiode on InP substrate. Electron Lett, 2006, 42: 181–182

    Article  Google Scholar 

  9. Inada H, Mori H, Nagai Y, et al. MOVPE grownInGaAs/GaAsSb typeII quantum well photodiode for SWIR focal plane array. In: Proc. SPIE 8012, Infrared Technology and Applications XXXVII, 2011. 801220–5

    Google Scholar 

  10. Yonezawa Y, Hiraike R, Miura K, et al. Growth and characterization of strain-compensated InGaAs/GaAsSb type II multiple quantum wells on InP substrate. Physica E, 2010, 42: 2781–2783

    Article  ADS  Google Scholar 

  11. Okada T, Weatherly G C, McComb D W. Growth of strained InGaAs layers on InP substrates. J Appl Phys, 1997, 81: 2185–2196

    Article  ADS  Google Scholar 

  12. Genova F, Papuzza C, Rigo C, et al. Effect of InP substrate thermal degradation on MBE InGaAs layers. J Cryst Growth, 1984, 69: 635–638

    Article  ADS  Google Scholar 

  13. Hiyamizu S, Fujii T, Muto S, et al. MBE growth of InGaAsInGaAlAs heterostructures for applications to high-speed devices. J Cryst Growth, 1987, 81: 349–358

    Article  ADS  Google Scholar 

  14. Egorov Y A, Kovsh A R, Ustinov V M, et al. A thermodynamic analysis of the growth of III-V compounds with two volatile group V elements by molecular-beam epitaxy. J Cryst Growth, 1998, 188: 69–74

    Article  ADS  Google Scholar 

  15. Liu W K, Santos M B. Thin films: Heteroepitaxial systems. Word Sci, 1998, 75: 76

    Google Scholar 

  16. Ye Z C, Shu Y C, Cao C X. Thermodynamic analysis of growth of ternary III–V semiconductor materials by molecular-beam epitaxy. Trans Nonferrous Met Soc China, 2011, 21: 146–151

    Article  Google Scholar 

  17. Genty F, Almuneau G, Chusseau L, et al. Growth and characterization of vertical cavity structures on InP with GaAsSb/AlAsSb Bragg mirrors for 1.55 m emission. J Cryst Growth, 1999, 201/202: 1024–1027

    Article  ADS  Google Scholar 

  18. Mochizuki K, Nishinaga T. MBE growth of GaAs1−x Sbx and InyGa1−y As and application of BCF theory to study alloy compound. Jpn J Appl Phys, 1988, 27: 1585–1592

    Article  ADS  Google Scholar 

  19. Ledentsov N N, Bohrer J, Beer M, et al. Radiative states in type-II GaSb/GaAs quantum wells. Phys Rev B, 1995, 52: 14058–14066

    Article  ADS  Google Scholar 

  20. Chiu Y S, Ya M H, Su W S, et al. Properties of photolminescence in type-II GaAsSb/GaAs multiple quantum wells. J Appl Phys, 2002, 92: 5810–5812

    Article  ADS  Google Scholar 

  21. Miura K, Iguchi Y, Tsubokura M, et al. The growth of high quality GaAsSb and type-II InGaAs/GaAsSb superlattice structure. J Appl Phys, 2013, 113: 143506–5

    Article  ADS  Google Scholar 

  22. Ongstad A P, Kaspi R, Moeller C E. Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices. J Appl Phys, 2001, 89: 2185–2188

    Article  ADS  Google Scholar 

  23. Hoffman D M. Minority Carrier Dynamics of Type-II InAs/GaSb Superlattice Photodiodes via Optical and Electrical Characterization. Dissertation for Doctoral Degree. Illionis: Northwestern University, 2009

    Google Scholar 

  24. Wei Y J, Bae J, Gin A, et al. High quality type II InAs/GaSb superlattices with cutoff wavelength 3.7 m using interface engineering. J Appl Phys, 2003, 94:4720–4722

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianXin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Xu, Q. & Chen, J. Growth mechanism and optical properties of InGaAs/GaAsSb Su-perlattice structures. Sci. China Phys. Mech. Astron. 58, 1–5 (2015). https://doi.org/10.1007/s11433-014-5601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5601-3

Keywords

Navigation