Skip to main content

Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress

  • Chapter
  • First Online:
Survival Strategies in Extreme Cold and Desiccation

Abstract

Drought is one of the abiotic stresses which impairs the plant growth/development and restricts the yield of many crops throughout the world. Stomatal closure is a common adaptation response of plants to the onset of drought condition. Stomata are microscopic pores on the leaf epidermis, which regulate the transpiration/CO2 uptake by leaves. Stomatal guard cells can sense various abiotic and biotic stress stimuli from the internal and external environment and respond quickly to initiate closure under unfavorable conditions. Stomata also limit the entry of pathogens into leaves, restricting their invasion. Drought is accompanied by the production and/or mobilization of the phytohormone, abscisic acid (ABA), which is well-known for its ability to induce stomatal closure. Apart from the ABA, various other factors that accumulate during drought and affect the stomatal function are plant hormones (auxins, MJ, ethylene, brassinosteroids, and cytokinins), microbial elicitors (salicylic acid, harpin, Flg 22, and chitosan), and polyamines . The role of various signaling components/secondary messengers during stomatal opening or closure has been a matter of intense investigation. Reactive oxygen species (ROS) , nitric oxide (NO) , cytosolic pH, and calcium are some of the well-documented signaling components during stomatal closure. The interrelationship and interactions of these signaling components such as ROS, NO, cytosolic pH, and free Ca2+ are quite complex and need further detailed examination.

Low temperatures can have deleterious effects on plants. However, plants evolved protection mechanisms to overcome the impact of this stress. Cold temperature inhibits stomatal opening and causes stomatal closure. Cold-acclimated plants often exhibit marked changes in their lipid composition, particularly of the membranes. Cold stress often leads to the accumulation of ABA, besides osmolytes such as glycine betaine and proline. The role of signaling components such as ROS, NO, and Ca2+ during cold acclimation is yet to be established, though the effects of cold stress on plant growth and development are studied extensively. The information on the mitigation processes is quite limited. We have attempted to describe consequences of drought and cold stress in plants, emphasizing stomatal closure. Several of these factors trigger signaling components in roots, shoots, and atmosphere, all leading to stomatal closure. A scheme is presented to show the possible signaling events and their convergence and divergence of action during stomatal closure. The possible directions for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ABI1:

Abscisic acid insensitive 1

ABI2:

Abscisic acid insensitive 2

ASA/Acetyl-SA:

Acetylsalicylic acid

CPKs:

Calcium-dependent protein kinases

ET:

Ethylene

H2S:

Hydrogen sulfide

MAPKs:

Mitogen-activated protein kinases

MeSA:

Methyl salicylate

MJ:

Methyl jasmonate

NO:

Nitric oxide

NOA:

Nitric acid associated

NR:

Nitrate reductase

OST1:

Open stomata 1

PAs:

Polyamines

QUAC:

Quick anion channel

ROS:

Reactive oxygen species

SA:

Salicylic acid

SLAC:

Slow anion channels

References

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  CAS  PubMed  Google Scholar 

  • Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200:1049–1063

    CAS  PubMed  Google Scholar 

  • Agurla S, Raghavendra AS (2016) Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors. Front Plant Sci 7:1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Agurla S, Gayatri G, Raghavendra AS (2014) Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 43:89–96

    Article  CAS  PubMed  Google Scholar 

  • Agurla S, Gayatri G, Raghavendra AS (2017) Signal transduction components in guard cells during stomatal closure by plant hormones and microbial elicitors. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress. Wiley, Hoboken

    Google Scholar 

  • Agurla S, Gayatri G, Raghavendra AS (2018) Polyamines increase nitric oxide and reactive oxygen species in guard cells of Arabidopsis thaliana during stomatal closure. Protoplasma. https://doi.org/10.1007/s00709-017-1139-3 (In Press)

    Article  PubMed  CAS  Google Scholar 

  • Albert B, Le CahĂ©rec F, Niogret MF, Faes P, Avice JC, Leport L, Bouchereau A (2012) Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions. Planta 236:659–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Aliniaeifard S, van Meeteren U (2013) Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? J Exp Bot 64:3551–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen DJ, Ratner K, Giller YE, Gussakovsky EE, Shahak Y, Ort DR (2000) An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J Exp Bot 51:1893–1902

    Article  CAS  PubMed  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    Article  CAS  PubMed  Google Scholar 

  • Bak G, Lee EJ, Lee Y, Kato M, Segami S, Sze H, Maeshima M, Hwang JU, Lee Y (2013) Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25:2202–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA- induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  CAS  PubMed  Google Scholar 

  • Chater C, Gray JE, Beerling DJ (2013) Early evolutionary acquisition of stomatal control and development gene signalling networks. Curr Opin Plant Biol 16:638–646

    Article  CAS  PubMed  Google Scholar 

  • Chater CC, Oliver J, Casson S, Gray JE (2014) Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytol 202:376–391

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Liang CS, Kao AL, Yang CC (2010) HHP1, a novel signaling component in the cross-talk between the cold and osmotic signaling pathways in Arabidopsis. J Exp Bot 61:3305–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi Y, Lee Y, Jeon BW, Staiger CJ, Lee Y (2008) Phosphatidylinositol 3-and 4-phosphate modulate actin filament reorganization in guard cells of day flower. Plant Cell Environ 31:366–377

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signaling of water shortage. Plant J 52:167–174

    Article  CAS  PubMed  Google Scholar 

  • Cona A, Rea G, Botta M, Corelli F, Federico R, Angelini R (2006) Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L. J Exp Bot 57:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Fan LM, Stunff HL, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signaling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423:651–654

    Article  CAS  PubMed  Google Scholar 

  • Coursol S, Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22:R396–R397

    Article  CAS  PubMed  Google Scholar 

  • Cummins WR, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99:347–351

    Article  CAS  PubMed  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate-stomata action under the control of phytohormones in drought stress condition. Front Plant Sci 4:1–10

    Article  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trend Plant Sci 21:677–685

    Article  CAS  Google Scholar 

  • Dempsey DMA, Klessig DF (2017) How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans. BMC Biol 15:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A 99:16314–16318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hooley R, Hancock JT, Neill SJ (2006) Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47:907–916

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  • DistĂ©fano AM, GarcĂ­a-Mata C, Lamattina L, Laxalt AM (2008) Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31:187–194

    Article  PubMed  CAS  Google Scholar 

  • DistĂ©fano AM, Scuffi D, GarcĂ­a-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide induced stomatal closure. Planta 236:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Drerup MM, SchlĂĽcking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569

    Article  CAS  PubMed  Google Scholar 

  • Drew AP, Bazzaz FA (1982) Effect of night temperature on daytime stomatal conductance in early and late successional plants. Oecologia 54:76–79

    Article  CAS  PubMed  Google Scholar 

  • Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83:475–488

    Article  CAS  PubMed  Google Scholar 

  • Du S, Jin Z, Liu D, Yang G, Pei Y (2017) Hydrogen sulphide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol 120:112–119

    CAS  Google Scholar 

  • Eremina M, Rozhon W, Poppenberger B (2016) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N et al (2009) Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50:2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Gao XQ, Wang XL, Ren F, Chen J, Wang XC (2009) Dynamics of vacuoles and actin filaments in guard cells and their roles in stomatal movement. Plant Cell Environ 32:1108–1116

    Article  CAS  PubMed  Google Scholar 

  • GarcĂ­a-Mata C, Lamattina L (2013) Gasotransmitters are emerging as new guard cell signaling molecules and regulators of leaf gas exchange. Plant Sci 202:66–73

    Article  CAS  Google Scholar 

  • Gayatri G, Agurla S, Raghavendra AS (2013) Nitric oxide in guard cells as an important secondary messenger during stomatal closure. Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Gayatri G, Agurla S, Kuchitsu K, Anil K, Podile AR, Raghavendra AS (2017) Stomatal closure and rise in ROS/NO of Arabidopsis guard cells by tobacco microbial elicitors: Cryptogein and Harpin. Front Plant Sci 8:1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilroy S, Read N, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346:769–771

    Article  CAS  PubMed  Google Scholar 

  • Goh CH, Kinoshita T, Oku T, Shimazaki KI (1996) Inhibition of blue light-dependent H+ pumping by abscisic acid in Vicia guard-cell protoplasts. Plant Physiol 111:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS (2008) Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. Plant Cell Environ 31:1717–1724

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanstein SM, Felle HH (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiol 130:940–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao F, Zhao S, Dong H, Zhang H, Sun L, Miao C (2010) Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. J Integr Plant Biol 52:298–307

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JM, Ma XG, Zhang Y, Sun TF, Xu FF, Chen YP, Liu X, Yue M (2013) Role and interrelationship of Gα protein, hydrogen peroxide, and nitric oxide in ultraviolet B-induced stomatal closure in Arabidopsis leaves. Plant Physiol 161:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Ye W, Munemasa S, Nakamura Y, Mori IC, Murata Y (2014) Cyclic adenosine 5′-diphosphoribose (cADPR) cyclic guanosine 3′, 5′-monophosphate positively function in Ca2+ elevation in methyl jasmonate-induced stomatal closure, cADPR is required for methyl jasmonate-induced ROS accumulation NO production in guard cells. Plant Biol 16:1140–1144

    CAS  PubMed  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JU, Jeon BW, Hong D, Lee Y (2011) Active ROP2 GTPase inhibits ABA-and CO2-induced stomatal closure. Plant Cell Environ 34:2172–2182

    Article  CAS  PubMed  Google Scholar 

  • Irving HR, Gehring CA, Parish RW (1992) Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci U S A 89:1790–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MM, Ye W, Matsushima D, Munemasa S, Okuma E, Nakamura Y, Biswas S, Mano JI, Murata Y (2016) Reactive carbonyl species mediate aba signaling in guard cells. Plant Cell Physiol 57:2552–2563

    Article  CAS  PubMed  Google Scholar 

  • Jacob T, Ritchie S, Assmann SM, Gilroy S (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci U S A 96:12192–12197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing LI, Hou ZH, Liu GH, Hou LX, Xin LI (2012) Hydrogen sulfide may function downstream of nitric oxide in ethylene-induced stomatal closure in Vicia faba L. J Integr Agric 11:1644–1653

    Article  CAS  Google Scholar 

  • Joudoi T, Shichiri Y, Kamizono N, Akaike T, Sawa T, Yoshitake J, Yamada N, Iwai S (2013) Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell 25:558–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Do Choi Y, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamatham S, Neela KB, Pasupulati AK, Pallu R, Singh SS, Gudipalli P (2016) Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis. Phytochemistry 126:11–22

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khokon MA, Jahan MS, Rahman T, Hossain MA, Muroyama D, Minami I, Munemasa S, Mori IC, Nakamura Y, Murata Y (2011a) Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. Plant Cell Environ 34:1900–1906

    Article  CAS  PubMed  Google Scholar 

  • Khokon MAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011b) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443

    Article  CAS  PubMed  Google Scholar 

  • Khokon MA, Salam MA, Jammes F, Ye W, Hossain MA, Uraji M, Nakamura Y, Mori IC, Kwak JM, Murata Y (2015) Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana. Plant Biol 17:946–952

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim K, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, BÓ§hmer M, Hu H, Nishimura N, Schroeder JL (2010) Guard cell signal transduction network: advance in understanding abscisic acid, CO2 and Ca2+ signaling. Annu Rev Plant Biol 61:561–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klessig DF, Tian M, Choi HW (2016) Multiple targets of salicylic acid and its derivatives in plants and animals. Front Immunol 7:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolla VA, Vavasseur A, Raghavendra AS (2007) Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis. Planta 225:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Kollist H, Nuhkat M, Roelfsema MR (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62

    Article  CAS  PubMed  Google Scholar 

  • Kurbidaeva AS, Novokreshchenova MG (2011) Genetic control of plant resistance to cold. Russ J Genet 47:646–661

    Article  CAS  Google Scholar 

  • Kwak JM, Mori I, Pei ZM, Leonhardt N, Torres MA, Dangl JL et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LarquĂ©-Saavedra A (1978) Antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris. Physiol Plant 43:126–128

    Article  Google Scholar 

  • LarquĂ©-Saavedra A (1979) Stomatal closure in response to acetyl salicylic acid treatment. Z Pflanzenphysiol 93:371–375

    Article  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laxalt AM, GarcĂ­a-Mata C, Lamattina L (2016) The dual role of nitric oxide in guard cells: promoting and attenuating the ABA and phospholipid-derived signals leading to the stomatal closure. Front Plant Sci 7:476

    Article  PubMed  PubMed Central  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:15837–15842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Lee SS, Jung WY, Park HJ, Lim BR, Kim HS, Ahn JC, Cho HS (2016) The OsCYP19-4 gene is expressed as multiple alternatively spliced transcripts encoding isoforms with distinct cellular localizations and PPIase activities under cold stress. Int J Mol Sci 17:1154

    Article  CAS  PubMed Central  Google Scholar 

  • Li J, Wang XQ, Watson MB, Assmann SM (2000) Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287:300–303

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ji L, Yang X, Meng Q, Guo S (2012) The protective mechanisms of CaHSP26 in transgenic tobacco to alleviate photoinhibition of PSII during chilling stress. Plant Cell Rep 31:1969–1979

    Article  CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Han SW, Lee SC (2013) Arabidopsis PYL8 plays an important role for ABA signaling and drought stress responses. Plant Pathol J 29:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Baek W, Jung J, Kim JH, Lee SC (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16:15251–15270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Xia Z, Wang M, Zhang X, Yang T, Wu J (2013) Overexpression of a maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco. Plant Physiol Biochem 73:114–120

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Ma Y, She XP, Yang SS (2012) Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H2O2) levels in guard cells in Vicia faba. Sci China Life Sci 55:974–983

    Article  CAS  PubMed  Google Scholar 

  • MacRobbie EA (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc Lond Ser B Biol Sci 353:1475

    Article  CAS  Google Scholar 

  • Malcheska F, Ahmad A, Batool S, MĂĽller HM, Ludwig-MĂĽller J, Kreuzwieser J, Randewig D, Hänsch R, Mendel RR, Hell R, Wirtz M (2017) Drought-enhanced xylem sap sulfate closes stomata by affecting ALMT12 and guard cell ABA synthesis. Plant Physiol 174:798–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros DB, Daloso DM, Fernie AR, Nikoloski Z, AraĂşjo WL (2015) Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. Plant Cell Environ 38:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signaling pathway. Plant J 25:295–303

    Article  CAS  PubMed  Google Scholar 

  • Misra BB, Acharya BR, Granot D, Assmann SM, Chen S (2015) The guard cell metabolome: functions in stomatal movement and global food security. Front Plant Sci 6:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori IC, Pinontoan R, Kawano T, Muto S (2001) Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol 42:1383–1388

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion and Ca2+- permeable channels and stomatal closure. PLoS Biol 4:1749–1762

    Article  CAS  Google Scholar 

  • Moschou PN, Roubelakis-Angelakis KA (2014) Polyamines and programmed cell death. J Exp Bot 65:1285–1296

    Article  CAS  PubMed  Google Scholar 

  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemasa S, Mori IC, Murata Y (2011) Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signal Behav 6:939–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munemasa S, Hauser F, Park J, Waadt R, Brandt B, Schroeder JI (2015) Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr Opin Plant Biol 28:154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata Y, Mori IC, Munemasa S (2015) Diverse stomatal signaling and the signal integration mechanism. Annu Rev Plant Biol 66:369–392

    Article  CAS  PubMed  Google Scholar 

  • Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63

    Article  CAS  PubMed  Google Scholar 

  • Ng CKY, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410:596–599

    Article  CAS  PubMed  Google Scholar 

  • Nishimura N, Sarkeshik A, Nito K, Park S-Y, Wang A, Carvalho PC et al (2010) PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61:290–299

    Article  CAS  PubMed  Google Scholar 

  • NoguĂ©s S, Allen DJ, Morison JI, Baker NR (1999) Characterization of stomatal closure caused by ultraviolet-B radiation. Plant Physiol 121:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pornsiriwong W, Estavillo GM, Chan KX, Tee EE, Ganguly D, Crisp PA, Phua SY, Zhao C, Qiu J, Park J, Yong MT (2017) A chloroplast retrograde signal, 3′-phosphoadenosine 5′-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. ELife 6:e23361

    Article  PubMed  PubMed Central  Google Scholar 

  • Pottosin I, Velarde-BuendĂ­a AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. J Exp Bot 65:1271–1283

    Article  CAS  PubMed  Google Scholar 

  • Puli MR, Rajsheel P, Aswani V, Agurla S, Kuchitsu K, Raghavendra AS (2016) Stomatal closure induced by phytosphingosine-1-phosphate and sphingosine-1-phosphate depends on nitric oxide and pH of guard cells in Pisum sativum. Planta 244:831–841

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Reddy KB (1987) Action of proline on stomata differs from that of abscisic acid, G-substances, or methyl jasmonate. Plant Physiol 83:732–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rai VK, Sharma SS, Sharma S (1986) Reversal of ABA-induced stomatal closure by phenolic compounds. J Exp Bot 37:129–134

    Article  CAS  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Saradadevi R, Palta JA, Siddique KHM (2017) ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Front Plant Sci 8:1251

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawinski K, Mersmann S, Robatzek S, Böhmer M (2013) Guarding the green: pathways to stomatal immunity. Mol Plant Microbe Interact 26:626–632

    Article  CAS  PubMed  Google Scholar 

  • Schiøtt M, Palmgren MG (2005) Two plant Ca2+ pumps expressed in stomatal guard cells show opposite expression patterns during cold stress. Physiol Plant 124:278–283

    Article  CAS  Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci U S A 87:9305–9309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  CAS  PubMed  Google Scholar 

  • Seo M, Koshiba T (2011) Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124:501–507

    Article  CAS  PubMed  Google Scholar 

  • She XP, Song XG (2008) Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. J Integr Plant Biol 50:1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ye T, Zhu JK, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65:4119–4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Ann Rev Plant Biol 58:219–247

    Article  CAS  Google Scholar 

  • Song XG, She XP, Zhang B (2008) Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. Physiol Plant 132:514–525

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Miao Y, Song CP (2014) Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol 202:1121–1140

    Article  CAS  Google Scholar 

  • StaxĂ©n I, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci U S A 96:1779–1784

    Article  PubMed  PubMed Central  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate-and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussmilch FC, McAdam SAM (2017) Surviving a dry future: abscisic acid (ABA)-mediated plant mechanisms for conserving water under low humidity. Plants 6:54

    Article  PubMed Central  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  CAS  PubMed  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, Masuda C, Miura A, Nakamura Y, Mori IC, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1 in abscisic acid induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VatĂ©n A, Bergmann DC (2012) Mechanisms of stomatal development: an evolutionary view. Evo Devo 3:11

    Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  CAS  PubMed  Google Scholar 

  • Vilela B, Pagès M, Riera M (2015) Emerging roles of protein kinase CK2 in abscisic acid signaling. Front Plant Sci 6:966

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signaling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A 112:613–618

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S (1999) pH as a stress signal. Plant Growth Regul 29:87–99

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (1997) Xylem sap pH increase: a drought signal received at the apoplastic face of the guard cell that involves the suppression of saturable abscisic acid uptake by the epidermal symplast. Plant Physiol 113:559–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmer C, Fricker M (1996) Stomata, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165:759–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Adachi Y, Nakamura Y, Munemasa S, Mori IC, Murata Y (2016) Involvement of OST1 protein kinase and PYR/PYL/RCAR receptors in methyl jasmonate-induced stomatal closure in Arabidopsis guard cells. Plant Cell Physiol 57:1779–1790

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21:599–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101:9508–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Chen S, Harmon AC (2014) Protein phosphorylation in stomatal movement. Plant Signal Behav 9:e972845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu M, Dai S, Chen S (2012a) The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Front Biol 7:96–112

    Article  CAS  Google Scholar 

  • Zhu M, Dai S, Zhu N, Booy A, Simons B, Yi S, Chen S (2012b) Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. J Proteome Res 11:3728–3742

    Article  PubMed  CAS  Google Scholar 

  • Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010) Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154:1232–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH (2015) Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell 27:445–460

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work on stomatal guard cells is supported by grants to ASR of a JC Bose National Fellowship (No. SR/S2/JCB-06/2006) from the Department of Science and Technology and another from the Council of Scientific and Industrial Research (CSIR) (No. 38 (1404)/15/EMR-II), both in New Delhi. SA is supported by a Senior Research Fellowship of University Grants Commission. SG is supported by BBL fellowship (UoH). We also thank DBT-CREBB, DST-FIST, and UGC-SAP for support of infrastructure in department/school.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoshiyuki Murata or Agepati S. Raghavendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agurla, S., Gahir, S., Munemasa, S., Murata, Y., Raghavendra, A.S. (2018). Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_12

Download citation

Publish with us

Policies and ethics