Skip to main content
Log in

Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The presence of 2 mM bicarbonate in the incubation medium induced stomatal closure in abaxial epidermis of Arabidopsis. Exposure to 2 mM bicarbonate elevated the levels of H2O2 in guard cells within 5 min, as indicated by the fluorescent probe, dichlorofluorescein diacetate (H2DCF-DA). Bicarbonate-induced stomatal closure as well as H2O2 production were restricted by exogenous catalase or diphenylene iodonium (DPI, an inhibitor of NAD(P)H oxidase). The reduced sensitivity of stomata to bicarbonate and H2O2 production in homozygous atrbohD/F double mutant of Arabidopsis confirmed that NADP(H) oxidase is involved during bicarbonate induced ROS production in guard cells. The production of H2O2 was quicker and greater with ABA than that with bicarbonate. Such pattern of H2O2 production may be one of the reasons for ABA being more effective than bicarbonate, in promoting stomatal closure. Our results demonstrate that H2O2 is an essential secondary messenger during bicarbonate induced stomatal closure in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DPI:

Diphenylene iodonium

H2DCF-DA:

Dichlorofluorescein diacetate

MJ:

Methyl jasmonate

PI3P:

Phosphatidylinositol 3-phosphate

ROS:

Reactive oxygen species

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 55:373–379

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1999) The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22:629–637

    Article  CAS  Google Scholar 

  • Brearley J, Venis MA, Blatt MR (1997) The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203:145–154

    Article  CAS  Google Scholar 

  • Cross AR, Jones OTG (1986) The effect of the inhibitor diphenylene iodonium on superoxide-generating system of neutrophils. Biochem J 237:111–116

    PubMed  CAS  Google Scholar 

  • Edwards A, Bowling DJF (1985) Evidence for a CO2 induced proton extrusion pump in stomatal cells of Tradescantia virginiana. J Exp Bot 36:91–98

    Article  Google Scholar 

  • Ellson CD, Gobert-Gosse S, Anderson KE, Davidson K, Erdjument-Bromage H, Tempst P, Thuring JW, Cooper MA, Lim ZY et al (2001) PtdIns(3) P regulates the neutrophil oxidase complex by binding to the PX domain of p40(phox). Nature Cell Biol 3:679–682

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J (1995) Abscisic acid signaling. Curr Opin Cell Biol 7:232–238

    Article  PubMed  CAS  Google Scholar 

  • Hauser M, Eichelmann H, Heber U, Laisk A (1995) Chloroplast pH values and buffer capacities in darkened leaves as revealed by CO2 solubilization in vivo. Planta 196:199–204

    Article  CAS  Google Scholar 

  • Havir EA, McHale NA (1989) Regulation of catalase activity in leaves of Nicotiana sylvestris by high CO2. Plant Physiol 89:952–957

    PubMed  CAS  Google Scholar 

  • Jung JY, Kim YW, Kwak JM, Hwang JU, Young J, Schroeder JI, Hwang I, Lee Y (2002) Phosphatidylinositol 3- and 4-phosphate are required for normal stomatal movements. Plant Cell 14:2399–2412

    Article  PubMed  CAS  Google Scholar 

  • Kolla VA, Suhita D, Vavasseur A, Raghavendra AS (2004) Reevaluation of stomatal responses to bicarbonate in abaxial epidermis of Commelina benghalensis in comparison to the effects of abscisic acid. J Plant Biol 31:117–123

    CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2000) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inze D, van Montagu M (eds) Oxidative stress in plants. Harwood Academic Publishers, Amsterdam, pp 105–135

    Google Scholar 

  • Liochev SI, Fridovich I (2004) CO2 enhanced peroxidase activity of SOD1: The effects of pH. Free Radical Biol Med 36:1444–1447

    Article  CAS  Google Scholar 

  • MacKerness S, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Mansfield TA, Hertherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Mol Biol 41:55–75

    Article  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    PubMed  CAS  Google Scholar 

  • Melis A, Zeiger Z (1982) Chlorophyll a fluorescence transients in mesophyll and guard cells. Plant Physiol 69:642–647

    Article  PubMed  CAS  Google Scholar 

  • Montillet JL, Cacas JL, Garnier L, Montane MH, Douki T, Bessoule JJ, Polkowska-Kowalczyk L, Maciejewska U, Agnel JP, Vial A, Triantaphylides C (2004) The upstream oxylipin profile of Arabidopsis thaliana: a tool to scan for oxidative stresses. Plant J 40:439–451

    Article  PubMed  CAS  Google Scholar 

  • Morison JIL (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Farquhar G, Cowan I (eds) Stomatal Function. Stanford University Press, Stanford, California pp 229–251

    Google Scholar 

  • Mrinalini T, Latha YK, Raghavendra AS, Das VSR (1982) Stimulation and inhibition by bicarbonate of stomatal opening in epidermal strips of Commelina benghalensis. New Phytol 91:413–418

    Article  CAS  Google Scholar 

  • Murata Y, Pei Z-M, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    Article  PubMed  CAS  Google Scholar 

  • Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92–98

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Polle A, Pfinmann T, Chakrabarti S, Rennenberg H (1993) The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environ 16:311–316

    Article  CAS  Google Scholar 

  • Raschke K (1975) Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium. Planta 125:243–259

    Article  CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    Article  PubMed  CAS  Google Scholar 

  • Riazunnisa K, Padmavathi L, Bauwe H, Raghavendra AS (2006) Marked low requirement of added CO2 for photosynthesis by mesophyll protoplasts of pea (Pisum sativum): possible role of photorespiratory CO2 and carbonic anhydrase. Physiol Plant 128:763–792

    Article  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Schwanz P, Picon P, Vivin E, Dreyer JG, Polle P (1996) Response of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol 110:393–403

    PubMed  CAS  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes ROS production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki M (1983) Mode of HCO 3 -utilization by the cells of Chlamydomonas reinhardtii grown under ordinary air. Z Pflanzenphysiol 110:29–37

    CAS  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Bunce JA, Maas JL (2003) Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J Agric Food Chem 51:4315–4320

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, Hetherington AM (1997) Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol 114:1557–1560

    Article  PubMed  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Mansfield TA, Hetherington AM (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J 9:297–304

    Article  CAS  Google Scholar 

  • Willmer C, Fricker M (1996) Stomata 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Indo-French Centre for the promotion of Advanced Research (to A.S.R and A.V, No. 2203-1) and Council of Scientific and Industrial Research (No. 38(0949)/99/EMR-II) both from New Delhi; and a senior research fellowship (to V.A.K) from Institute of Life Science Grant to University of Hyderabad. We thank Professor Julian Schroeder for providing the atrbohD/F double mutant seeds of Arabidopsis. We thank C. S. Murthy, Sr. Scientific Officer, Central Instrumentation Laboratory for his constant help in using confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Raghavendra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolla, V.A., Vavasseur, A. & Raghavendra, A.S. Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis . Planta 225, 1421–1429 (2007). https://doi.org/10.1007/s00425-006-0450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0450-6

Keywords

Navigation