Skip to main content

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 8))

Abstract

The ever-increasing uses of microorganisms and enzymes in the food, medical, pharmaceutical, detergent, leather, and textile industries has triggered a great amount of research in “extreme” enzymology. In areas of research that are based on solving environmental problems, by methods such as bioremediation, considerable attention has been paid to enzymes/microorganisms that can survive in extreme environments. Such entities include thermostable and organic solvent-tolerating microorganisms/enzymes. The study of enzymes (such as amylases, proteases, lipases, and nitrilases) that can tolerate high organic solvent concentrations has revolutionized the way science and industry work together and evolve. Organic solvent-rich environments provide an edge with respect to enzyme behavior and applications as compared with aqueous environments. These behavioral attributes in organic solvent-rich environments include thermal stability, a positive shift in the thermodynamic equilibrium, simple removal of solvent from the system, and enhanced enantio-recognition and stereo-stability. Non-aqueous biocatalysis is a key area of research that has led us in various directions through the exploration of the stated properties of such enzymes. The applications of non-aqueous biocatalysis include the biocatalytic synthesis of cardiovascular drugs and anti-inflammatory agents, the resolution of racemic acids and alcohols, and fatty acid ester synthesis.

This chapter narrates the journey of these extremists—these solvent-tolerant microorganisms/enzymes—from the initial need for their identification to their multifarious applications in solving environmental, industrial, and biotechnological issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayat M, Mehrnia MR, Hosseinzadeh M, Sheikh-Sofla R (2015) Petrochemical wastewater treatment and reuse by MBR: a pilot study for ethylene oxide/ethylene glycol and olefin units. J Ind Eng Chem 25:265–271. https://doi.org/10.1016/j.jiec.2014.11.003

    Article  CAS  Google Scholar 

  • Bernal C, Guzman F, Illane A, Wilson L (2018) Selective and eco-friendly synthesis of lipoaminoacid-based surfactants for food, using immobilized lipase and protease biocatalysts. Food Chem 239:189–195. https://doi.org/10.1016/j.foodchem.2017.06.105

    Article  PubMed  CAS  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal H (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants – a review. Sci Total Environ 576:646–659

    Article  CAS  PubMed  Google Scholar 

  • Bloomer S, Adlercreutz P, Mattiasson B (1992) Facile synthesis of fatty acid esters in High Yields. Enzym Microb Technol 14:546–552

    Article  CAS  Google Scholar 

  • Cai WW, Su EZ, Zhu SJ, Ren YH, Wei DZ (2014) Characterization of a nitrilase from Arthrobacter aurescens CYC705 for synthesis of iminodiacetic acid. J Gen Appl Microbiol 60(6):207–214. https://doi.org/10.2323/jgam.60.207

    Article  PubMed  CAS  Google Scholar 

  • Chandanshive VV, Rane NR, Tamboli AS, Gholavec AR, Khandare RV, Govindwar SP (2017) Co-plantation of aquatic macrophytes Typha angustifolia and Paspalum scrobiculatum for effective treatment of textile industry effluent. J Hazard Mater 338:47–56

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Lim BR, Park YJ, Joo WH (2017) Improvement in solvent tolerance by exogenous glycerol in Pseudomonas sp. BCNU 106. Lett Appl Microbiol 65(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Choudhury P, Bhunia B (2015) Industrial application of lipase: a review. Biopharm J 1(2):41–47

    Google Scholar 

  • Classen T, Pietruszka J (2017) Complex molecules, clever solutions – enzymatic approaches towards natural product and active agent syntheses. Bioorg Med Chem 26(7):2185–1303. https://doi.org/10.1016/j.bmc.2017.06.045

    Article  CAS  Google Scholar 

  • Contesini FJ, Calzado F, Madeira JS, Rubio MV, Zubieta MP, de Melo RR, Gonçalves TA (2016) Aspergillus lipases: biotechnological and industrial application. Fungal Metab:639–666

    Google Scholar 

  • de Carvalho CC (2017) Whole cell biocatalysts: essential workers from nature to the industry. Microb Biotechnol 10(2):250–263

    Article  PubMed  Google Scholar 

  • Eun Bae J, Kim IJ, Nam KH (2017) Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode. Biochem Biophys Res Commun 493(1):666–670

    Article  CAS  Google Scholar 

  • Fernandes P, Ferreira BS et al (2003) Solvent tolerance in bacteria: role of efflux pumps and crossresistance with antibiotics. Int J Antimicrob Agents 22:211–216

    Article  CAS  PubMed  Google Scholar 

  • Gong SJ, Ming Z, Song J, Min Z, Hong Z (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142. https://doi.org/10.1186/1475-2859-11-142

    Article  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013:1–18. https://doi.org/10.1155/2013/329121

    Article  CAS  Google Scholar 

  • Halan B (2017) Growth of Pseudomonas taiwanensis VLB120∆C biofilms in the presence of n-butanol. Microb Biotechnol 10(4):745–755

    Article  CAS  PubMed  Google Scholar 

  • Han C, Yao P, Yuan J, Duan Y, Feng J, Wang M, Wub Q, Zhu D (2015) Nitrilase-catalyzed hyd: rolysis of 3-aminopropionitrile at high concentration with a tandem reaction strategy for shifting the reaction to β-alanine formation. J Mol Catal B Enzym 115:113–118. https://doi.org/10.1016/j.molcatb.2015.02.007

    Article  CAS  Google Scholar 

  • Hemamalini R, Khare SK (2016) Purification and characterization of active aggregates of an organic solvent tolerant lipase from Marinobacter sp. EMB5 Insights Enzyme Res 1(1):3

    Google Scholar 

  • Hong DK, Jang SH, Lee CW (2017) Gene cloning and characterization of a psychrophilic phthalate esterase with organic solvent tolerance from an Arctic bacterium Sphingomonas glacialis PAMC 26605. J Mol Catal B: Enzym 133:S337–S345. https://doi.org/10.1016/j.molcatb.2017.02.004

    Article  CAS  Google Scholar 

  • Hunt RW, Chinnasamy S, Bhatnagar A, Das KC (2010) Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl Biochem Biotechnol 162(8):2400–2414

    Article  CAS  PubMed  Google Scholar 

  • Jérôme F, Luque R, Liao Y, Dewaele A, Verboekend D, Sels BF (2017) Alkylphenols as bio-based solvents: properties, manufacture and applications. Wiley. https://doi.org/10.1002/9781119065357

  • Kamal S, Rehman S, Iqbal HMN (2016) Biotechnological valorization of proteases: from hyperproduction to industrial exploitation—a review. Environ Prog Sustain Energy 36(2):511–522. https://doi.org/10.1002/ep.12447

    Article  CAS  Google Scholar 

  • Kang LJ, Meng ZT, Hu C, Zhang Y, Guo HL, Li Q, Li M (2017) Screening, purification, and characterization of a novel organic solvent-tolerant esterase, Lip2, from Monascus purpureus strain M7. Extremophiles 21:345–355

    Article  CAS  PubMed  Google Scholar 

  • Koutinasa M, Yiangoua C, Natália M, Katerina O, Albert L, Francisco C, Ferreira VS (2018) Application of commercial and non-commercial immobilized lipases for biocatalytic production of ethyl lactate in organic solvents. Bioresour Technol 247:496–503. https://doi.org/10.1016/j.biortech.2017.09.130

    Article  CAS  Google Scholar 

  • Lade H, Kadam A, Paul D, Govindwar S (2015) Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes. EXCLI J 14:158–174. https://doi.org/10.17179/excli2014-642

  • Li XZ, Zhang L et al (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180(11):2987–2991

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Wang L, Reetz MT (2017) Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem 26:1241–1251. https://doi.org/10.1016/j.bmc.2017.05.021

    Article  PubMed  CAS  Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2(3):e201209017. https://doi.org/10.5936/csbj.201209017

    Article  PubMed  PubMed Central  Google Scholar 

  • Lidija T, Živkovića I, Živković LS, Beškoskic VP, Gopčevića KR, JokićdDragoslav BM, Radosavljeviće S, Karadžića IM (2017) The Candida rugosa lipase adsorbed onto titania as nano biocatalyst with improved thermostability and reuse potential in aqueous and organic media. J Mol Catal B Enzym 133(1):533–542. https://doi.org/10.1016/j.molcatb.2017.06.001

    Article  Google Scholar 

  • Liu ZQ, Baker PJ, Cheng F, Xue YP, Zheng Y-G, Shen Y-C (2013) Screening and improving the recombinant nitrilases and application in biotransformation of iminodiacetonitrile to iminodiacetic acid. PLoS One 8(6):67197. https://doi.org/10.1371/journal.pone.0067197

    Article  CAS  Google Scholar 

  • Ludmila M, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14(2):130–137. https://doi.org/10.1016/j.cbpa.2009.11.018

    Article  CAS  Google Scholar 

  • Madhu A, Chakraborty JN (2017) Developments in application of enzymes for textile processing. J Clean Prod 145:114–133

    Article  CAS  Google Scholar 

  • Mageswari A, Subramanian P, Chandrasekaran S, Karthikeyan S, Gothandam KM (2017) Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chem 217:18–27

    Article  CAS  PubMed  Google Scholar 

  • Maksimova YG, Gorbunova AN, Demakov VA (2017) Stereoselective biotransformation of phenylglycine nitrile by heterogeneous biocatalyst based on immobilized bacterial cells and enzyme preparation. Dokl Biochem Biophys 474(1):183–185. https://doi.org/10.1134/S1607672917030139

    Article  PubMed  CAS  Google Scholar 

  • Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M (2017) Agrochemicals and soil microbes: interaction for soil health. Soil Biol Biochem 49:139–152

    Article  CAS  Google Scholar 

  • Manefield M, Lee M, Koenig J (2017) The nature and relevance of solvent stress in microbes and mechanisms of tolerance. In: Microbial ecology of extreme environments, pp 201–213. https://doi.org/10.1007/978-3-319-51686-8_9

    Chapter  Google Scholar 

  • Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van WJH B, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez, Del Río JC, Rencoret J, Alcalde M (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35(6):815–831. https://doi.org/10.1016/j.biotechadv.2017.06.003

    Article  PubMed  CAS  Google Scholar 

  • Martınkova L, Rucka L, Nesvera J, Patek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33:8. https://doi.org/10.1007/s11274-016-2173-6

    Article  PubMed  CAS  Google Scholar 

  • Matsumae H, Furui M, Shibatani T (1993) Lipase-catalyzed asymmetric hydrolysis of 3-phenylglycidic acid ester, the key intermediate in the synthesis of diltiazem hydrochloride. J Ferment Bioeng 75(2):93–98. https://doi.org/10.1016/0922-338X(93)90216-U

    Article  CAS  Google Scholar 

  • Mazmouza R, Essadika I, Hamdaneb D, Méjeana A, Plouxac O (2018) Characterization of CyrI, the hydroxylase involved in the last step of cylindrospermopsin biosynthesis: binding studies, site-directed mutagenesis and stereoselectivity. Arch Biochem Biophys 647:1–9. https://doi.org/10.1016/j.abb.2018.04.007

    Article  CAS  Google Scholar 

  • Mehta A, Bodh U, Gupta R (2017) Fungal lipases: a review. J Biotech Res 8:58–77

    Google Scholar 

  • Miazek K, Kratky L, Sulc R, Jirout T, Aguedo M, Richel A, Goffin D (2017) Effect of organic solvents on microalgae growth, metabolism and industrial bioproducts extraction: a review. Int J Mol Sci 18(7):1429

    Article  PubMed Central  Google Scholar 

  • Molina-Santiago C, Udaondo Z (2017) Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 19(2):645–658

    Article  CAS  PubMed  Google Scholar 

  • Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN (2017) Low molecular weight xylanase from Trichoderma viride VKF3 for bio-bleaching of newspaper pulp. Bioresources 12(3):5264–5278

    Article  CAS  Google Scholar 

  • Ni K, Wang H, Zhang LZM, Zhang S, Ren Y, Wei D (2013) Efficient production of (R)-(−)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol 167(4):433–440. https://doi.org/10.1016/j.jbiotec.2013.07.024

    Article  PubMed  CAS  Google Scholar 

  • Nikama M, Patil S, Chaudhari A, Patil U, Khandare R, Govindwar S (2017) Biodegradation and detoxification of azo solvent dye by ethylene glycol tolerant ligninolytic ascomycete strain of Pseudocochliobolus verruculosus NFCCI 3818. Biocatal Agric Biotechnol 9:209–217. https://doi.org/10.1016/j.bcab.2017.01.004

    Article  Google Scholar 

  • Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2(4):121–131

    Article  Google Scholar 

  • Sharma R, Vashist S (2017) Mutated microbe for low cost production of high value commercial/s, TEMP/E-1/28366/2017-DEL, August 5, 2017

    Google Scholar 

  • Sikora A, Sroka WD, Siódmiak T, Marszall MR (2017) Kinetic resolution of (R,S)-atenolol with the use of lipases in various organic solvents. Curr Org Synth 14(5):747–754

    Article  CAS  Google Scholar 

  • Singh S, Banerjee UC (2005) Enantioselective hydrolysis of methoxyphenyl glycidic acid methyl ester [(±)-MPGM] by a thermostable and alkalostable lipase from Pseudomonas aeruginosa. J Mol Catal B Enzym 36(1–6):30–35. https://doi.org/10.1016/j.molcatb.2005.07.005

    Article  CAS  Google Scholar 

  • Singh S, Bajaj BK (2017) Agroindustrial/forestry residues as substrates for production of thermoactive alkaline protease from Bacillus licheniformis K-3 having multifaceted hydrolytic potential. Waste Biomass Valoriz 8(2):453–462

    Article  CAS  Google Scholar 

  • Sobariu DL, DIT F, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PF, Gavrilescu MN (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39(Pt A):125–134. https://doi.org/10.1016/j.nbt.2016.09.002

    Article  CAS  Google Scholar 

  • Sun H, Zhang H, Ang EL, Zhao H (2018) Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. Bioorg Med Chem 26(7):1275–1284. https://doi.org/10.1016/j.bmc.2017.06.043

    Article  PubMed  CAS  Google Scholar 

  • Suwannaphana S, Fufeungsombut E, Chim-anage APP (2017) A serine protease from newly isolated Bacillus sp. for efficient silk degumming, sericin degrading and colour bleaching activities. Int Biodeterior Biodegrad 117:141–149. https://doi.org/10.1016/j.ibiod.2016.12.009

    Article  CAS  Google Scholar 

  • Toushik SH, Lee KT, Lee JS, Kim KS (2017) Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries. J Food Sci 82(3):585–593

    Article  CAS  PubMed  Google Scholar 

  • Truppo MD (2017) Biocatalysis in the pharmaceutical industry: the need for speed. Med Chem Lett 8(5):476–480

    Article  CAS  Google Scholar 

  • Tseng WC, Wu TJ, Chang YJ, Cheng HW, Fang TY (2017) Overexpression and characterization of a recombinant l-ribose isomerase from Actinotalea fermentans ATCC 43279. J Biotechnol 259:168–174

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Su EZ, Wang W, Wei DZ (2014a) High yield synthesis of D-phenylglycine and its derivatives by nitrilase mediated dynamic kinetic resolution in aqueous-1-octanol biphasic system. Tetrahedron Lett 55(8):1448–1451. https://doi.org/10.1016/j.tetlet.2014.01.044

    Article  CAS  Google Scholar 

  • Qiu J, Su EZ, Wang HL, Cai WW, Wang W, Wei DZ (2014b) Cloning, overexpression, and characterization of a high enantioselective nitrilase from Sphingomonas wittichii RW1 for asymmetric synthesis of (R)-phenylglycine. Appl Biochem Biotechnol 173(2):365–377. https://doi.org/10.1007/s12010-014-0845-y

    Article  PubMed  CAS  Google Scholar 

  • Vafaeezadeh M, Alinezhad H (2016) Bronsted acidic ionic liquids: green catalysts for essential organic reactions. J Mol Liq 218:95–105. https://doi.org/10.1016/j.molliq.2016.02.017

    Article  CAS  Google Scholar 

  • Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60. https://doi.org/10.1016/j.molliq.2016.11.123

    Article  CAS  Google Scholar 

  • Vesela AB, Krenkova A, Martınkova L (2015) Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis. Mol Biotechnol 57(5):466–474. https://doi.org/10.1007/s12033-015-9840-y

    Article  PubMed  CAS  Google Scholar 

  • Wang HL, Gao WY, Sun HH, Chen LF, Zhang LJ, Wang XD, Wei DZ (2015a) Protein engineering of a nitrilase from Burkholderia cenocepacia J2315 for efficient and enantioselective production of (R)-o-chloromandelic acid. Appl Environ Microbiol 81(24):8469–8477. https://doi.org/10.1128/AEM.02688-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HL, Fan HY, Sun HH, Zhao L, Wei DZ (2015b) Process development for the production of (R)-(−)-mandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Org Process Res Dev 19(12):2012–2016. https://doi.org/10.1021/acs.oprd.5b00269

    Article  CAS  Google Scholar 

  • Wang M, Du J, Zhang D, Li X, Zhao J (2017) Modification of different pulps by homologous overexpression alkali-tolerant endoglucanase in Bacillus subtilis Y106. Sci Rep 7:3321. https://doi.org/10.1038/s41598-017-03215-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei Y, Xia S, He C, Xiong W, Xu H (2016) Highly enantioselective production of a chiral intermediate of sitagliptin by a novel isolate of Pseudomonas pseudoalcaligenes. Biotechnol Lett 38:841–846

    Article  CAS  PubMed  Google Scholar 

  • Xue YP, Wang YP, Xu Z, Liu ZQ, Shu XR, Jia DX, Zheng YG, Shen YC (2015) Chemoenzymatic synthesis of gabapentin by combining nitrilase-mediated hydrolysis with hydrogenation over Raney-nickel. Catal Commun 66:121–125. https://doi.org/10.1016/j.catcom.2015.03.035

    Article  CAS  Google Scholar 

  • Yamada H, Kobayashi M (2014) Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 60:1391–1400. https://doi.org/10.1271/bbb.60.1391

    Article  Google Scholar 

  • Yoshida T, Mitsukura K, Mizutani T, Nakashima R, Shimizu Y, Kawabata H, Nagasawa T (2013) Enantioselective synthesis of (S)-2-cyano-2-methylpentanoic acid by nitrilase. Biotechnol Lett 35(5):685–688. https://doi.org/10.1007/s10529-012-1131-0

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashist, S., Sharma, R. (2018). Why Settle for Mediocre, When Extremophiles Exist?. In: Egamberdieva, D., Birkeland, NK., Panosyan, H., Li, WJ. (eds) Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications. Microorganisms for Sustainability, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-13-0329-6_16

Download citation

Publish with us

Policies and ethics