Skip to main content

The Nature and Relevance of Solvent Stress in Microbes and Mechanisms of Tolerance

  • Chapter
  • First Online:
Microbial Ecology of Extreme Environments

Abstract

Solvent stress in microbiology refers to exposure of microorganisms to chemical compounds with relatively low polarity. Environments in which solvent stress is intense are traditionally grouped with other extreme environments with hazardous temperatures, pressures, salinity, acidity and radiation. Extreme Environments with respect to solvents include natural oil or organohalide contaminated environments and industrial settings in which microbes are used to produce solvents or other compounds in dual phase reactor systems. Stress is typically thought to be exerted by interference with membrane function but the ability of solvents to interfere with protein structure is perhaps an underestimated target for solvent stress. It is a significant concern that selection for efflux pumps through exposure to solvents is likely to select for resistance to antimicrobials. Other solvent tolerance mechanisms include membrane adaptation and solvent biodegradation along with more generic strategies such as biofilm formation, motility and endospore formation. Whilst mechanisms of tolerance in aerobic bacteria have been extensively studied, less work has been done on anaerobic bacteria and archaea. An understanding of the nature of solvent stress and microbial strategies to adapt has relevance in natural and biotechnology settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asako H, Nakajima H et al (1997) Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl Environ Microbiol 63(4):1428–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45(16):6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bren A, Eisenbach M (2000) How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J Bacteriol 182(24):6865–6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chidthaisong A, Conrad R (2000) Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil. Soil Biol Biochem 32(7):977–988

    Article  CAS  Google Scholar 

  • Futagami T, Fukaki Y et al (2013) Evaluation of the inhibitory effects of chloroform on ortho-chlorophenol- and chloroethene-dechlorinating Desulfitobacterium strains. AMB Express 3(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  • Das T, Sehar S, et al. (2014). Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation. Plos One 9(3)

    Google Scholar 

  • Das T, Sehar S et al (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep 5(6):778–786

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Ferreira BS et al (2003) Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int J Antimicrob Agents 22:211–216

    Article  CAS  PubMed  Google Scholar 

  • Griebenow K, Klibanov AM (1996) On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J Am Chem Soc 118(47):11695–11700

    Article  CAS  Google Scholar 

  • Grostern A, Duhamel M et al (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW et al (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM et al (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nat 426(6964):344–352

    Article  CAS  Google Scholar 

  • Head IM, Jones DM et al (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182

    Article  CAS  PubMed  Google Scholar 

  • Heipieper HJ, Keweloh H et al (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57(4):1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irving RM, Elfarra AA (2013) Mutagenicity of the cysteine S-conjugate sulfoxides of trichloroethylene and tetrachloroethylene in the Ames test. Toxicol 306:157–161

    Article  CAS  Google Scholar 

  • Isken S, de Bont JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  PubMed  Google Scholar 

  • Kieboom J, Dennis JJ et al (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273:85–91

    Article  CAS  PubMed  Google Scholar 

  • Kitanidis PK, McCarthy PL (2012) Delivery and mixing in the subsurface: processes and design principles for in situ remediation. Springer, New York

    Google Scholar 

  • Koenig JC, Groissmeier KD et al (2014a) Tolerance of anaerobic bacteria to chlorinated solvents. Microbes Environ 29(1):23–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig J, Lee M, Manefield M (2014b) Aliphatic organochlorine degradation in sub-surface environments. Rev Environ Sci Bio/Technology 14(1):49–71

    Article  Google Scholar 

  • Lee M, Low A et al (2012) Complete chloroform dechlorination by organochlorine respiration and fermentation. Environ Microbiol 14(4):883–894

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Zhang L et al (1998) Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 180(11):2987–2991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZL (ed) (2011) Microbiology monographs: microbial stress tolerance for biofuels—Systems biology. Springer

    Google Scholar 

  • Lollar BS, Ballentine CJ (2009) Insights into deep carbon derived from noble gases. Nat Geosci 2(8):543–547

    Article  CAS  Google Scholar 

  • Maczulak A (2011) Clostridium. Encycl Microbiol 168–173

    Google Scholar 

  • Martin PAW, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55(10):2437–2442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, de Bont JAM et al (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51

    Article  CAS  PubMed  Google Scholar 

  • Mattos C, Ringe D (2001) Proteins in organic solvents. Curr Opin Struct Biol 11(6):761–764

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Von Netzer F et al (2014) Water droplets in oil are microhabitats for microbial life. Sci 345(6197):673–676

    Article  CAS  Google Scholar 

  • Moldowan JM, and Dahl J (1994) The molecular fossil record of oleanane and its relation to angiosperms. Sci 265(5173):768–71

    Article  CAS  Google Scholar 

  • Nicholson WL, Munakata N et al (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64(3):548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkart HC, White DC (1997) Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J Bacteriol 179(13):4219–4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Duque E et al (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Ann Rev Microbiol 56:743–768

    Article  CAS  Google Scholar 

  • Rickard AH, Leach SA et al (2002) Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl Environ Microbiol 68(7):3644–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20(3):655–660

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Duque E et al (2004) Fatty acid biosynthesis is involved in solvent tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol 6(4):416–423

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Molina L et al (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23(3):415–421

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K (2015) Metabolic regulation and coordination of the metabolism in bacteria in response to a variety of growth conditions. Adv Biochem Eng Biotechnol 1–51. doi: 10.1007/10_2015_320

  • Sikkema J, de Bont JAM et al (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomas CA, Welker NE et al (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres S, Pandey A et al (2011) Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol Adv 29(4):442–452

    Article  CAS  PubMed  Google Scholar 

  • Vamvakas S, Herkenhoff M et al (1989) Mutagenicity of tetrachloroethene in the ames test—metabolic activation by conjugation with glutathione. J Biochem Toxicol 4:21–27

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • Yung PY, Grasso LL et al (2016) Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep 6:19899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JK and ML were supported by Australian Research Council Linkage Project LP110200610. MM was supported by an August Wilhelm Scheer Visiting Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Manefield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manefield, M., Lee, M., Koenig, J. (2017). The Nature and Relevance of Solvent Stress in Microbes and Mechanisms of Tolerance. In: Chénard, C., Lauro, F. (eds) Microbial Ecology of Extreme Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-51686-8_9

Download citation

Publish with us

Policies and ethics