Skip to main content

Small at Size, Big at Impact: Microorganisms for Sustainable Development

  • Chapter
  • First Online:
Microbial Bioprospecting for Sustainable Development

Abstract

From being the first life originated on Earth ~3.8 billion years ago to the present time, microorganisms have enormously impacted the human, animal, and plant’s lives and global biogeochemical cycles in one way or another. These are widely distributed in almost all habitats and ecosystems on Earth, including the most hostile and extreme habitats which are otherwise uninhabitable to other organisms. Domain Bacteria and Archaea are composed entirely of prokaryotic microorganisms, whereas eukaryotic microbes, viz., fungi, algae, protozoa, slime molds, and water molds, belong to domain Eukarya. Archaea and bacteria represent the majority of life-forms on our planet. Recent estimate predicts 1011–1012 microbial species on Earth of which 99.9% microbial species are yet to be cultured in the laboratory. Ocean, soil, rhizosphere, human gut, animal body, etc. are some of the most densely populated microbial habitats. Microorganisms are excellent model organisms for the study of metabolism and genetics at cellular level. Considered as Earth’s greatest chemists, microorganisms have unparalleled metabolic capabilities, extraordinary adaptability, and remarkable survival strategies which undoubtedly make them the most successful living creatures. Most microbes are beneficial to humans, plants, and animals. These contribute significantly to ensure the quality of human life and in sustaining life on our planet. Microbes have established ecologically important symbiotic and nonsymbiotic associations with themselves, humans, plants, ruminants, vertebrates, and invertebrates. Incomparable importance of microorganisms led to the origin of concepts of microbiome, hologenome, and superorganism. Microorganisms offer numerous biotechnological compounds for human, animal and agriculture, and environment sustainability. These are the source of numerous bioproducts like antibiotics, biopharmaceuticals, single-cell proteins, organic acids, biofertilizers, biopesticides, enzymes, pigments, vitamins, biofuels, biocement, and many more. Harnessing microbial capabilities is undoubtedly the best possible sustainable solution to ever-increasing challenges of balanced diet, clean air, water, energy, medicine, and healthy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of amoebas: an update. Front Microbiol 7:349

    Article  Google Scholar 

  • Arnold JW, Roach J, Azcarate-Peril MA (2016) Emerging technologies for gut microbiome research. Trends Microbiol 24:887–901

    Article  CAS  Google Scholar 

  • Bandyopadhyay AA, Khetan A, Malmberg LH, Zhou W, Hu WS (2017) Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. J Ind Microbiol Biotechnol 44:785–797

    Article  CAS  Google Scholar 

  • Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350

    Article  CAS  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D III (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  CAS  Google Scholar 

  • Bennett GM, Abbà S, Kube M, Marzachì C (2016) Complete genome sequences of the obligate symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announc 4:e01604–e01615

    Article  Google Scholar 

  • Brock TD (1967) Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science 158:1012–1029

    Article  CAS  Google Scholar 

  • Bunge J, Willis A, Walsh F (2014) Estimating the number of species in microbial diversity studies. Ann Rev Stat Appl 1:427–445

    Article  Google Scholar 

  • Canganella F, Wiegel J (2014) Anaerobic thermophiles. Life 4:77–104

    Article  Google Scholar 

  • Carlton JM, Hirt RP, Silva JC et al (2007) Draft genome sequence of the sexually transmitted pathogen trichomonas vaginalis. Science 315:207–212

    Article  Google Scholar 

  • Chang YJ, Land M, Hauser L, Chertkov O, Del Rio TG, Nolan M, Copeland A, Tice H, Cheng JF, Lucas S, Han C et al (2011) Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21 T). Stand Genomic Sci 5:97

    Article  CAS  Google Scholar 

  • Checinska SA, Kumar RM, Pal D, Mayilraj S, Venkateswaran K (2017) Solibacillus kalamii sp. nov., isolated from a high-efficiency particulate arrestance filter system used in the international Space Station. Int J Syst Evol Microbiol 67:896–901

    Article  Google Scholar 

  • Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW (2017) Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 40:8–16

    Article  CAS  Google Scholar 

  • Clarke A (2014) The thermal limits to life on Earth. Int J Astrobiol 13:141–154

    Article  CAS  Google Scholar 

  • Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D (2017) Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat Rev Microbiol 15:243–254

    Article  CAS  Google Scholar 

  • Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ (2010) The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 1:77

    Article  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans–the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) 1830:3670–3695

    Article  CAS  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16

    Article  CAS  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652

    Article  CAS  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32

    Article  CAS  Google Scholar 

  • Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60:S129–S134

    Article  Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A 100:10020–10025

    Article  CAS  Google Scholar 

  • Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B12: a review and future perspectives. Microb Cell Factories 16:15

    Article  Google Scholar 

  • Ferrer-Miralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Factories 12:113

    Article  Google Scholar 

  • Fodor AA, DeSantis TZ, Wylie KM, Ye Y, Hepburn T, Hu P, Sodergren E, Liolios K, Huot-Creasy H, Birren BW, Earl AM (2012) The “most wanted” taxa from the human microbiome for whole genome sequencing. PLoS One 7:e41294

    Article  CAS  Google Scholar 

  • Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A (2013) Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 109:S35–S50

    Article  CAS  Google Scholar 

  • Gilbert JA, Neufeld JD (2014) Life in a world without microbes. PLoS Biol 12:e1002020

    Article  Google Scholar 

  • Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245

    Article  CAS  Google Scholar 

  • Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D (2017) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol doi: https://doi.org/10.1080/1040841X.2017.1332003. [Epub ahead of print], 44, 212

    Article  Google Scholar 

  • Hampton-Marcell JT, Lopez JV, Gilbert JA (2017) The human microbiome: an emerging tool in forensics. Microb Biotechnol 10:228–230

    Article  Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Article  CAS  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y (2016) A new view of the tree of life. Nat Microbiol 1:16048

    Article  CAS  Google Scholar 

  • Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881

    Article  CAS  Google Scholar 

  • Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A 109:16213–16216

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  Google Scholar 

  • Kinch MS, Patridge E, Plummer M, Hoyer D (2014) An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov Today 19:1283–1287

    Article  CAS  Google Scholar 

  • Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res Int 23:4358–4369

    Article  CAS  Google Scholar 

  • Krüger A, Schäfers C, Schröder C, Antranikian G (2017) Towards a sustainable biobased industry–Highlighting the impact of extremophiles. N Biotechnol. S1871-6784(16)32667-X

    Google Scholar 

  • Kung Y, Runguphan W, Keasling JD (2012) From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 1:498–513

    Article  CAS  Google Scholar 

  • Lebre PH, De Maayer P, Cowan DA (2017) Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15:285–296

    Article  CAS  Google Scholar 

  • Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Couté Y (2014) Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 111:4274–4279

    Article  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  Google Scholar 

  • Lippi G, Plebani M (2017) Statins for primary prevention of cardiovascular disease. Trends Pharmacol Sci 38:111–112

    Article  CAS  Google Scholar 

  • Lo WS, Huang YY, Kuo CH (2016) Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 40:855–874

    Article  CAS  Google Scholar 

  • Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113:5970–5975

    Article  CAS  Google Scholar 

  • Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102

    Article  CAS  Google Scholar 

  • Martin A, McMinn A (2017) Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol doi. https://doi.org/10.1017/S1473550416000483. Epub ahead of print

    Article  Google Scholar 

  • Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S (2016) Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Mar Drugs 14:97

    Article  Google Scholar 

  • Mirzaei MK, Maurice CF (2017) Menage a trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 15:397–408

    Article  CAS  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127

    Article  CAS  Google Scholar 

  • Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, Novozhilova T, Moissl-Eichinger C (2016) Resilient microorganisms in dust samples of the International Space Station-survival of the adaptation specialists. Microbiome 4:65

    Article  Google Scholar 

  • Moran NA, Bennett GM (2014) The tiniest tiny genomes. Annu Rev Microbiol 68:195–215

    Article  CAS  Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GE, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  Google Scholar 

  • Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539

    Article  Google Scholar 

  • O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2:17057

    Article  Google Scholar 

  • Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286

    Article  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  Google Scholar 

  • Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5:25

    Article  Google Scholar 

  • Pomeroy LR, Williams PJ, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33

    Article  Google Scholar 

  • Proal AD, Lindseth IA, Marshall TG (2017) Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes. Discover Med 23:51–60

    Google Scholar 

  • Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J (2012) Size-resolved emission rates of air-borne bacteria and fungi in an occupied classroom. Indoor Air 22:339–351

    Article  CAS  Google Scholar 

  • Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH (2015) An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia. PLoS Genet 11:e1004900

    Article  Google Scholar 

  • Remigi P, Zhu J, Young JP, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75

    Article  CAS  Google Scholar 

  • Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15:33

    Article  Google Scholar 

  • Sarkar P, Yarlagadda V, Ghosh C, Haldar J (2017) A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Med Chem Comm 8:516–533

    Article  CAS  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289

    Article  CAS  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Mariné MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  CAS  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  Google Scholar 

  • Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215

    Article  Google Scholar 

  • Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. App Microbio Biotechnol 95:1135–1154

    Article  CAS  Google Scholar 

  • Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radioduran. Microbiol Mol Biol Rev 75:133–191

    Article  CAS  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Article  Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    Article  CAS  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  CAS  Google Scholar 

  • Tamang JP, Shin DH, Jung SJ, Chae SW (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578

    PubMed  PubMed Central  Google Scholar 

  • Tighe S, Afshinnekoo E, Rock TM, McGrath K, Alexander N, McIntyre A, Ahsanuddin S, Bezdan D, Green SJ, Joye S, Johnson SS (2017) Genomic methods and microbiological technologies for profiling novel and extreme environments for the extreme microbiome project (XMP). J Biomol Tech 28:31–39

    Article  Google Scholar 

  • Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678

    Article  CAS  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Ann Rev Plant Biol 64:781–805

    Article  CAS  Google Scholar 

  • van Hylckama VJET, Veiga P, Zhang C, Derrien M, Zhao L (2011) Impact of microbial transformation of food on health – from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol 22:211–219

    Article  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe W (1998) Perspective: prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  Google Scholar 

  • Woese CR (1998) Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci U S A 95:11043–11046

    Article  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Nat Acad Sci U S A 74:5088–5090

    Article  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Singh, J., Singh, K. (2018). Small at Size, Big at Impact: Microorganisms for Sustainable Development. In: Singh, J., Sharma, D., Kumar, G., Sharma, N. (eds) Microbial Bioprospecting for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-0053-0_1

Download citation

Publish with us

Policies and ethics