Skip to main content

Microbial Ecosystem and Its Impact on Solving the Environmental Problems: A Molecular Approach

  • Chapter
  • First Online:
Environmental Biotechnology Vol. 1

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 44))

Abstract

As our admiration for the extent and complexity of microbial ecosystems grow, we can extrapolate how our new comprehension could shape our future. No doubt, microbes can alter their environments and can be harnessed to engineer our planet as well as our health. Indeed, even ecosystem restoration has deep appreciation for the role of microbes in shaping the relevant environment, by decomposition of biomass and recycling of nutrients. Although our present knowledge about evolutionary processes and metabolic mechanisms that fortify most microbial ecosystem dynamics is extremely limited, rapid advances in technologies that help elucidate these processes are set to increase the current rate of knowledge acquisition. Microbial ecology gives a new and safe way to make our environment pollution-free by degrading the contaminants from water to make it useful for humans. It changes the way how human diseases are being treated, by using microbes as prebiotics and probiotics and transfaunation procedures. Similarly, industrial processes that once relied on microbe-based technology to produce bioactive molecules that are extensively used in medical industry, chemical industry, food, and agriculture, as well as biofuel and bioelectricity give an alternative way to fulfill the demand of energy-hungry civilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AOA:

Ammonia-oxidizing archaea

AOB:

Ammonia-oxidizing bacteria

C:

Carbon

CO2:

Carbon dioxide

DCM:

Dichloromethane

DNA:

Deoxyribonucleic acid

EBPR:

Enhanced biological phosphorus removal

ECM:

Ectomycorrhizal

GAO:

Glycogen-accumulating organisms

N:

Nitrogen

NOB:

Nitrite-oxidizing bacteria

NPP:

Net primary productivity

OTUs:

Operational taxonomic unit

P:

Phosphorus

PAH:

Polycyclic aromatic hydrocarbons

PAO:

Polyphosphate-accumulating organisms

RNA:

Ribonucleic acid

SOM:

Soil organic matter

WWTPs:

Wastewater treatment plants

References

  • Abhilash PC, Srivastava S, Singh N (2011) Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere 82:56–63

    Article  CAS  PubMed  Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78

    Article  CAS  Google Scholar 

  • Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8:1732–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407:3024–3032

    Article  CAS  PubMed  Google Scholar 

  • Anderson T-H, Joergensen RG (1997) Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol Biochem 29:1033–1042

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, van Elsas JD, van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253

    Article  Google Scholar 

  • Austin AT, Vivanco L, González-Arzac A, Pérez LI (2014) There's no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Article  Google Scholar 

  • Bååth E (1998) Growth rates of bacterial communities in soils at varying pH: a comparison of the thymidine and leucine incorporation techniques. Microb Ecol 36:316–327

    Article  PubMed  Google Scholar 

  • Baath E, Berg B, Lohm U, Lundgren B, Lundkvist H, Thomas R, Soderstrom B, Wirén A (1980) Effects of experimental acidification and liming on soil organisms and decomposition in a Scots pine forest. Pedobiologia 20:85–100

    Google Scholar 

  • Bååth E, Frostegård Å, Pennanen T, Fritze H (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–240

    Article  Google Scholar 

  • Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616

    Article  CAS  PubMed  Google Scholar 

  • Ballyk MM, Jones DA, Smith HL (2001) Microbial competition in reactors with Wall attachment. Microb Ecol 41

    Google Scholar 

  • Bastin G, Dochain D (1991) On-line estimation and adaptive control of bioreactors. Elsevier, Amsterdam, 1990 (ISBN 0–444–88430-0). xiv+ 379 pp. Price US $146.25/Dfl. 285.00. Analytica Chimica Acta 243: 324

    Google Scholar 

  • Bending GD, Lincoln SD, Sørensen SR, Alun W Morgan J, Aamand J, Walker A (2003) In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Appl Environ Microbiol 69:827–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergkemper F, Kublik S, Lang F, Krüger J, Vestergaard G, Schloter M, Schulz S (2016a) Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil. J Microbiol Methods 125:91–97

    Article  CAS  PubMed  Google Scholar 

  • Bergkemper F, Schöler A, Engel M, Lang F, Krüger J, Schloter M, Schulz S (2016b) Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environ Microbiol 18:1988–2000

    Article  CAS  PubMed  Google Scholar 

  • Berlemont R, Martiny AC (2013) Phylogenetic distribution of potential cellulases in bacteria. Appl Environ Microbiol 79:1545–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlemont R, Martiny AC (2015) Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol 81:1513–1519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, Kuske CR (2014) Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol 80:3103–3112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhuiyan AB, Mokhtar MB, Toriman ME, Gasim MB, Ta GC, Elfithri R, Razman MR (2013) The environmental risk and water pollution: a review from the river basins around the world. Am Eurasian J Sustain Agric 7:126–136

    Google Scholar 

  • Blackall LL, Crocetti GR, Saunders AM, Bond PL (2002) A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie Van Leeuwenhoek 81:681–691

    Article  CAS  PubMed  Google Scholar 

  • Brabcová V, Nováková M, Davidová A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210:1369–1381

    Article  PubMed  CAS  Google Scholar 

  • Bradley AS, Pearson A, Sáenz JP, Marx CJ (2010) Adenosylhopane: the first intermediate in hopanoid side chain biosynthesis. Org Geochem 41:1075–1081

    Article  CAS  Google Scholar 

  • Braga RM, Dourado MN, Araújo WL (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47:86–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brzostek ER, Greco A, Drake JE, Finzi AC (2013) Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochemistry 115:65–76. https://doi.org/10.1007/s10533-012-9818-9

    Article  CAS  Google Scholar 

  • Caccavo F, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpinelli J, Krämer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelle CJ, Hug LA, Wrighton KC, Thomas BC, Williams KH, Wu D, Tringe SG, Singer SW, Eisen JA, Banfield JF (2013) Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat Commun 4

    Google Scholar 

  • Chamoun R, Aliferis KA, Jabaji S (2015) Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans. Front Microbiol 6:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229

    Article  CAS  PubMed  Google Scholar 

  • Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J (2015) Microbiomes of the dust particles collected from the international Space Station and Spacecraft Assembly Facilities. Microbiome 3:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yang Q, Huang T, Zhang Y, Ding R (2011) Enhanced bioremediation of soil contaminated with viscous oil through microbial consortium construction and ultraviolet mutation. World J Microbiol Biotechnol 27:1381–1389

    Article  CAS  PubMed  Google Scholar 

  • Chiu S-Y, Kao C-Y, Huang T-T, Lin C-J, Ong S-C, Chen C-D, Chang J-S, Lin C-S (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102:9135–9142

    Article  CAS  PubMed  Google Scholar 

  • Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790. https://doi.org/10.1099/00221287-142-4-785

    Article  CAS  PubMed  Google Scholar 

  • Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D, Blackall LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crocetti GR, Banfield JF, Keller J, Bond PL, Blackall LL (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processesb. Microbiology 148:3353–3364

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M (2001) In situ characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Taylor MW, Wagner M (2006) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489

    Article  CAS  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • De Wulf-Durand P, Bryant LJ, Sly LI (1997) PCR-mediated detection of acidophilic, bioleaching-associated bacteria. Appl Environ Microbiol 63:2944–2948

    Article  PubMed  PubMed Central  Google Scholar 

  • Dechesne A, Badawi N, Aamand J, Smets BF (2014) Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Front Microbiol 5:667

    Article  PubMed  PubMed Central  Google Scholar 

  • del Carmen Vargas-García M, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci Total Environ 431:62–67

    Article  CAS  Google Scholar 

  • Delmont TO, Simonet P, Vogel TM (2012) Describing microbial communities and performing global comparisons in the ‘omic era. ISME J 6:1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng M-D, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA (2005) Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng 7:201–214

    Article  CAS  PubMed  Google Scholar 

  • Deshusses MA (1997) Biological waste air treatment in biofilters. Curr Opin Biotechnol 8:335–339. doi: S0958-1669(97)80013-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Benetton X, Sevda S, Vanbroekhoven K, Pant D (2012) The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem Soc Rev 41:7228–7246

    Article  CAS  PubMed  Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621

    Article  PubMed  Google Scholar 

  • Dostrovsky NR, Towheed TE, Hudson RW, Anastassiades TP (2011) The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature. Osteoarthr Cartil 19:375–380. https://doi.org/10.1016/j.joca.2011.01.007

    Article  CAS  Google Scholar 

  • Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  PubMed  Google Scholar 

  • Drake JE, Darby BA, Giasson M-A, Kramer MA, Phillips RP, Finzi AC (2013) Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences 10:821

    Article  CAS  Google Scholar 

  • Dunbar J, Steven B, Mueller R, Hesse C, Zak DR, Kuske CR (2014) Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biol Biochem 76:227–234

    Article  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207

    Article  CAS  PubMed  Google Scholar 

  • Eichorst SA, Kuske CR (2012) Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol 78:2316–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eikelboom DH (1975) Filamentous organisms observed in activated sludge. Water Res 9:365–388

    Article  Google Scholar 

  • Ekundayo EO (2003) Effect of common pesticides used in the Niger delta basin of southern Nigeria on soil microbial populations. Environ Monit Assess 89:35–41

    Article  CAS  PubMed  Google Scholar 

  • ElMekawy A, Hegab HM, Dominguez-Benetton X, Pant D (2013) Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities. Bioresour Technol 142:672–682. https://doi.org/10.1016/j.biortech.2013.05.061

    Article  CAS  PubMed  Google Scholar 

  • Emerson JB, Keady PB, Brewer TE, Clements N, Morgan EE, Awerbuch J, Miller SL, Fierer N (2015) Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado front range flood. Environ Sci Technol 49:2675–2684

    Article  CAS  PubMed  Google Scholar 

  • Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB (2017) Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo T, Koizumi S, Tabata K, Ozaki A (2000) Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling. Appl Microbiol Biotechnol 53:257–261. https://doi.org/10.1007/s002530050017

    Article  CAS  PubMed  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esson KC, Lin X, Kumaresan D, Chanton JP, Colin Murrell J, Kostka JE (2016) Alpha-and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol 82:2363–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraldo-Gómez JD, Sansom MSP (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105

    Article  PubMed  CAS  Google Scholar 

  • Fernandez CW, Koide RT (2014) Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem 77:150–157

    Article  CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2011) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007. https://doi.org/10.1038/ismej.2011.159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395. https://doi.org/10.1073/pnas.12152101101215210110[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher CK, Mehta P (2014) The transition between the niche and neutral regimes in ecology. Proc Natl Acad Sci U S A 111:13111–13116. https://doi.org/10.1073/pnas.14056371111405637111[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fransson P, Andersson A, Norström S, Bylund D, Bent E (2016) Ectomycorrhizal exudates and pre-exposure to elevated CO2 affects soil bacterial growth and community structure. Fungal Ecol 20:211–224

    Article  Google Scholar 

  • Freedman ZB, Zak DR (2015) Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities. Mol Ecol 24:3170–3180

    Article  CAS  PubMed  Google Scholar 

  • Frey SD, Knorr M, Parrent JL, Simpson RT (2004) Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For Ecol Manag 196:159–171

    Article  Google Scholar 

  • Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Martin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316. https://doi.org/10.1007/s10533-014-0004-0

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, Bertilson S, Kirchmanj DL, Lovejoy C, Yager PL, Murray AE (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci U S A 109:17633–17638. https://doi.org/10.1073/pnas.12081601091208160109[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever HM, Styrvold OLAFB, Kaasen INGA, Strøm AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA (2013) Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci U S A 110:4651–4655. https://doi.org/10.1073/pnas.12177671101217767110[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert JA, Jansson JK, Knight R (2014) The earth microbiome project: successes and aspirations. BMC Biol 12:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  CAS  PubMed  Google Scholar 

  • Grady NG, Petrof EO, Claud EC (2016) Microbial therapeutic interventions. In: Microbial therapeutic interventions, Seminars in Fetal and Neonatal Medicine. Elsevier, pp 418–423

    Google Scholar 

  • Greben HA, Baloyi J, Sigama J, Venter SN (2009) Bioremediation of sulphate rich mine effluents using grass cuttings and rumen fluid microorganisms. J Geochem Explor 100:163–168

    Article  CAS  Google Scholar 

  • Grzebyk M, Poźniak G (2005) Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol 41:321–328

    Article  CAS  Google Scholar 

  • Gschwendtner S, Engel M, Lueders T, Buegger F, Schloter M (2016) Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings. Plant Soil 407:203–215

    Article  CAS  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie der Organismen allgemeine Grundzuge der organischen Formen-Wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte Descendenz-Theorie von Ernst Haeckel: Allgemeine Entwickelungsgeschichte der Organismen kritische Grundzuge der mechanischen Wissenschaft von den entstehenden Formen der Organismen, begrundet durch die Descendenz-Theorie: Verlag von Georg Reimer

    Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208

    Article  CAS  PubMed  Google Scholar 

  • Hazen TC, Rocha AM, Techtmann SM (2013) Advances in monitoring environmental microbes. Curr Opin Biotechnol 24:526–533

    Article  CAS  PubMed  Google Scholar 

  • Hesselmann RPX, Werlen C, Hahn D, van der Meer JR, Zehnder AJB (1999) Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Systematic and Applied Microbiology 22:454–465. https://doi.org/10.1016/S0723-2020(99)80055-1

    Article  CAS  PubMed  Google Scholar 

  • HoÈgberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, HoÈgberg MN, Nyberg G, Ottosson-LoÈfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789

    Article  Google Scholar 

  • Högberg MN, Blaško R, Bach LH, Hasselquist NJ, Egnell G, Näsholm T, Högberg P (2014) The return of an experimentally N-saturated boreal forest to an N-limited state: observations on the soil microbial community structure, biotic N retention capacity and gross N mineralisation. Plant Soil 381:45–60. https://doi.org/10.1007/s11104-014-2091-z

    Article  CAS  Google Scholar 

  • Hoppe B, Krüger D, Kahl T, Arnstadt T, Buscot F, Bauhus J, Wubet T (2015) A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagussylvatica and Piceaabies. Sci Rep 5:9456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain GS, Shin H-d, Li J, Wang M, Du G, Chen J, Liu L (2016) Metabolic engineering for amino-, oligo-, and polysugar production in microbes. Appl Microbiol Biotechnol 100:2523–2533

    Article  CAS  PubMed  Google Scholar 

  • Hug LA, Castelle CJ, Wrighton KC, Thomas BC, Sharon I, Frischkorn KR, Williams KH, Tringe SG, Banfield JF (2013) Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333–341

    Article  CAS  PubMed  Google Scholar 

  • Indrio F, Riezzo G, Raimondi F, Bisceglia M, Cavallo L, Francavilla R (2009) Effects of probiotic and prebiotic on gastrointestinal motility in newborns. J Physiol Pharmacol 60:27–31

    PubMed  Google Scholar 

  • Isobe K, Koba K, Otsuka S, Senoo K (2011) Nitrification and nitrifying microbial communities in forest soils. J For Res 16:351

    Article  CAS  Google Scholar 

  • Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV, Nicolau DV, Christen R (2001) Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Izumi H, Cairney JWG, Killham K, Moore E, Alexander IJ, Anderson IC (2008) Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in South-Eastern Queensland, Australia. FEMS Microbiol Lett 282:196–204

    Article  CAS  PubMed  Google Scholar 

  • Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  • Jia Y, Zhu J, Chen X, Tang D, Su D, Yao W, Gao X (2013) Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol 132:427–431

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB (1999) Importance of microbial ecology in the development of new mineral technologies. In: Amils R, Ballester A (eds) Importance of microbial ecology in the development of new mineral technologies, Process metallurgy. Elsevier, pp 645–656

    Google Scholar 

  • Johnston SR, Boddy L, Weightman AJ (2016) Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol 92

    Google Scholar 

  • Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J, Yeom J, Han J, Kim J, Park W (2012) Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils. J Microbiol 50:365–373

    Article  CAS  PubMed  Google Scholar 

  • Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A (2010) Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187:843–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Karamalidis AK, Evangelou AC, Karabika E, Koukkou AI, Drainas C, Voudrias EA (2010) Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresour Technol 101:6545–6552

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF, Siefert JL (2002) Life and the evolution of Earth9s atmosphere. Science 296:1066–1068

    Article  CAS  PubMed  Google Scholar 

  • Kelly CR, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A, Moore T, Wu G (2015) Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 149:223–237

    Article  PubMed  Google Scholar 

  • Keymer JE, Galajda P, Muldoon C, Park S, Austin RH (2006) Bacterial metapopulations in nanofabricated landscapes. Proc Natl Acad Sci 103:17290–17295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production – a review. Bioresour Technol 243:1194–1206. https://doi.org/10.1016/j.biortech.2017.07.085

    Article  CAS  PubMed  Google Scholar 

  • Kielak AM, Scheublin TR, Mendes LW, Van Veen JA, Kuramae EE (2016) Bacterial community succession in pine-wood decomposition. Front Microbiol 7:231

    PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Kim M, Kim W-S, Tripathi BM, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb Ecol 67:837–848

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Nielsen JL, Nielsen PH (2004) Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70:5383–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Könneke M, Bernhard AE, José R, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543

    Article  PubMed  CAS  Google Scholar 

  • Korkama T, Fritze H, Pakkanen A, Pennanen T (2007) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807

    Article  CAS  PubMed  Google Scholar 

  • Koutinas AA, Sypsas V, Kandylis P, Michelis A, Bekatorou A, Kourkoutas Y, Kordulis C, Lycourghiotis A, Banat IM, Nigam P (2012) Nano-tubular cellulose for bioprocess technology development. PLoS One 7:e34350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Lakshmi CV, Khanna S (2008) Microbial biodiversity and in situ bioremediation of endosulfan contaminated soil. Indian J Microbiol 48:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925

    Article  CAS  Google Scholar 

  • Lacava PT, Araújo WL, Marcon J, Maccheroni W, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  CAS  PubMed  Google Scholar 

  • Langdahl BR, Ingvorsen K (1997) Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N). FEMS Microbiol Ecol 23:275–283. https://doi.org/10.1016/S0168-6496(97)00032-9

    Article  CAS  Google Scholar 

  • Lau E, Dillard ZW, Dague RD, Semple AL, Wentzell WL (2015) High throughput sequencing to detect differences in methanotrophic Methylococcaceae and Methylocystaceae in surface peat, forest soil, and Sphagnum moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms 3:113–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laverman AM, Speksnijder AGCL, Braster M, Kowalchuk GA, Verhoef HA, Van Verseveld HW (2001) Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microb Ecol 42:35–45

    Article  CAS  PubMed  Google Scholar 

  • Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25

    Article  CAS  Google Scholar 

  • Li Y, Tian C, Tian H, Zhang J, He X, Ping W, Lei H (2012) Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol 96:1479–1487. https://doi.org/10.1007/s00253-012-4242-6

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Factories 10:99

    Article  CAS  Google Scholar 

  • Liu L, Liu Y, Shin H-d, Chen R, Li J, Du G, Chen J (2013) Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl Microbiol Biotechnol 97:6149–6158

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhu Y, Ma W, Shin H-d, Li J, Liu L, Du G, Chen J (2014) Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab Eng 24:61–69. https://doi.org/10.1016/j.ymben.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  • Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063–00016

    Article  Google Scholar 

  • Loeppmann S, Blagodatskaya E, Pausch J, Kuzyakov Y (2016) Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere. Soil Biol Biochem 92:111–118

    Article  CAS  Google Scholar 

  • Long X, Chen C, Xu Z, Linder S, He J (2012a) Abundance and community structure of ammonia oxidizing bacteria and archaea in a Sweden boreal forest soil under 19-year fertilization and 12-year warming. J Soils Sediments 12:1124–1133

    Article  CAS  Google Scholar 

  • Long X, Chen C, Xu Z, Oren R, He J-Z (2012b) Abundance and community structure of ammonia-oxidizing bacteria and archaea in a temperate forest ecosystem under ten-years elevated CO2. Soil Biol Biochem 46:163–171

    Article  CAS  Google Scholar 

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016a) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Mondéjar R, Zühlke D, Větrovský T, Becher D, Riedel K, Baldrian P (2016b) Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol Biofuels 9:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo Y, Su BO, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren RAM, Parton WJ (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. AIBS Bull 54:731–739

    Google Scholar 

  • Luu YS, Ramsay JA (2003) Review: Microbial mechanisms of accessing insoluble Fe (III) as an energy source. World J Microbiol Biotechnol 19:215–225

    Article  CAS  Google Scholar 

  • Ma Z-C, Liu N-N, Chi Z, Liu G-L, Chi Z-M (2015) Genetic modification of the marine-isolated yeast Aureobasidium melanogenum P16 for efficient pullulan production from inulin. Mar Biotechnol 17:511–522

    Article  CAS  Google Scholar 

  • Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ (2015) Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang Biol 21:3169–3180

    Article  PubMed  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegradation 70:141–147

    Article  CAS  Google Scholar 

  • Mao Y, Li X, Smyth EM, Yannarell AC, Mackie RI (2014) Enrichment of specific bacterial and eukaryotic microbes in the rhizosphere of switchgrass (Panicum virgatum L.) through root exudates. Environ Microbiol Rep 6:293–306. https://doi.org/10.1111/1758-2229.12152

    Article  CAS  PubMed  Google Scholar 

  • Markkola AM (1996) Resource allocation in ectomycorrhizal symbiosis in Scots pine affected by environmental changes. Oulun Yliopisto, Oulun

    Google Scholar 

  • Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge—a critical review. Water Res 38:793–817

    Article  CAS  PubMed  Google Scholar 

  • Marupakula S, Mahmood S, Finlay RD (2016) Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ Microbiol 18:1470–1483

    Article  CAS  PubMed  Google Scholar 

  • Matthies C, Erhard H-P, Drake HL (1997) Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J Basic Microbiol 37:335–343

    Article  CAS  Google Scholar 

  • Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110

    Article  CAS  PubMed  Google Scholar 

  • Morris JJ, Papoulis SE, Lenski RE (2014) Coexistence of evolving bacteria stabilized by a shared Black Queen function. Evolution 68:2960–2971. https://doi.org/10.1111/evo.12485

    Article  CAS  PubMed  Google Scholar 

  • Nelson MB, Martiny AC, Martiny JBH (2016) Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci 113:8033–8040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen PH, Roslev P, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic–aerobic activated sludge plants. Water Sci Technol 46:73–80

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PH, Kragelund C, Nielsen JL, Tiro S, Lebek M, Rosenwinkel K-H, Gessesse A (2005) Control of Microthrix parvicella in activated sludge plants by dosage of polyaluminium salts: possible mechanisms. CLEAN–Soil, Air, Water 33:255–261

    CAS  Google Scholar 

  • Nikolaki S, Tsiamis G (2013) Microbial diversity in the era of omic technologies. Biomed Res Int 2013

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102:18052–18056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyberg M, Heidorn T, Lindblad P (2015) Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J Biotechnol 215:35–43

    Article  CAS  PubMed  Google Scholar 

  • Ohishi A, Takahashi S, Ito Y, Ohishi Y, Tsukamoto K, Nanba Y, Ito N, Kakiuchi S, Saitoh A, Morotomi M (2010) Bifidobacterium septicemia associated with postoperative probiotic therapy in a neonate with omphalocele. J Pediatr 156:679–681

    Article  PubMed  Google Scholar 

  • Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV (2003) Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4:R55

    Article  PubMed  PubMed Central  Google Scholar 

  • Orandi S, Lewis DM, Moheimani NR (2012) Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. J Ind Microbiol Biotechnol 39:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Pajares S, Bohannan BJM (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    PubMed  PubMed Central  Google Scholar 

  • Panigrahi P (2014) Probiotics and prebiotics in neonatal necrotizing enterocolitis: new opportunities for translational research. Pathophysiology 21:35–46

    Article  PubMed  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884

    Article  CAS  PubMed  Google Scholar 

  • Patel RM, Denning PW (2013) Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? Clin Perinatol 40:11–25. https://doi.org/10.1016/j.clp.2012.12.002 S0095-5108(12)00135-2[pii]

  • Pennanen T (2001) Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH—a summary of the use of phospholipid fatty acids, Biolog® and 3H-thymidine incorporation methods in field studies. Geoderma 100:91–126

    Article  CAS  Google Scholar 

  • Peterson CN, Day S, Wolfe BE, Ellison AM, Kolter R, Pringle A (2008) A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ Microbiol 10:2257–2266

    Article  CAS  PubMed  Google Scholar 

  • Petrof EO, Khoruts A (2014) From stool transplants to next-generation microbiota therapeutics. Gastroenterology 146:1573–1582

    Article  PubMed  Google Scholar 

  • Petrof EO, Claud EC, Gloor GB, Allen-Vercoe E (2012) Microbial ecosystems therapeutics: a new paradigm in medicine? Benefic Microbes 4:53–65

    Article  Google Scholar 

  • Petrof EO, Gloor GB, Vanner SJ, Weese SJ, Carter D, Daigneault MC, Brown EM, Schroeter K, Allen-Vercoe E (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection:‘RePOOPulating’the gut. Microbiome 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Pold G, Melillo JM, DeAngelis KM (2015) Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol 6:480

    Article  PubMed  PubMed Central  Google Scholar 

  • Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–549

    Article  CAS  PubMed  Google Scholar 

  • Priyanka J, Koel M (2015) Diversity study of nitrate reducing bacteria from soil samples-a metagenomics approach. J Comp Sci Syst Biol 8:191

    CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646

    Article  CAS  PubMed  Google Scholar 

  • Raeside C, Gaffe J, Deatherage DE, Tenaillon O, Briska AM, Ptashkin RN, Cruveiller S, Medigue C, Lenski RE, Barrick JE, Schneider D (2014) Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli. MBio 5:e01377–01314. https://doi.org/10.1128/mBio.01377-14e01377-14

    Article  Google Scholar 

  • Ramachandran R, Menon RK (1998) An overview of industrial uses of hydrogen. Int J Hydrogen Energy 23:593–598. https://doi.org/10.1016/S0360-3199(97)00112-2

    Article  CAS  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927

    Article  Google Scholar 

  • Ranieri E, Bombardelli F, Gikas P, Chiaia B (2016) Soil pollution prevention and remediation. Appl Environ Soil Sci 2016:2. https://doi.org/10.1155/2016/9415175

    Article  CAS  Google Scholar 

  • Rashid M, Stingl U (2015) Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 33:1755–1773

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff AW, Busse MD, Shestak CJ (2006) Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl Soil Ecol 34:114–124

    Article  Google Scholar 

  • Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA (2016) Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531:633

    Article  CAS  PubMed  Google Scholar 

  • Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci 106:8605–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S (2016) Natural decay process affects the abundance and community structure of Bacteria and archaea in Picea abies logs. FEMS Microbiol Ecol 92:fiw087

    Article  PubMed  CAS  Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24:261–266

    Article  CAS  PubMed  Google Scholar 

  • Roels T, Dauwe F, Van Damme S, De Wilde K, Roelandt F (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Water Sci Technol 46:487–490

    Article  CAS  PubMed  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross C, Opel V, Scherlach K, Hertweck C (2014) Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus. Mycoses 57:48–55

    Article  CAS  PubMed  Google Scholar 

  • Rytioja J, Hildén K, Yuzon J, Hatakka A, de Vries RP, Mäkelä MR (2014) Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol Rev 78:614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Sana B (2014) Bioresources for control of environmental pollution. In Bioresources for control of environmental pollution. In: Biotechnological applications of biodiversity. Springer, Berlin, pp 137–183

    Chapter  Google Scholar 

  • Sapp J (2007) The structure of microbial evolutionary theory. Stud Hist Philos Sci Part C: Stud Hist Philos Biol Biomed Sci 38:780–795

    Article  CAS  Google Scholar 

  • Savi F, Di Bene C, Canfora L, Mondini C, Fares S (2016) Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agric For Meteorol 226–227:67–79. https://doi.org/10.1016/j.agrformet.2016.05.014

    Article  Google Scholar 

  • Schippers A, Hallmann R, Wentzien S, Sand W (1995) Microbial diversity in uranium mine waste heaps. Appl Environ Microbiol 61:2930–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479

    Article  CAS  PubMed  Google Scholar 

  • Schleppi P, Bucher-Wallin I, Hagedorn F, Körner C (2012) Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob Chang Biol 18:757–768. https://doi.org/10.1111/j.1365-2486.2011.02559.x

    Article  Google Scholar 

  • Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer K-H, Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106

    Article  CAS  PubMed  Google Scholar 

  • Schütt M, Borken W, Spott O, Stange CF, Matzner E (2014) Temperature sensitivity of C and N mineralization in temperate forest soils at low temperatures. Soil Biol Biochem 69:320–327

    Article  CAS  Google Scholar 

  • Schwarz WH, Gapes JR, Zverlov VV, Antoni D, Erhard W, Slattery M (2006) Personal communication and demonstration at the TU Muenchen (Campus Garching and Weihenstephan) in June 2006

    Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Bending GD (2007) Changes to the structure of Sphingomonas spp. communities associated with biodegradation of the herbicide isoproturon in soil. FEMS Microbiol Lett 269:110–116

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, da Rocha UN, He Z, Pett-Ridge J, Brodie EL (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 6:e00746–e00715

    PubMed  PubMed Central  Google Scholar 

  • Shoemaker JK, Keenan TF, Hollinger DY, Richardson AD (2014) Forest ecosystem changes from annual methane source to sink depending on late summer water balance. Geophys Res Lett 41:673–679

    Article  Google Scholar 

  • Silva ÍS, dos Santos E d C, de Menezes CR, de Faria AF, Franciscon E, Grossman M, Durrant LR (2009a) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675

    Article  CAS  PubMed  Google Scholar 

  • Silva MF, Fornari RCG, Mazutti MA, de Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Di Luccio M, Treichel H (2009b) Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90:119–123

    Article  CAS  Google Scholar 

  • Sprocati AR, Alisi C, Tasso F, Marconi P, Sciullo A, Pinto V, Chiavarini S, Ubaldi C, Cremisini C (2012) Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochem 47:1649–1655

    Article  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446

    Article  CAS  PubMed  Google Scholar 

  • Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746

    Article  PubMed  CAS  Google Scholar 

  • Sung V, Hiscock H, Tang MLK, Mensah FK, Nation ML, Satzke C, Heine RG, Stock A, Barr RG, Wake M (2014) Treating infant colic with the probiotic Lactobacillus reuteri: double blind, placebo controlled randomised trial. BMJ 348:g2107

    Article  PubMed  PubMed Central  Google Scholar 

  • Szöllősi A, Rezessy-Szabó JM, Hoschke Á, Nguyen QD (2015) Novel method for screening microbes for application in microbial fuel cell. Bioresour Technol 179:123–127. https://doi.org/10.1016/j.biortech.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  • Szukics U, Hackl E, Zechmeister-Boltenstern S, Sessitsch A (2012) Rapid and dissimilar response of ammonia oxidizing archaea and bacteria to nitrogen and water amendment in two temperate forest soils. Microbiol Res 167:103–109

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Nara K (2009) Phylogenetic diversity of non-nodulating rhizobium associated with pine ectomycorrhizae. FEMS Microbiol Ecol 69:329–343

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Feng T, Cui C, Feng Y (2013) Simultaneous biodegradation of phenanthrene and oxidation of arsenite by a dual-functional bacterial consortium. Int Biodeterior Biodegradation 82:173–179

    Article  CAS  Google Scholar 

  • Tata A, Perez C, Campos ML, Bayfield MA, Eberlin MN, Ifa DR (2015) Imprint desorption electrospray ionization mass spectrometry imaging for monitoring secondary metabolites production during antagonistic interaction of fungi. Anal Chem 87:12298–12305

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Schupp PJ, De Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433

    Article  CAS  PubMed  Google Scholar 

  • Techtmann SM, Hazen TC (2016) Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 43:1345–1354

    Article  CAS  PubMed  Google Scholar 

  • Tefs C, Gleixner G (2012) Importance of root derived carbon for soil organic matter storage in a temperate old-growth beech forest–evidence from C, N and 14C content. For Ecol Manag 263:131–137

    Article  Google Scholar 

  • Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307:1311–1313

    Article  CAS  PubMed  Google Scholar 

  • Tláskal V, Voříšková J, Baldrian P (2016) Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol 92:fiw177

    Article  PubMed  CAS  Google Scholar 

  • Valášková V, De Boer W, Gunnewiek PJAK, Pospíšek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218

    Article  PubMed  CAS  Google Scholar 

  • VanInsberghe D, Maas KR, Cardenas E, Strachan CR, Hallam SJ, Mohn WW (2015) Non-symbiotic Bradyrhizobium ecotypes dominate north American forest soils. ISME J 9:2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9:e89108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vik U, Logares R, Blaalid R, Halvorsen R, Carlsen T, Bakke I, Kolstø A-B, Økstad OA, Kauserud H (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471

    Article  PubMed  PubMed Central  Google Scholar 

  • Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024

    Article  CAS  PubMed  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Erhart R, Manz W, Amann R, Lemmer H, Wedi D, Schleifer KH (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60:792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506

    Article  CAS  PubMed  Google Scholar 

  • Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH (2006) Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manag 222:459–468. https://doi.org/10.1016/j.foreco.2005.11.002

    Article  Google Scholar 

  • Wang Y, Zhang Z (2000) Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology 146:2845–2854

    Article  CAS  PubMed  Google Scholar 

  • Wang M-C, Gong M, Zang H-B, Hua X-M, Yao J, Pang Y-J, Yang Y-H (2006) Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. J Environ Sci Health B 41:399–413

    Article  CAS  PubMed  Google Scholar 

  • Ward BB (2005) Molecular approaches to marine microbial ecology and the marine nitrogen cycle. Annu Rev Earth Planet Sci 33:301–333

    Article  CAS  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    Article  CAS  PubMed  Google Scholar 

  • Welander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191:6145–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weuster-Botz D, Aivasidis A, Wandrey C (1993) Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. Part II: process development for the fermentation of hydrolysed B-starch without sterilization. Appl Microbiol Biotechnol 39:685–690

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Xiong J, Hu C, Shi Y, Wang K, Zhang D (2015) Temperature sensitivity of soil bacterial community along contrasting warming gradient. Appl Soil Ecol 94:40–48

    Article  Google Scholar 

  • Xia M, Talhelm AF, Pregitzer KS (2015) Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests. New Phytol 208:715–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J (2006) Invited review: microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731

    Article  CAS  PubMed  Google Scholar 

  • Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL (2010) Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol 76:6257–6265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Stephanopoulos G (2008) Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng 10:24–32

    Article  CAS  PubMed  Google Scholar 

  • Yu H-X, Wang C-Y, Tang M (2013) Fungal and bacterial communities in the rhizosphere of Pinus tabulaeformis related to the restoration of plantations and natural secondary forests in the Loess Plateau, Northwest China. Sci World J 2013

    Google Scholar 

  • Zak DR, Holmes WE, Burton AJ, Pregitzer KS, Talhelm AF (2008) Simulated atmospheric NO3− deposition increases soil organic matter by slowing decomposition. Ecol Appl 18:2016–2027

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I am thankful to the international college of Southwest University and school of life science of Southwest University, China. I am also thankful to my friends and professors of Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M.K., Mir, S.H. (2020). Microbial Ecosystem and Its Impact on Solving the Environmental Problems: A Molecular Approach. In: Gothandam, K., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Environmental Biotechnology Vol. 1. Environmental Chemistry for a Sustainable World, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-030-38192-9_2

Download citation

Publish with us

Policies and ethics