Skip to main content

The Motor, Cognitive, Affective, and Autonomic Functions of the Basal Ganglia

  • Chapter
  • First Online:
Computational Neuroscience Models of the Basal Ganglia

Abstract

The basal ganglia are involved in several processes, ranging from motor to cognitive ones. This chapter briefly discusses the role of the basal ganglia in motor (including reaching, handwriting, precision grip, gait, saccade generation, and speech), cognitive (action selection, decision making, attention, working memory, sequence learning, and sleep regulation), mood/emotion (negative and positive affect), and autonomic (gastrointestinal and cardiovascular) processes. The chapter summarizes key experimental studies explaining the role of the basal ganglia in all of these motor, cognitive, and affective processes. Accordingly, this chapter provides a background on the function of the basal ganglia, which is key information that guides the reader to understand the following computational modeling efforts to understand the role of the basal ganglia in several functional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allcock, L. M., Rowan, E. N., Steen, I. N., Wesnes, K., Kenny, R. A., & Burn, D. J. (2009). Impaired attention predicts falling in Parkinson’s disease. Parkinsonism & Related Disorder, 15(2), 110–115. https://doi.org/10.1016/j.parkreldis.2008.03.010 S1353-8020(08)00111-9 [pii].

  • Alm, P. A. (2004). Stuttering and the basal ganglia circuits: A critical review of possible relations. Journal of Communication Disorders, 37(4), 325–369.

    Article  Google Scholar 

  • Almeida, Q. J., & Lebold, C. A. (2010). Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment? Journal of Neurology, Neurosurgery and Psychiatry, 81(5), 513–518.

    Article  Google Scholar 

  • Altug, F., Acar, F., Acar, G., & Cavlak, U. (2011). The influence of subthalamic nucleus deep brain stimulation on physical, emotional, cognitive functions and daily living activities in patients with Parkinson’s disease. Turkish Neurosurgery, 21(2), 140–146. https://doi.org/10.5137/1019-5149.JTN.3956-10.0.

    Google Scholar 

  • Anderson, J. M., Hughes, J. D., Rothi, L. J. G., Crucian, G. P., & Heilman, K. (1999). Developmental stuttering and Parkinson’s disease: The effects of levodopa treatment. Journal of Neurology, Neurosurgery and Psychiatry, 66(6), 776–778.

    Article  Google Scholar 

  • Appenzeller, O., & Goss, J. E. (1971). Autonomic deficits in Parkinson’s syndrome. Archives of Neurology, 24(1), 50–57.

    Article  Google Scholar 

  • Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14(7), 4467–4480.

    Google Scholar 

  • Basso, M. A., & Wurtz, R. H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22(5), 1883–1894.

    Google Scholar 

  • Beato, R., Levy, R., Pillon, B., Vidal, C., du Montcel, S. T., Deweer, B., … Cardoso, F. (2008). Working memory in Parkinson’s disease patients: Clinical features and response to levodopa. Arquivos de Neuro-Psiquiatria, 66(2A), 147–151.

    Google Scholar 

  • Beck, A. K., Lutjens, G., Schwabe, K., Dengler, R., Krauss, J. K., & Sandmann, P. (2017). Thalamic and basal ganglia regions are involved in attentional processing of behaviorally significant events: Evidence from simultaneous depth and scalp EEG. Brain Structure and Function. https://doi.org/10.1007/s00429-017-1506-z.

  • Beckstead, R. M., Domesick, V. B., & Nauta, W. J. (1993). Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy (pp. 449–475). Berlin: Springer.

    Google Scholar 

  • Benecke, R., Rothwell, J., Dick, J., Day, B., & Marsden, C. (1987). Disturbance of sequential movements in patients with Parkinson’s disease. Brain, 110(2), 361–379.

    Article  Google Scholar 

  • Benke, T., Hohenstein, C., Poewe, W., & Butterworth, B. (2000). Repetitive speech phenomena in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 69(3), 319–324.

    Article  Google Scholar 

  • Bockova, M., Chladek, J., Jurak, P., Halamek, J., Balaz, M., & Rektor, I. (2011). Involvement of the subthalamic nucleus and globus pallidus internus in attention. Journal of Neural Transmission (Vienna), 118(8), 1235–1245. https://doi.org/10.1007/s00702-010-0575-4.

    Article  Google Scholar 

  • Bocquillon, P., Bourriez, J. L., Palmero-Soler, E., Destee, A., Defebvre, L., Derambure, P., et al. (2012). Role of basal ganglia circuits in resisting interference by distracters: A swLORETA study. PLoS ONE, 7(3), e34239. https://doi.org/10.1371/journal.pone.0034239.

    Article  Google Scholar 

  • Botha, H., & Carr, J. (2012). Attention and visual dysfunction in Parkinson’s disease. Parkinsonism & Related Disorder https://doi.org/10.1016/j.parkreldis.2012.03.004 S1353-8020(12)00080-6 [pii].

  • Boulougouris, V., & Tsaltas, E. (2008). Serotonergic and dopaminergic modulation of attentional processes. Progress in Brain Research, 172, 517–542.

    Article  Google Scholar 

  • Broderick, M. P., Van Gemmert, A. W., Shill, H. A., & Stelmach, G. E. (2009). Hypometria and bradykinesia during drawing movements in individuals with Parkinson’s disease. Experimental Brain Research, 197(3), 223–233.

    Article  Google Scholar 

  • Brown, R., & Marsden, C. (1988). ‘Subcorttcal dementia’: The neuropsychological evidence. Neuroscience, 25(2), 363–387.

    Article  Google Scholar 

  • Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders.

    Google Scholar 

  • Cantiniaux, S., Vaugoyeau, M., Robert, D., Horrelou-Pitek, C., Mancini, J., Witjas, T., et al. (2010). Comparative analysis of gait and speech in Parkinson’s disease: Hypokinetic or dysrhythmic disorders? Journal of Neurology, Neurosurgery and Psychiatry, 81(2), 177–184.

    Article  Google Scholar 

  • Cappa, S., & Abutalebi, J. (1999). Subcortical aphasia. The Concise Encyclopedia of Language Pathology, 319–327.

    Google Scholar 

  • Carbon, M., & Marie, R. M. (2003). Functional imaging of cognition in Parkinson’s disease. Current Opinion in Neurology, 16(4), 475–480.

    Google Scholar 

  • Cechetto, D. F., & Shoemaker, J. K. (2009). Functional neuroanatomy of autonomic regulation. Neuroimage, 47(3), 795–803.

    Article  Google Scholar 

  • Chevalier, G., & Deniau, J. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neurosciences, 13(7), 277–280.

    Article  Google Scholar 

  • Correia, S. S., McGrath, A. G., Lee, A., Graybiel, A. M., & Goosens, K. A. (2016). Amygdala-ventral striatum circuit activation decreases long-term fear. Elife, 5. https://doi.org/10.7554/elife.12669.

  • Cowie, D., Limousin, P., Peters, A., & Day, B. L. (2010). Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia, 48(9), 2750–2757.

    Article  Google Scholar 

  • Czernecki, V., Schupbach, M., Yaici, S., Levy, R., Bardinet, E., Yelnik, J., … Agid, Y. (2008). Apathy following subthalamic stimulation in Parkinson disease: A dopamine responsive symptom. Movement Disorder, 23(7), 964–969.

    Google Scholar 

  • Dannlowski, U., Domschke, K., Birosova, E., Lawford, B., Young, R., Voisey, J., … Zwanzger, P. (2013). Dopamine D(3) receptor gene variation: Impact on electroconvulsive therapy response and ventral striatum responsiveness in depression. International Journal of Neuropsychopharmacology, 16(7), 1443–1459. https://doi.org/10.1017/s1461145711001659 S1461145711001659 [pii].

  • Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.

    Article  Google Scholar 

  • Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4), 495–506.

    Article  Google Scholar 

  • Edwards, L., Quigley, E., Hofman, R., & Pfeiffer, R. (1993). Gastrointestinal symptoms in parkinson disease: 18-month follow-up study. Movement Disorders, 8(1), 83–86.

    Article  Google Scholar 

  • Eitan, R., Shamir, R. R., Linetsky, E., Rosenbluh, O., Moshel, S., Ben-Hur, T., … Israel, Z. (2013). Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Frontiers in Systems Neuroscience, 7, 69. https://doi.org/10.3389/fnsys.2013.00069.

  • Espinosa-Parrilla, J. F., Baunez, C., & Apicella, P. (2013). Linking reward processing to behavioral output: Motor and motivational integration in the primate subthalamic nucleus. Frontiers in Computational Neuroscience, 7, 175. https://doi.org/10.3389/fncom.2013.00175.

    Article  Google Scholar 

  • Faist, M., Xie, J., Kurz, D., Berger, W., Maurer, C., Pollak, P., et al. (2001). Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain, 124(8), 1590–1600.

    Article  Google Scholar 

  • Fallon, S. J., Mattiesing, R. M., Muhammed, K., Manohar, S., & Husain, M. (2017). Fractionating the neurocognitive mechanisms underlying working memory: Independent effects of dopamine and Parkinson’s disease. Cerebral Cortex, 1–12. https://doi.org/10.1093/cercor/bhx242.

  • Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain: A Journal of Neurology, 121(9), 1771–1784.

    Article  Google Scholar 

  • Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated Parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247–253.

    Article  Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.

    Article  Google Scholar 

  • Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology.

    Google Scholar 

  • Goldman-Rakic, P. S. (1991). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research, 85, 325–336.

    Article  Google Scholar 

  • Goldstein, D., Holmes, C., Dendi, R., Bruce, S., & Li, S.-T. (2002). Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology, 58(8), 1247–1255.

    Article  Google Scholar 

  • Graham, A. M., Buss, C., Rasmussen, J. M., Rudolph, M. D., Demeter, D. V., Gilmore, J. H., … Fair, D. A. (2016). Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. Developmental Cognitive Neuroscience, 18, 12–25. https://doi.org/10.1016/j.dcn.2015.09.006.

  • Grillner, S., Robertson, B., & Stephenson-Jones, M. (2013). The evolutionary origin of the vertebrate basal ganglia and its role in action selection. The Journal of Physiology, 591(22), 5425–5431.

    Article  Google Scholar 

  • Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson’s disease: The role of attention and memory. Brain and Language, 42(4), 347–384.

    Article  Google Scholar 

  • Grossman, M., Zurif, E., Lee, C., Prather, P., Kalmanson, J., Stern, M. B., et al. (2002). Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology, 16(2), 174.

    Article  Google Scholar 

  • Gubbay, S., & Barwick, D. (1966). Two cases of accidental hypothermia in Parkinson’s disease with unusual EEG findings. Journal of Neurology, Neurosurgery and Psychiatry, 29(5), 459.

    Article  Google Scholar 

  • Hall, J. M., O’Callaghan, C., Shine, J. M., Muller, A. J., Phillips, J. R., Walton, C. C., … Moustafa, A. A. (2016). Dysfunction in attentional processing in patients with Parkinson’s disease and visual hallucinations. Journal of Neural Transmission (Vienna), 123(5), 503–507. https://doi.org/10.1007/s00702-016-1528-3.

  • Harel, B., Cannizzaro, M., & Snyder, P. J. (2004). Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain and Cognition, 56(1), 24–29.

    Article  Google Scholar 

  • Harrington, D. L., & Haaland, K. Y. (1991). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114(1), 99–115.

    Google Scholar 

  • Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.

    Article  Google Scholar 

  • Hartelius, L., & Svensson, P. (1994). Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica, 46(1), 9–17.

    Article  Google Scholar 

  • Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.

    Article  Google Scholar 

  • Hayes, A. E., Davidson, M. C., Keele, S. W., & Rafal, R. D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10(2), 178–198.

    Article  Google Scholar 

  • Herzallah, M. M., Moustafa, A. A., Misk, A. J., Al-Dweib, L. H., Abdelrazeq, S. A., Myers, C. E., et al. (2010). Depression impairs learning whereas anticholinergics impair transfer generalization in Parkinson patients tested on dopaminergic medications. Cognitive and Behavioral Neurology, 23(2), 98–105. https://doi.org/10.1097/WNN.0b013e3181df3048.

    Article  Google Scholar 

  • Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., … Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471.

    Google Scholar 

  • Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.

    Article  Google Scholar 

  • Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.

    Article  Google Scholar 

  • Hikosaka, O., & Wurtz, R. H. (1983). Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Research, 272(2), 368–372.

    Article  Google Scholar 

  • Hodgson, T. L., Dittrich, W. H., Henderson, L., & Kennard, C. (1999). Eye movements and spatial working memory in Parkinson’s disease. Neuropsychologia, 37(8), 927–938.

    Article  Google Scholar 

  • Inglis, W. L., & Winn, P. (1995). The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation. Progress in Neurobiology, 47(1), 1–29.

    Article  Google Scholar 

  • Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2), 489–501.

    Article  Google Scholar 

  • Isoda, M., & Hikosaka, O. (2008). Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. Journal of Neuroscience, 28(28), 7209–7218. https://doi.org/10.1523/jneurosci.0487-08.2008 28/28/7209 [pii].

  • Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596.

    Article  Google Scholar 

  • Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., … Myllylä, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7(6), 667–672.

    Google Scholar 

  • Karachi, C., Yelnik, J., Tande, D., Tremblay, L., Hirsch, E. C., & Francois, C. (2005). The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 20(2), 172–180.

    Article  Google Scholar 

  • Kato, M., Miyashita, N., Hikosaka, O., Matsumura, M., Usui, S., & Kori, A. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. Journal of Neuroscience, 15(1), 912–927.

    Google Scholar 

  • Kegl, J., Cohen, H., & Poizner, H. (1999). Articulatory consequences of Parkinson’s disease: Perspectives from two modalities. Brain and Cognition, 40(2), 355–386.

    Article  Google Scholar 

  • Kermadi, I., & Joseph, J. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.

    Article  Google Scholar 

  • Kimmeskamp, S., & Hennig, E. M. (2001). Heel to toe motion characteristics in Parkinson patients during free walking. Clinical Biomechanics, 16(9), 806–812.

    Article  Google Scholar 

  • Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., & Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. Journal of Neuroscience, 15(1), 928–941.

    Google Scholar 

  • Kotz, S. A., Frisch, S., Von Cramon, D. Y., & Friederici, A. D. (2003). Syntactic language processing: ERP lesion data on the role of the basal ganglia. Journal of the International Neuropsychological Society, 9(7), 1053–1060.

    Article  Google Scholar 

  • Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990.

    Article  Google Scholar 

  • Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., et al. (2010). Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622.

    Article  Google Scholar 

  • Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.

    Article  Google Scholar 

  • Kropotov, J. D., & Etlinger, S. C. (1999). Selection of actions in the basal ganglia–thalamocortical circuits: Review and model. International Journal of Psychophysiology, 31(3), 197–217.

    Article  Google Scholar 

  • Laasonen-Balk, T., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Lehtonen, J., & Tiihonen, J. (1999). Striatal dopamine transporter density in major depression. Psychopharmacology (Berl), 144(3), 282–285.

    Article  Google Scholar 

  • Lazarus, M., Chen, J. F., Urade, Y., & Huang, Z. L. (2013). Role of the basal ganglia in the control of sleep and wakefulness. Current Opinion in Neurobiology, 23(5), 780–785. https://doi.org/10.1016/j.conb.2013.02.001.

    Article  Google Scholar 

  • Lena, I., Parrot, S., Deschaux, O., Muffat‐Joly, S., Sauvinet, V., Renaud, B., … Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899.

    Google Scholar 

  • Levy, R., & Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916–928.

    Article  Google Scholar 

  • Lewis, S. J., & Barker, R. A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 15(5), 333–338.

    Article  Google Scholar 

  • Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19(3), 755–760.

    Article  Google Scholar 

  • Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823–832.

    Article  Google Scholar 

  • Lieberman, P. (1991). Uniquely human: The evolution of speech, thought, and selfless behavior. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Lipford, M. C., & Silber, M. H. (2012). Long-term use of pramipexole in the management of restless legs syndrome. Sleep Medicine, 13(10), 1280–1285.

    Article  Google Scholar 

  • Lubik, S., Fogel, W., Tronnier, V., Krause, M., König, J., & Jost, W. (2006). Gait analysis in patients with advanced Parkinson disease: Different or additive effects on gait induced by levodopa and chronic STN stimulation. Journal of Neural Transmission (Vienna), 113(2), 163–173.

    Article  Google Scholar 

  • Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain: A Journal of Neurology, 121(4), 755–766.

    Article  Google Scholar 

  • Marsden, C. (1982). The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology.

    Google Scholar 

  • Maruyama, T., & Yanagisawa, N. (2006). Cognitive impact on freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 12, S77–S82.

    Article  Google Scholar 

  • McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682.

    Article  Google Scholar 

  • Menon, V., Anagnoson, R. T., Glover, G. H., & Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. NeuroReport, 11(16), 3641–3645.

    Article  Google Scholar 

  • Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.

    Article  Google Scholar 

  • Moreau, C., Ozsancak, C., Blatt, J. L., Derambure, P., Destee, A., & Defebvre, L. (2007). Oral festination in Parkinson’s disease: Biomechanical analysis and correlation with festination and freezing of gait. Movement Disorders, 22(10), 1503–1506.

    Article  Google Scholar 

  • Moretti, R., & Signori, R. (2016). Neural correlates for apathy: Frontal-prefrontal and parietal cortical-subcortical circuits. Frontiers in Aging Neuroscience, 8, 289. https://doi.org/10.3389/fnagi.2016.00289.

    Google Scholar 

  • Moriizumi, T., Nakamura, Y., Tokuno, H., Kitao, Y., & Kudo, M. (1988). Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Experimental Brain Research, 71(2), 298–306.

    Article  Google Scholar 

  • Morris, M., Iansek, R., Matyas, T., & Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disorders, 13(1), 61–69.

    Article  Google Scholar 

  • Moustafa, & Gluck, M. A. (2011). A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients. Journal of Cognitive Neuroscience, 23(1), 151–167. https://doi.org/10.1162/jocn.2010.21420.

    Article  Google Scholar 

  • Moustafa, A. A., Bell, P., Eissa, A. M., & Hewedi, D. H. (2013a). The effects of clinical motor variables and medication dosage on working memory in Parkinson’s disease. Brain and Cognition, 82(2), 137–145. https://doi.org/10.1016/j.bandc.2013.04.001.

    Article  Google Scholar 

  • Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., … Jahanshahi, M. (2016). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences. https://doi.org/10.1515/revneuro-2015-0070.

  • Moustafa, A. A., Herzallah, M. M., & Gluck, M. A. (2013b). Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson’s disease. Neurodegenerative Diseases, 11(2), 102–111. https://doi.org/10.1159/000341999.

    Article  Google Scholar 

  • Moustafa, A. A., Sherman, S. J., & Frank, M. J. (2008). A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia, 46(13), 3144–3156. https://doi.org/10.1016/j.neuropsychologia.2008.07.011 S0028-3932(08)00297-2 [pii].

  • Müller, F., & Abbs, J. H. (1990). Precision grip in parkinsonian patients. Advances in Neurology, 53, 191.

    Google Scholar 

  • Murillo-Rodríguez, E., Haro, R., Palomero-Rivero, M., Millán-Aldaco, D., & Drucker-Colín, R. (2007). Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behavioural Brain Research, 176(2), 353–357.

    Article  Google Scholar 

  • Murnaghan, G. (1961). Neurogenic disorders of the bladder in Parkinsonism. BJU International, 33(4), 403–409.

    Article  Google Scholar 

  • Mushiake, H., & Strick, P. L. (1995). Pallidal neuron activity during sequential arm movements. Journal of Neurophysiology, 74(6), 2754–2758.

    Article  Google Scholar 

  • Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.

    Article  Google Scholar 

  • Napier, J. R. (1956). The prehensile movements of the human hand. Bone & Joint Journal, 38(4), 902–913.

    Google Scholar 

  • Neafsey, E. J. (1991). Prefrontal cortical control of the autonomic nervous system: Anatomical and physiological observations. Progress in Brain Research, 85, 147–166.

    Article  Google Scholar 

  • Nenadic, I., Gaser, C., Volz, H.-P., Rammsayer, T., Häger, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148(2), 238–246.

    Article  Google Scholar 

  • Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.

    Article  Google Scholar 

  • O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.

    Article  Google Scholar 

  • O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776.

    Article  Google Scholar 

  • Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Brain: A Journal of Neurology, 121(5), 949–965.

    Article  Google Scholar 

  • Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25(1), 563–593.

    Article  Google Scholar 

  • Pan, P. M., Sato, J. R., Salum, G. A., Rohde, L. A., Gadelha, A., Zugman, A., … Stringaris, A. (2017). Ventral striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. American Journal of Psychiatry, 174(11), 1112–1119. https://doi.org/10.1176/appi.ajp.2017.17040430.

  • Pazo, J., & Medina, J. (1983). Cholinergic mechanisms within the caudate nucleus mediate changes in blood pressure. Neuropharmacology, 22(6), 717–720.

    Article  Google Scholar 

  • Pazo, J. H. (1976). Caudate-putamen and globus pallidus influences on a visceral reflex. Acta physiologica latino americana, 26(4), 260–266.

    Google Scholar 

  • Pinsker, M., Amtage, F., Berger, M., Nikkhah, G., & van Elst, L. T. (2013). Psychiatric side-effects of bilateral deep brain stimulation for movement disorders. Acta Neurochirurgica Supplementum, 117, 47–51. https://doi.org/10.1007/978-3-7091-1482-7_8.

    Google Scholar 

  • Porter, R. W., & Bors, E. (1971). Neurogenic bladder in Parkinsonism: Effect of thalamotomy. Journal of Neurosurgery, 34(1), 27–32.

    Article  Google Scholar 

  • Postle, B. R., & D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cognitive Brain Research, 8(2), 107–115.

    Article  Google Scholar 

  • Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390.

    Article  Google Scholar 

  • Rascol, O., Sabatini, U., Simonetta-Moreau, M., Montastruc, J., Rascol, A., & Clanet, M. (1991). Square wave jerks in parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 54(7), 599–602.

    Article  Google Scholar 

  • Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., … Rosen, B. R. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5(2), 124-132.

    Google Scholar 

  • Remy, P., Doder, M., Lees, A., Turjanski, N., & Brooks, D. (2005). Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain, 128(Pt 6), 1314–1322. https://doi.org/10.1093/brain/awh445.

    Article  Google Scholar 

  • Resstel, L., & Correa, F. (2006). Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Autonomic Neuroscience, 126, 130–138.

    Article  Google Scholar 

  • Reznikov, R., Binko, M., Nobrega, J. N., & Hamani, C. (2016). Deep brain stimulation in animal models of fear, anxiety, and posttraumatic stress disorder. Neuropsychopharmacology, 41(12), 2810–2817. https://doi.org/10.1038/npp.2016.34.

    Article  Google Scholar 

  • Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 362(1481), 917–932.

    Article  Google Scholar 

  • Rogers, R. D. (2010). The roles of dopamine and serotonin in decision making: Evidence from pharmacological experiments in humans. Neuropsychopharmacology, 36(1), 114–132.

    Article  Google Scholar 

  • Russell, V., Allin, R., Lamm, M., & Taljaard, J. (1992). Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat. Neurochemical Research, 17(4), 387–395.

    Article  Google Scholar 

  • Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., & Matthews, P. (2004). Towards an understanding of gait control: Brain activation during the anticipation, preparation and execution of foot movements. Neuroimage, 21(2), 568–575.

    Article  Google Scholar 

  • Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9(1), 103–127.

    Article  Google Scholar 

  • Santens, P., De Letter, M., Van Borsel, J., De Reuck, J., & Caemaert, J. (2003). Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson’s disease. Brain and Language, 87(2), 253–258.

    Article  Google Scholar 

  • Sato, M., & Hikosaka, O. (2002). Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. Journal of Neuroscience, 22(6), 2363–2373.

    Google Scholar 

  • Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71(2), 515–528.

    Article  Google Scholar 

  • Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.

    Article  Google Scholar 

  • Schirmer, A. (2004). Timing speech: A review of lesion and neuroimaging findings. Cognitive Brain Research, 21(2), 269–287.

    Article  MathSciNet  Google Scholar 

  • Schmalbach, B., Gunther, V., Raethjen, J., Wailke, S., Falk, D., Deuschl, G., et al. (2014). The subthalamic nucleus influences visuospatial attention in humans. Journal of Cognitive Neuroscience, 26(3), 543–550. https://doi.org/10.1162/jocn_a_00502.

    Article  Google Scholar 

  • Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V., & Freund, H. J. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60(3), 296–302. yoa10144 [pii].

    Google Scholar 

  • Senard, J.-M., Brefel-Courbon, C., Rascol, O., & Montastruc, J.-L. (2001). Orthostatic hypotension in patients with Parkinson’s disease. Drugs and Aging, 18(7), 495–505.

    Article  Google Scholar 

  • Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27(18), 4826–4831.

    Article  Google Scholar 

  • Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.

    Article  Google Scholar 

  • Shine, J. M., Matar, E., Ward, P. B., Bolitho, S. J., Pearson, M., Naismith, S. L., & Lewis, S. J. (2013). Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One, 8(1), e52602.

    Google Scholar 

  • Smith, Y., Beyan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience (Oxford), 86, 353–388.

    Google Scholar 

  • Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain: A Journal of Neurology, 120(8), 1325–1337.

    Article  Google Scholar 

  • Steele, J. D., Kumar, P., & Ebmeier, K. P. (2007). Blunted response to feedback information in depressive illness. Brain, 130(Pt 9), 2367–2374. https://doi.org/10.1093/brain/awm150.

    Article  Google Scholar 

  • Subramanian, L., Hindle, J. V., Jackson, M. C., & Linden, D. E. (2010). Dopamine boosts memory for angry faces in Parkinson’s disease. Movement Disorders, 25(16), 2792–2799.

    Article  Google Scholar 

  • Svennilson, E., Torvik, A., Lowe, R., & Leksell, L. (1960). Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatrica Scandinavica, 35(3), 358–377.

    Article  Google Scholar 

  • Takakusaki, K., Habaguchi, T., Ohtinata-Sugimoto, J., Saitoh, K., & Sakamoto, T. (2003). Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience, 119(1), 293–308.

    Article  Google Scholar 

  • Takakusaki, K., Ohta, R., & Harada, H. (2007). Modulation of the excitability of hindlimb motor neurons during fictive locomotion by the basal ganglia efferents to the brainstem in decerebrate cats. Paper Presented at the Social Neuroscience Abstract.

    Google Scholar 

  • Takakusaki, K., Saitoh, K., Harada, H., & Kashiwayanagi, M. (2004). Role of basal ganglia–brainstem pathways in the control of motor behaviors. Neuroscience Research, 50(2), 137–151.

    Article  Google Scholar 

  • Takakusaki, K., Tomita, N., & Yano, M. (2008). Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. Journal of Neurology, 255, 19–29.

    Article  Google Scholar 

  • Tan, E. (2003). Piribedil-induced sleep attacks in Parkinson’s disease. Fundamental & Clinical Pharmacology, 17(1), 117–119.

    Article  Google Scholar 

  • Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887–893.

    Article  Google Scholar 

  • Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146(1), 159–170.

    Article  Google Scholar 

  • Tomasi, D., Chang, L., Caparelli, E., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132, 158–165.

    Article  Google Scholar 

  • Tucha, O., Mecklinger, L., Thome, J., Reiter, A., Alders, G., Sartor, H., … Lange, K. (2006). Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. Journal of Neural Transmission (Vienna), 113(5), 609–623.

    Google Scholar 

  • Ungless, M. A. (2004). Dopamine: The salient issue. Trends in Neurosciences, 27(12), 702–706.

    Article  Google Scholar 

  • Van Buren, J., Li, C., & Ojemann, G. (1966). The fronto-striatal arrest response in man. Electroencephalography and Clinical Neurophysiology, 21(2), 114–130.

    Article  Google Scholar 

  • Verberne, A. J., & Owens, N. C. (1998). Cortical modulation of thecardiovascular system. Progress in Neurobiology, 54(2), 149–168.

    Article  Google Scholar 

  • Wang, E., Metman, L. V., Bakay, R., Arzbaecher, J., & Bernard, B. (2003). The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson’s disease—A preliminary report. Clinical Linguistics & Phonetics, 17(4–5), 283–289.

    Article  Google Scholar 

  • Witt, K., Kopper, F., Deuschl, G., & Krack, P. (2006). Subthalamic nucleus influences spatial orientation in extra-personal space. Movement Disorders, 21(3), 354–361. https://doi.org/10.1002/mds.20728.

    Article  Google Scholar 

  • Wolfe, V., Garvin, J., Bacon, M., & Waldrop, W. (1975). Speech changes in Parkinson’s disease during treatment with L-dopa. Journal of Communication Disorders, 8(3), 271–279.

    Article  Google Scholar 

  • Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E. S., & Hausdorff, J. M. (2005). Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? European Journal of Neuroscience, 22(5), 1248–1256. https://doi.org/10.1111/j.1460-9568.2005.04298.x EJN4298 [pii].

  • Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience, 17(21), 8528–8535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Moustafa .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moustafa, A.A., Mandali, A., Balasubramani, P.P., Srinivasa Chakravarthy, V. (2018). The Motor, Cognitive, Affective, and Autonomic Functions of the Basal Ganglia. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics