Skip to main content

An Introduction to Plankton

  • Chapter
  • First Online:
Basic and Applied Phytoplankton Biology

Abstract

The word “plankton” is derived from the Greek word for drifting. Plankton are frequently described as organisms that drift on or near the surface of the water and are unable to swim sufficiently strongly to move toward tides, winds, or currents. This description is not strictly true, in that many planktonic organisms, even very small individuals, can propel themselves for very long distances in water columns in very short periods of time. Many planktonic organisms are single-celled plants, called phytoplankton, while others are single-celled animals, known as zooplankton. However, a few organisms referred to as plankton are the embryonic or juvenile forms of larger organisms, including fish and invertebrates. Planktonic organisms are inhabited in nearly all aquatic ecosystems and play a crucial role in aquatic food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abida, H., S. Ruchaud, L. Rios, A. Humeau, I. Probert, C. De Vargas, S. Bach, and C. Bowler. 2013. Bioprospecting marine plankton. Marine Drugs 11: 4594–4611. https://doi.org/10.3390/md11114594.

    Article  CAS  Google Scholar 

  • Acién Fernández, F.G., David O. Hall, E. Cañizares Guerrero, K. Krishna Rao, and E. Molina Grima. 2003. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. Journal of Biotechnology 103 (2): 137–152.

    Article  CAS  Google Scholar 

  • Asmat, A. and G. Usup, eds. 2002. The occurrence of aerolysin-positive Aeromonas hydrophila strains in seawater and associated with marine copepods. In Proceedings of the Regional Symposium on Environment and Natural Resources, 495–502

    Google Scholar 

  • Azaza, M.S., F. Mensi, J. Ksouri, M.N. Dhraief, B. Brini, A. Abdelmouleh, and M.M. Kraıem. 2008. Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. Journal of Applied Ichthyology 24: 202–207.

    Article  CAS  Google Scholar 

  • Bandarra, N.M., P.A. Pereira, I. Batista, and M.H. Vilela. 2003. Fatty acids, sterols and tocopherol in Isochrysis galbana. Journal of Food Lipids 18: 25–34.

    Article  Google Scholar 

  • Beaugrand, G., K. Brander, J. Lindley, S. Souissi, and P. Reid. 2003. Plankton effect on cod recruitment in the North Sea. Nature 426: 661–664.

    Article  CAS  Google Scholar 

  • Becker, W. 2004. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture, ed. A. Richmond, 312–351. Oxford: Blackwell.

    Google Scholar 

  • Belay, A., T. Kato, and Y. Ota. 1996. Spirulina (Arthrospira): Potential application as an animal feed supplement. Journal of Applied Phycology 8: 303–311.

    Article  Google Scholar 

  • Blanco, A.M., J. Moreno, J.A. Del Campo, J. Rivas, and J.L.G. Guerrero. 2007. Outdoor cultivation of lutein-rich cells of Muriellopsis sp in open ponds. Applied Microbiology and Biotechnology 73: 1259–1266.

    Article  CAS  Google Scholar 

  • Borovsky, D. 2003. Trypsin-modulating oostatic factor: A potential new larvicide for mosquito control. Journal of Experimental Biology 206: 3869–3875.

    Article  CAS  Google Scholar 

  • Borowitzka, M.A. 1988. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Physiology 7: 3–15.

    Google Scholar 

  • ———. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7: 3–15.

    Article  CAS  Google Scholar 

  • ———. 1996. Closed algal photobioreactors: Design considerations for large-scale systems. Journal of Marine Biotechnology 4: 185–191.

    CAS  Google Scholar 

  • ———. 1999. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. Journal of Biotechnology 70: 313–321.

    Article  CAS  Google Scholar 

  • Borowitzka, M.A., and L.J. Borowitzka. 1988. Micro-algal biotechnology. Cambridge: Cambridge University Press 477 pp.

    Google Scholar 

  • Boussiba, S., L. Fan, and A. Vonshak. 1992. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. In Methods in enzymology, Carotenoids Part A 213, ed. L. Packer, 371–386. London: Academic Press ISBN 0-12-182114-5.

    Google Scholar 

  • Brown, M.R., G.A. Dunstan, S.J. Norwood, and K.A. Miller. 1996. Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. Journal of Phycology 32: 64–73.

    Article  CAS  Google Scholar 

  • Buskey, E.J., J.O. Peterson, and J.W. Ambler. 1996. The swarming behavior of the copepod Dioithona oculata: In situ and laboratory studies. Limnology and Oceanography 41: 513–521.

    Article  Google Scholar 

  • Chini Zittelli, G., F. Lavista, A. Bastianini, L. Rodolfi, M. Vincenzini, and M.R. Tredici. 1999. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. Journal of Biotechnology 70: 299–312.

    Article  CAS  Google Scholar 

  • Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25: 294–306.

    Article  CAS  Google Scholar 

  • Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology 25: 126–131.

    Article  CAS  Google Scholar 

  • Costa, J.A.V., L.M. Colla, and P. Duarte. 2003. Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Zeitschrift fur Naturforschung C-A Journal of Biosciences 58 (76): 80.

    Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. O’Neill, J. Paruelo, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • Del Campo, J.A., M. Garcia-Gonzales, and M.G. Guerrero. 2007. Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology 74: 1163–1174.

    Article  CAS  Google Scholar 

  • Dhargalkar, V.K., and X.N. Verlecar. 2009. Southern Ocean seaweeds: A resource for exploration in food and drugs. Aquaculture 287: 229–242.

    Article  CAS  Google Scholar 

  • Dinesh Kumar, S., P. Santhanam, P. Prabhavathi, B. Kanimozhi, M. Abirami, Min S. Park, and Mi-Kyung Kim. 2017. Optimal conditions for the treatment of shrimp culture effluent using immobilized marine microalga Picochlorum maculatum (PSDK01). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. https://doi.org/10.1007/s40011-017-0855-y.

  • Dixon, J.E., D.A. Clague, P. Wallace, and R. Poreda. 1997. Volatiles in alkalic basalts from the North Arch Volcanic Field, Hawaii: Extensive degassing of deep submarine-erupted alkalic series lavas. Journal of Petrology 38: 911–939.

    Article  CAS  Google Scholar 

  • Donato, M., M.H. Vilela, and N.M. Bandarra. 2003. Fatty acids, sterols, α-tocopherol and total carotenoids composition of Diacronema vlkianum. Journal of Food Lipids 10: 267–276.

    Article  CAS  Google Scholar 

  • Miller, E.T. 1996. SalonOvations’ Day Spa Techniques. Cengage Learning, 137.

    Google Scholar 

  • Molina Grimaa, E., E.-H. Belarbia, F.G. Acién Fern ándeza, A. Robles Medinaa, and Yusuf Chistib. 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnology Advances 20: 491–515.

    Article  Google Scholar 

  • FAO News room. 2006 http://www.fao.org/Newsroom/en/information/2006/1000301/index.html.

  • Frangoulis, C., E. Christou, and J. Hecq. 2005. Comparison of marine copepod outfluxes: Nature, rate, fate and role in the carbon and nitrogen cycles. Advances in Marine Biology 47: 253–309.

    Article  CAS  Google Scholar 

  • Fuentes, M.M.R., J.L.G. Sanchez, J.M.F. Sevilla, F.G.A. Fernandez, J.A.S. Perez, and E.M. Grima. 1999. Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: Quantitative analysis of the daily cyclic variation of culture parameters. Journal of Biotechnology 70: 271–288.

    Article  Google Scholar 

  • Geng, D., Y. Wang, P. Wang, W. Li, and Y. Sun. 2003. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). Journal of Applied Phycology 15: 451–456.

    Article  CAS  Google Scholar 

  • Hanagata, N., T. Takeuchi, Y. Fukuju, D.J. Barnes, and I. Karube. 1992. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31 (10): 3345–3348.

    Article  CAS  Google Scholar 

  • Heidelberg, J., K. Heidelberg, and R. Colwell. 2002. Bacteria of the γ-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Applied and Environmental Microbiology 68: 5498–5507.

    Article  CAS  Google Scholar 

  • Hirata, T., M. Tanaka, M. Ooike, T. Tsunomura, and M. Sakaguchi. 2000. Antioxidant activities of phycocyanobilin prepared from S. platensis. Journal of Applied Phycology 12: 435–439.

    Article  CAS  Google Scholar 

  • Hu, Q., C.W. Zhang, and M. Sommerfeld. 2006. Biodiesel from algae: Lessons learned over the past 60 years and future perspectives. Juneau, Alaska: Annual Meeting of the Phycological Society of America, July 7–12, pp. 40–41 (Abstract).

    Google Scholar 

  • Humes, A. 1994: How many copepods? In Ecology and Morphology of Copepods: Proceedings of the Fifth International Conference on Copepoda, vol. 292/293. ed. Ferrari, F.D., and B.P. Bradley, 1–7. London: Springer, Developments in Hydrobiology.

    Google Scholar 

  • Humphrey, A.M. 2004. Chlorophyll as a colour and functional ingredient. Journal of Food Science 69: 422–425.

    Article  Google Scholar 

  • Iwasaki, I., Q. Hu, N. Kurano, and S. Miyachi. 1998. Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a “high-CO2” tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. Journal of Photochemistry and Photobiology B 44: 184–190.

    Article  CAS  Google Scholar 

  • Jin, E.S., and A. Melis. 2003. Microalgal biotechnology: Carotenoid production by the green algae Dunaliella salina. Biotechnology and Bioprocess Engineering 8: 331–337.

    Article  CAS  Google Scholar 

  • Johnson, E., and W. Schroeder. 1995. Microbial carotenoids. Advances in Biochemical Engineering Biotechnology 53: 119–178.

    Google Scholar 

  • Johnson S, Treasurer J, S B, Nagasawa K, Kabata Z 2004 A review of the impact of parasitic copepods on marine aquaculture. Zoological Studies 43:229–243.

    Google Scholar 

  • Kodama, M., H. Ikemoto, and S. Miyachi. 1993. A new species of highly CO2-tolreant fast-growing marine microalga suitable for high-density culture. Journal of Marine Biotechnology 1: 21–25.

    Google Scholar 

  • Kumar, M., M.K. Sharma, and A. Kumar. 2005. Spirulina fusiformis: A food supplement against mercury induced hepatic toxicity. Journal of Health Science 51: 424–430.

    Article  CAS  Google Scholar 

  • Laws, E.A., and J.L. Berning. 1991. A study of the energetics and economics of microalgal mass culture with the marine chlorophyte Tetraselmis suecica: Implications for use of power plant stack gases. Biotechnology and Bioengineering 37: 936–947.

    Article  CAS  Google Scholar 

  • Lee, Y.K. 2001. Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology 13: 307–315.

    Article  Google Scholar 

  • Lee, J.S., and J.P. Lee. 2003. Review of advances in biological CO2 mitigation technology. Biotechnology and Bioprocess Engineering 8: 354–359.

    Article  CAS  Google Scholar 

  • Luckas, B. 1995. Selective detection of algal toxins from shellfishes. Chemie in unserer Zeit 29: 68–75.

    Article  CAS  Google Scholar 

  • Masuda, H., Y. Takenaka, A. Yamaguchi, S. Nishikawa, and H. Mizuno. 2006. A novel yellowish-green fluorescent protein from the marine copepod, Chiridius poppei, and its use as a reporter protein in HeLa cells. Gene 372: 18–25.

    Article  CAS  Google Scholar 

  • Matsumoto, H., N. Shioji, A. Hamasaki, Y. Ikuta, Y. Fukuda, M. Sato, N. Endo, and T. Tsukamoto. 1995. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Applied Biochemictory and Biotechnology 51/52: 681–692.

    Article  CAS  Google Scholar 

  • Matsumoto, H., N. Shioji, A. Hamasaki, and Y. Ikuta. 1996. Basic study on optimization of raceway-type algal cultivator. Journal of Chemical Engineering of Japan 29 (3): 541–543.

    Article  CAS  Google Scholar 

  • Matz, M.V. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species (vol 17, pg 969, 1999). Nature Biotechnology 17: 1227–1227.

    Article  CAS  Google Scholar 

  • Metting, F.B. 1996. Biodiversity and application of microalgae. Journal of Industrial Microbiology 17: 477–489.

    Article  CAS  Google Scholar 

  • Metzger, P., and C. Largeau. 2005. Botryococcus braunii: A rich source for hydrocarbons and related ether lipids. Applied Microbiology and Biotechnology 66: 486–496.

    Article  CAS  Google Scholar 

  • Miao, X., Q. Wu, and C. Yang. 2004. Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis 71: 855–863.

    Article  CAS  Google Scholar 

  • Miura, Y., W. Yamada, K. Hirata, K. Miyamoto, and M. Kiyohara. 1993. Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied Biochemistry and Biotechnology 39/40: 753–761.

    Article  Google Scholar 

  • Molina Grima, E.M., J.A.S. Perez, F.G. Camacho, J.M.F. Sevilla, and F.G.A. Fernandez. 1994. Effect of growth-rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis-Galbana in chemostat culture. Applied Microbiology and Biotechnology 41: 23–27.

    Article  Google Scholar 

  • Muller-Feuga, A. 2000. The role of microalgae in aquaculture: Situation and trends. Journal of Applied Phycology 12: 527–534.

    Article  Google Scholar 

  • Muller-Feuga, A., J. Pruvost, R. Le Guedes, L. Le Dean, P. Legentilhomme, and J. Legrand. 2003. Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnology and Bioengineering 84: 544–551.

    Article  CAS  Google Scholar 

  • Muñoz, R., and B. Guieysse. 2006. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research 40: 2799–2815. https://doi.org/10.1016/j.watres.2006.06.011.

    Article  Google Scholar 

  • Nagase, H., K. Eguchi, K. Yoshihara, K. Hirata, and K. Miyamoto. 1998. Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of Fermentation and Bioengineering 86 (4): 421–423.

    Article  CAS  Google Scholar 

  • Nakano, Y., K. Miyatake, H. Okuno, K. Hamazaki, S. Takenaka, N. Honami, M. Kiyota, I. Aiga, and J. Kondo. 1996. Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. Acta horticulturae 440 (9): 49–54.

    Article  Google Scholar 

  • Ogbonna, J.C., H. Yoshizawa, and H. Tanaka. 2000. Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. Journal of Applied Phycology 12: 277–284.

    Article  CAS  Google Scholar 

  • Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000 liter outdoor photobioreactors. Journal of Applied Phycology 2: 499–506.

    Article  Google Scholar 

  • ———. 2003. Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomolecular Engineering 20: 459–466.

    Article  CAS  Google Scholar 

  • Olguin, E.J. 2003. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances 22: 81–91.

    Article  CAS  Google Scholar 

  • Omori, M., and T. Ikeda. 1984. Methods in marine zooplankton ecology. Vol. xiii, 332. New York: Wiley.

    Google Scholar 

  • Ono, E., and J.L. Cuello. 2007. Carbon dioxide mitigation using thermophilic cyanobacteria. Biosystems Engineering 96 (1): 129–134.

    Article  Google Scholar 

  • Ördög, V., J. Szigeti, and O. Pulz. 1996. Proceedings of the Conference on Progress in Plant Sciences from Plant Breeding to Growth Regulation. Mosonmagyarovar: Pannon University.

    Google Scholar 

  • Oswald, W.J., F. Bailey Green, and T.J. Lundquist. 1994. Performance of methane fermentation pits in advanced integrated wastewater pond systems. Water Science and Technology 30: 287–295.

    Article  CAS  Google Scholar 

  • Pesheva, I., M. Kodama, M.L. Dionisio-Sese, and S. Miyachi. 1994. Changes in photosynthetic characteristics induced by transferring air-grown cells of Chlorococcum littorale to high-CO2 conditions. Plant and Cell Physiology 35 (3): 379–387.

    CAS  Google Scholar 

  • Prasher, D.C., V.K. Eckenrode, W.W. Ward, and F.G. Prendergast. 1992. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229–233.

    Article  CAS  Google Scholar 

  • Pulz, O., and W. Gross. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65: 635–648.

    Article  CAS  Google Scholar 

  • Pulz, O., and K. Scheibenbogen. 1998. Photobioreactors: Design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology 59: 123–151.

    Article  CAS  Google Scholar 

  • Ragan, M.A., and D.J. Chapman. 1978. A biochemical phylogeny of the protists. Academic Press, New York/London.: 317pp.

    Google Scholar 

  • Rekha, V., R. Gurusamy, P. Santhanam, A. Shenbaga Devi, and S. Ananth. 2012. Culture and biofuel production efficiency of marine microalgae Chlorella marina and Skeletonema costatum. Indian Journal of Geo-Marine Sciences 41: 152–158.

    Google Scholar 

  • Richardson, A. 2008. In hot water: Zooplankton and climate change. ICES Journal of Marine Science and Technology 65: 279–295.

    Article  Google Scholar 

  • Roger, P.A., and S.A. Kulasooriya. 1980. Blue-green algae and rice. Manila: IRRI 112pp.

    Google Scholar 

  • Sayre, R.T., R.E. Wagner, S. Sirporanadulsil, and C. Farias. 2001. Transgenic Algae for Delivery of Antigens to Animals. Int. Patent Number W.O. 01/98335 A2.

    Google Scholar 

  • Schipp, G. 2006. The use of Calanoid copepods in semiintensive, tropical marine fish larviculture. En: Editores: Cruz Sua’rez, L.E., D.R. Marie, M.T. Salazar, M.G. Nieto Lo’pez, D.A. Villarreal Cavazos, A.G. Ortega. Avances en Nutricio’n Acuicola VIII. VIII Simposium Internacional de Nutricio’n Acuicola. 15–17 November, 84–94. Universidad Auto ´noma de Nuevo Leo’n, Me’xico.

    Google Scholar 

  • Seckbach, J., H. Gross, and M.B. Nathan. 1971. Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel Journal of Botany 20: 84–90.

    CAS  Google Scholar 

  • Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler 1998. A look back at the U.S. Department of Energy’s Aquatic Species Program-biodiesel from algae. National Renewable Energy Laboratory, Golden, CO; Report NREL/TP-580–24190.

    Google Scholar 

  • Shenbaga Devi. 2010. Studies on mass culture and biofuel production of marine microalgae Dunaliella ap. and Nannochloropsis sp. M.Sc., Thesis, Bharathidasan University, India, 69pp.

    Google Scholar 

  • Singh, S., B.N. Kate, and U.C. Banerjee. 2005. Bioactive compounds from cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology 25: 73–95.

    Article  CAS  Google Scholar 

  • Sirenko, L.A., Y.A. Kirpenko, and N.I. Kirpenko. 1999. Influence of metabolites of certain algae on human and animal cell cultures. International Journal on Algae 1: 122–126.

    Article  Google Scholar 

  • Soletto, D., L. Binaghi, A. Lodi, J.C.M. Carvalho, and A. Converti. 2005. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243: 217–224.

    Article  CAS  Google Scholar 

  • Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87–96.

    Article  CAS  Google Scholar 

  • Sun, M., K. Qian, N. Su, H. Chang, J. Liu, and G. Shen. 2003. Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnology Letters 25: 1087–1092.

    Article  CAS  Google Scholar 

  • Sung, K.D., J.S. Lee, C.S. Shin, S.C. Park, and M.J. Choi. 1999. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresource Technology 68 (3): 269–273.

    Article  CAS  Google Scholar 

  • Takano, Hi., H. Takeyama, N. Nakamura, K. Sode, J.G. Burgess, E. Manabe, M. Hirano, and T. Matunaga. 1992. CO2 removal by high-density culutre of a marine cyanobacterium Synechococcus sp. using an improved photobioreactor employing light-diffusing optical fibers. Applied Biochemistry and Biotechnology 34/35: 449–458.

    Article  Google Scholar 

  • Thajuddin, N., and G. Subramanian. 2005. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science 89: 47–57.

    CAS  Google Scholar 

  • Tsukahara, K., and S. Sawayama. 2005. Liquid fuel production using microalgae. Journal of the Japan Petroleum Institute 48: 251–259.

    Article  CAS  Google Scholar 

  • Venkateswaran, K., T. Takai, I. Navarro, H. Nakano, H. Hashimoto, and R. Siebeling. 1989. Ecology of Vibrio cholerae non-O1 and Salmonella spp. and role of zooplankton in their seasonal distribution in Fukuyama coastal waters, Japan. Applied and Environmental Microbiology 55: 1591–1598.

    CAS  Google Scholar 

  • Venkataraman, L.V. 1986. Blue green algae as biofertilizer. In CRC, Hand book of microalgal mass culture, ed. A. Richmond, 455–471. Boca Roton: CRC Press.

    Google Scholar 

  • Vílchez, C., I. Garbayo, M.V. Lobato, and J.M. Vega. 1997. Microalgae-mediated chemicals production and wastes removal. Enzyme and Microbial Technology 20: 562–572.

    Article  Google Scholar 

  • Watanabe, Y., N. Ohmura, and H. Saiki. 1992. Isolation and determination of cultural characteristics of microalgae which functions under CO2 enriched atmosphere. Energy Conversion and Management 33 (5–8): 545–552.

    Article  CAS  Google Scholar 

  • Wilde, E.W., and J.R. Benemann. 1993. Bioremoval of heavy metals by the use of micro-algae. Biotechnology Advances 11: 781–812.

    Article  CAS  Google Scholar 

  • Yamaguchi, K. 1997. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. Journal of Applied Phycology 8: 487–502.

    Article  Google Scholar 

  • Yongmanitchai, W., and O.P. Ward. 1991. Growth of and omega-3-fatty-acid production by Phaeodactylum-tricornutum under different culture conditions. Applied and Environmental Microbiology 57: 419–425.

    CAS  Google Scholar 

  • Yoshihara, K., H. Nagase, K. Eguchi, K. Hirata, and K. Miyamoto. 1996. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor. Journal of Fermentation and Bioengineering 82 (4): 351–354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pachiappan, P., Santhanam, P., Begum, A., Balaji Prasath, B. (2019). An Introduction to Plankton. In: Santhanam, P., Begum, A., Pachiappan, P. (eds) Basic and Applied Phytoplankton Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7938-2_1

Download citation

Publish with us

Policies and ethics