Skip to main content

Second Messengers: Central Regulators in Plant Abiotic Stress Response

  • Chapter
  • First Online:
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective

Abstract

Plants differ from animals by lacking the ability to escape from their environmental conditions. Plants adapt to the seasonal as well as nonseasonal perturbations by means of stress-responsive genes. Manipulation of such genes has been shown to provide abiotic stress tolerance in plants. Since abiotic stress is a polygenic trait, overexpression of single stress-responsive gene would not serve the purpose of getting stress-tolerant plants. So, the focus needs to be shifted towards the “master regulators” which are critical for plant growth and development and play an important role in integrating various stress signals and controlling downstream stress responses by modulating gene expression machinery. In plants, there are various second messengers including calcium, ROS, phosphoinositides, cyclic nucleotides, etc., which are known to initiate the downstream signaling cascade leading to response against different, multiple, and simultaneous ambient cues. A better understanding of these elements will allow us to engineer a particular stress-responsive pathway, to achieve better stress-tolerant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S (2004) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55(4):541–552

    Google Scholar 

  • Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N, Sato M, Shimizu T (2008) The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. J Mol Biol 377(1):246–257

    Google Scholar 

  • Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein–protein interaction module conserved in Ca2+-2+2+ 2+2+2+ 2+ regulated kinases. EMBO J 20(5):1051–1063

    Google Scholar 

  • Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK-Y, McCabe PF, Leaver CJ (2011) Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochem Biophys Res Commun 410(3):574–580

    Google Scholar 

  • Allen GJ, Muir SR, Sanders D (1995) Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science (New York, NY) 268(5211):735–737

    Article  CAS  Google Scholar 

  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD et al (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science (New York, NY) 289(5488):2338–2342

    Article  CAS  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48(3):148–170

    Google Scholar 

  • Anthony RG, Henriques R, Helfer A, Mészáros T, Rios G, Testerink C, Munnik T, Deák M, Koncz C, Bögre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23(3):572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Araniti F, Graña E, Krasuska U, Bogatek R, Reigosa MJ, Abenavoli MR, Sánchez-Moreiras AM (2016) Loss of gravitropism in Farnesene-treated Arabidopsis is due to microtubule malformations related to hormonal and ROS unbalance. PLoS One 11(8):e0160202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42(4):591–601

    Article  CAS  PubMed  Google Scholar 

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta Mol Cell Biol Lipids 1791:869

    Article  CAS  Google Scholar 

  • Arisz SA, van van Wijk R, Roels W, Zhu J-K, Haring MA, Munnik T (2013) Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front Plant Sci 4:1

    Google Scholar 

  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46(2):356–366

    Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523

    Google Scholar 

  • Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204(1):191–204

    Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141(2):311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    Google Scholar 

  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9(5):515–522

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BOR, Laxalt AM, Ter Riet B, Van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50(1):78–89

    Article  CAS  PubMed  Google Scholar 

  • Barnes SA, Quaggio RB, Chua N-H (1995) Phytochrome signal-transduction: characterization of pathways and isolation of mutants. Philos Trans R Soc Lond B: Biol Sci 350(1331):67–74

    Article  CAS  Google Scholar 

  • Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219(6):915–924

    Google Scholar 

  • Batistič O, Kudla J (2009) Plant Calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta (BBA) Mol Cell Res 1793(6):985–992

    Google Scholar 

  • Batistič O, Waadt R, Steinhorst L, Held K, Kudla J (2010) CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J 61(2):211–222

    Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. BBA-Gen Subjects 1820(8):1283–1293

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science (New York, NY) 296(5575):2026–2028

    Article  CAS  Google Scholar 

  • Bender KW, Snedden WA (2013) Calmodulin-related proteins step out from the shadow of their namesake. Plant Physiol 163(2):486–495

    Google Scholar 

  • Berkey R, Bendigeri D, Xiao S (2012) Sphingolipids and plant defense/disease: the ‘death’ connection and beyond. Front Plant Sci 3:68

    Google Scholar 

  • Berkowitz G, Zhang X, Mercier R, Leng Q, Lawton M (2000) Co-expression of calcium-dependent protein kinase with the inward rectified guard cell K+ channel KAT1 alters current parameters in Xenopus Laevis Oocytes. Plant Cell Physiol 41(6):785–790

    Google Scholar 

  • Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7(1):1

    Google Scholar 

  • Boss WF, Im YJ (2012) Phosphoinositide signaling. Annu Rev Plant Biol 63:409–429

    Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  CAS  Google Scholar 

  • Bunney TD, Watkins PAC, Beven AF, Shaw PJ, Hernandez LE, Lomonossoff GP, Shanks M, Peart J, Drøbak BK (2000) Association of phosphatidylinositol 3-kinase with nuclear transcription sites in higher plants. Plant Cell 12(9):1679–1687

    Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Biol 46(1):95–122

    Google Scholar 

  • Chandran V, Stollar EJ, Lindorff-Larsen K, Harper JF, Chazin WJ, Dobson CM, Luisi BF, Christodoulou J (2006) Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition. J Mol Biol 357(2):400–410

    Google Scholar 

  • Chehab EW, Rahul Patharkar O, Hegeman AD, Taybi T, Cushman JC (2004) Autophosphorylation and subcellular localization dynamics of a salt-and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol 135(3):1430–1446

    Google Scholar 

  • Cheng S-H, Willmann MR, Chen H-C, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129(2):469–485

    Google Scholar 

  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim B-G, Lee S-C, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52(2):223–239

    Google Scholar 

  • Chico JM, Raíces M, Téllez-Iñón MT, Ulloa RM (2002) A calcium-dependent protein kinase is systemically induced upon wounding in tomato plants. Plant Physiol 128(1):256–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YE, Xu JR (2010) The cAMP signaling pathway in fusarium Verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Mol Plant Microbe Interact 23(4):522–533

    Google Scholar 

  • Choi H-i, Park H-J, Park JH, Kim S, Im M-Y, Seo H-H, Kim Y-W, Hwang I, Kim SY (2005a) Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139(4):1750–1761

    Google Scholar 

  • Choi MS, Kim MC, Yoo JH, Moon BC, Koo SC, Park BO, Lee JH, Koo YD, Han HJ, Lee SY (2005b) Isolation of a calmodulin-binding transcription factor from rice (Oryza Sativa L.) J Biol Chem 280(49):40820–40831

    Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8(4):e23681

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Drago I, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Schiavo FL (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a ca(2+)-dependent scavenging system. Plant J: For Cell Mol Biol 62(5):760–772

    Article  CAS  Google Scholar 

  • Cousson A, Vavasseur A (1998) Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina Communis L. Planta 206(2):308–314

    Article  CAS  Google Scholar 

  • D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V et al (2006) Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48(6):857–872

    Article  PubMed  CAS  Google Scholar 

  • Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF (2003) Subcellular targeting of nine calciumdependent protein kinase isoforms from Arabidopsis. Plant Physiol 132(4):1840–1848

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Google Scholar 

  • De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P (2012) Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem 61:115–122

    Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delk NA, Johnson KA, Chowdhury NI, Braam J (2005) CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139(1):240–253

    Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588

    Article  CAS  PubMed  Google Scholar 

  • DeWald DB, Javad T, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inositol 1, 4, 5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126:759–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Google Scholar 

  • Distefano AM, García-Mata C, Lamattina L, Laxalt AM (2008) Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure. Plant Cell Environ 31(2):187–194

    Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21(3):972–984

    Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis Thaliana cGMP levels. FEBS Lett 569(1–3):317–320

    Article  CAS  PubMed  Google Scholar 

  • Drøbak BK, Watkins PAC (2000) Inositol (1, 4, 5) trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett 481(3):240–244

    Article  PubMed  Google Scholar 

  • Du L, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation: interaction with fsh/Ring3 class transcription activators. Plant Mol Biol 54(4):549–569

    Google Scholar 

  • Du L, Yang T, Puthanveettil SV, Poovaiah BW (2011) Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants. Coding and decoding of calcium signals in plants. Springer, Berlin, pp 177–233

    Google Scholar 

  • Duque AS, de Almeida AM, da Silva AB, da Silva JM, Farinha AP, Santos D, Fevereiro P, de Sousa Araújo S (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive

    Google Scholar 

  • Ederli L, Meier S, Borgogni A, Reale L, Ferranti F, Gehring C, Pasqualini S (2008) cGMP in ozone and NO dependent responses. Plant Signal Behav 3(1):36–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehsan H, Reichheld J-P, Roef L, Witters E, Lardon F, Van Bockstaele D, Van Montagu M, Inzé D, Van Onckelen H (1998) Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett 422(2):165–169

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Melo AC, Chao, Reid MS, Jiang C-Z (2015) Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia. Hortic Res 2(April):15013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam E (2004) Plant cell biology: Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5(4):305–315

    Google Scholar 

  • Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol 171(3):1771–1784

    Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817

    Google Scholar 

  • Finkler A, Ashery-Padan R, Fromm H (2007) CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett 581:3893

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446

    Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63(4):1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant craterostigma plantagineum. Plant Cell 12(1):111–123

    Google Scholar 

  • Gasulla F, Dorp K, Dombrink I, Zähringer U, Gisch N, Dörmann P, Bartels D (2013) The role of lipid metabolism in the acquisition of desiccation tolerance in craterostigma plantagineum: a comparative approach. Plant J 75(5):726–741

    Google Scholar 

  • Geisler M, Axelsen KB, Harper JF, Palmgren MG (2000) Molecular aspects of higher plant P-type ca 2+-ATPases. Biochim Biophys Acta (BBA)-Biomembr 1465(1):52–78

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19(10):623–630

    Article  CAS  PubMed  Google Scholar 

  • Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z, Bar-Zvi D (2007) Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress-and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiol 143(2):617–628

    Google Scholar 

  • Gong M, Li Z-G (1995) Calmodulin-binding proteins from Zea Mays germs. Phytochemistry 40(5):1335–1339

    Google Scholar 

  • Gong M, Chen S-N, Song Y-Q, Li Z-G (1997a) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Funct Plant Biol 24(3):371–379

    Google Scholar 

  • Gong M, Li Y-J, Dai X, Tian M, Li Z-G (1997b) Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings. J Plant Physiol 150(5):615–621

    Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116(1):429–437

    Google Scholar 

  • Gong D, Guo Y, Jagendorf AT, Zhu J-K (2002) Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130(1):256–264

    Google Scholar 

  • Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S (2013) Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol 161(4):2159–2170

    Google Scholar 

  • Guillas I, Guellim A, Rezé N, Baudouin E (2013) Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression. Plant Physiol Biochem 63:191–195

    Google Scholar 

  • Guo L, Wang X (2012) Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Front Plant Sci 3:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Halfter U, Ishitani M, Zhu J-K (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13(6):1383–1400

    Google Scholar 

  • Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286(15):13336–13345

    Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic Glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24(5):2200–2212

    Google Scholar 

  • Halfter U, Ishitani M, Zhu J-K (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci 97(7):3735–3740

    Google Scholar 

  • Han C, Liu Q, Yang Y (2009) Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea Asperata seedlings. Plant Growth Regul 58(2):153–162

    Article  CAS  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heilmann M, Heilmann I (2015) Plant phosphoinositides—complex networks controlling growth and adaptation. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1851(6):759–769

    Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155

    Google Scholar 

  • Heyno E, Mary V, Schopfer P, Krieger-Liszkay A (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234(1):35–45

    Google Scholar 

  • Hirayama T, Ohto C, Mizoguchi T, Shinozaki K (1995) A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis Thaliana. Proc Natl Acad Sci 92(9):3903–3907

    Google Scholar 

  • Ho C-HL, Hu S-H, Tsay H-C, Yi-Fang (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194

    Google Scholar 

  • Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108(6):739–742

    Google Scholar 

  • Hong Y, Zheng S, Wang X (2008) Dual functions of phospholipase Dα1 in plant response to drought. Mol Plant 1(2):262–269

    Google Scholar 

  • Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33(4):627–635

    Article  CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR (2003) The Arabidopsis CDPKSnRK superfamily of protein kinases. Plant Physiol 132(2):666–680

    Google Scholar 

  • Hua W, Li R-J, Wang L, Ying-Tang L (2004) A tobacco calmodulin-binding protein kinase (NtCBK2) induced by high-salt/GA treatment and its expression during floral development and embryogenesis. Plant Sci 166(5):1253–1259

    Google Scholar 

  • Hwang Y- s, Bethke PC, Cheong YH, Chang H-S, Zhu T, Jones RL (2005) A gibberellin-regulated Calcineurin B in Rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol 138(3):1347–1358

    Google Scholar 

  • Imbusch R, Mueller MJ (2000) Analysis of oxidative stress and wound-inducible dinor isoprostanes F1 (phytoprostanes F1) in plants. Plant Physiol 124(3):1293–1304

    Google Scholar 

  • Ischebeck T, Seiler S, Heilmann I (2010) At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240(1–4):13–31

    Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim C-S, Shi W, Zhu J-K (2000) SOS3 function in plant salt tolerance requires N-Myristoylation and calcium binding. Plant Cell 12(9):1667–1677

    Google Scholar 

  • Jae HY, Chan YP, Jong CK, Won DH, Mi SC, Hyeong CP, Min CK et al (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280(5):3697–3706

    Article  CAS  Google Scholar 

  • Jha SK, Sharma M, Pandey GK (2016) Role of cyclic nucleotide gated channels in stress management in plants. Curr Genomics 17(4):315–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative Aquaporins and are phosphorylated in response to Ca2+ and Apoplastic water potential. Plant Cell 8(7):1181–1191

    Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126(3):1055–1060

    Google Scholar 

  • Juárez SPD, Mangano S, Estevez JM (2015) Improved ROS measurement in root hair cells. Methods Mol Biol (Clifton, NJ) 1242:67–71

    Article  CAS  Google Scholar 

  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18(10):2733–2748

    Google Scholar 

  • Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis Thaliana. Plant J 43(1):107–117

    Google Scholar 

  • Kim S-G, Kim S-Y, Park C-M (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226(3):647–654

    Google Scholar 

  • Kim MC, Chung WS, Yun D-J, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2(1):13–21

    Google Scholar 

  • Kim S-C, Liang G, Wang X (2013a) Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J Biol Chem 288(17):11834–11844

    Google Scholar 

  • Kim YS, Park S, Gilmour SJ, Thomashow MF (2013b) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75(3):364–376

    Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis Thaliana responding to drought and salinity. Plant J: Cell Mol Biol 12(5):1067–1078

    Article  CAS  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterisation of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis Thaliana. Plant J: Cell Mol Biol 18(1):97–104

    Article  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and Rice CBL-CIPK signaling networks. Plant Physiol 134(1):43–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopka J, Pical C, Gray JE, Müller-Röber B (1998) Molecular and enzymatic characterization of three phosphoinositide-specific phospholipase C isoforms from potato. Plant Physiol 116(1):239–250

    Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97(6):2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger G, Shkolnik D, Miller G, Fromm H (2016) Reactive oxygen species tune root tropic responses. Plant Physiol 172(2):1209–1220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for Calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci U S A 96(8):4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha R, Singh A, Chattopadhyay S (2008) Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell 20(7):1747–1759

    Google Scholar 

  • Kutuzov MA, Evans DE, Andreeva AV (1998) Expression and characterization of PP7, a novel plant protein Ser/Thr phosphatase distantly related to RdgC/PPEF and PP5. FEBS Lett 440(1–2):147–152

    Google Scholar 

  • Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes cyclic nucleotide-gated channel17, h+-atpase, and bak1[open]. Plant Cell 27(6):1718–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128(2):682–695

    Google Scholar 

  • Larsson O, Barker CJ, Sjöholm Å, Carlqvist H, Michell RH, Bertorello A, Nilsson T, Honkanen RE, Mayr GW, Zwiller J (1997) Inhibition of phosphatases and increased Ca2+ channel activity by inositol hexakisphosphate. Science 278(5337):471–474

    Google Scholar 

  • Le CTT, Brumbarova T, Ivanov R, Stoof C, Weber E, Mohrbacher J, Fink-Straube C, Bauer P (2016) Zinc finger of Arabidopsis thaliana12 (zat12) interacts with fer-like iron deficiency-induced transcription factor (fit) Linking Iron Deficiency and Oxidative Stress Responses. Plant Physiol 170(1):540–557

    Google Scholar 

  • Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G, Lee Y (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12(3):547–556

    Google Scholar 

  • Lee SH, Kim MC, Do Heo W, Kim JC, Chung WS, Park CY, Park HC, Cheong YH, Kim CY, Lee S-H (1999) Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol 1433(1):56–67

    Google Scholar 

  • Lee SH, David Johnson J, Walsh MP, Van Lierop JE, Sutherland C, Ande XU, Snedden WA, Danuta K-K, Fromm H, Narayanan N (2000) Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem J 350(1):299–306

    Google Scholar 

  • Lee M-O, Cho K, Kim S-H, Jeong S-H, Kim J-A, Jung Y-H, Shim J, Shibato J, Rakwal R, Tamogami S (2008) Novel Rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta 227(5):981–990

    Google Scholar 

  • Lee K-W, Chen P-W, Lu C-A, Chen S, Ho T-HD YS-M (2009) Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal 2(91):61–64

    Google Scholar 

  • Lee J-H, Kim Y-J, Jeong D-Y, Sathiyaraj G, Pulla RK, Shim J-S, In J-G, Yang D-C (2010) Isolation and characterization of a glutamate decarboxylase (GAD) gene and Their differential expression in response to abiotic stresses from Panax Ginseng CA Meyer. Mol Biol Rep 37(7):3455–3463

    Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci 100(17):10091–10095

    Google Scholar 

  • Léran SE, Pervent KH, Hashimoto M, Corratgé-Faillie K, Offenborn C, Tillard JN, Gojon P, Kudla A, Benoît JL (2015) Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid. Sci Signal 8(43):10–1126

    Google Scholar 

  • Li J, Lee Y-RJ, Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116(2):785–795

    Google Scholar 

  • Li B, Liu H-T, Sun D-Y, Zhou R-G (2004) Ca2+ and calmodulin modulate DNA-binding activity of maize heat shock transcription factor in vitro. Plant Cell Physiol 45(5):627–634

    Google Scholar 

  • Li X, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32(7):643–653

    Google Scholar 

  • Li D-F, Li J, Ma L, Zhang L, Ying-Tang L (2006) Calmodulin isoform-specific activation of a rice calmodulin-binding kinase conferred by only three amino-acids of OsCaM61. FEBS Lett 580(18):4325–4331

    Google Scholar 

  • Li A, Wang X, Leseberg CH, Jia J, Mao L (2008) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum Aestivum L.) Plant Signal Behav 3(9):654–656

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta Mol Cell Biol Lipids 1791:927

    Article  CAS  Google Scholar 

  • Li J, Wang X, Zhang Y, Jia H, Bi Y (2011) cGMP regulates hydrogen peroxide accumulation in calcium-dependent salt resistance pathway in Arabidopsis Thaliana roots. Planta 234(4):709–722

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jia H, Wang J (2014) cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Rep 33(3):447–459

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhu J-K (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114(2):591–596

    Google Scholar 

  • Liu H-T, Li B, Shang Z-L, Li X-Z, Rui-Ling M, Sun D-Y, Zhou R-G (2003) Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 132(3):1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H-T, Sun D-Y, Zhou R-G (2005) Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant Cell Environ 28(10):1276–1284

    Google Scholar 

  • Liu F, Yoo B-C, Lee J-Y, Pan W, Harmon AC (2006) Calcium-regulated phosphorylation of soybean serine acetyltransferase in response to oxidative stress. J Biol Chem 281(37):27405–27415

    Google Scholar 

  • Liu H-T, Li G-L, Chang HUI, Sun D-Y, Zhou R-G, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30(2):156–164

    Google Scholar 

  • Liu H-T, Gao F, Li G-L, Han J-L, Liu D-L, Sun D-Y, Zhou R-G (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis Thaliana. Plant J 55(5):760–773

    Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and Calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14(Suppl):S389–S400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch DV (2012) Evidence that sphingolipid signaling is involved in responding to low temperature. New Phytol 194(1):7–9

    Google Scholar 

  • Ma F, Lu R, Liu H, Shi B, Zhang J, Tan M, Zhang A, Jiang M (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63(13):4835–4847

    Google Scholar 

  • Ma QT, Zheng R-j, Wang X-j, Luan S-m, Sheng (2015) The calcium sensor CBL7 modulates plant responses to low nitrate in Arabidopsis. Biochem Biophys Res Commun 468(1–2):59–65

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J: Cell Mol Biol 45(5):700–711

    Article  CAS  Google Scholar 

  • Maathuis FJ, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127(4):1617–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud J-P, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis Thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56(4):575–589

    Google Scholar 

  • Mahajan S (2006) Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum Sativum). FEBS J 273(5):907–925. https://doi.org/10.1111/j.1742-4658.2006.05111.x

  • Mahajan S, Mahajan S, Tuteja N, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Sopory SK, Tuteja N (2006) CBL-CIPK paradigm: role in calcium and stress signaling in plants. Proc Indian Natl Sci Acad 72(2):63.

    Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium-and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471(2):146–158

    Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15

    Google Scholar 

  • Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281(32):22684–22694

    Google Scholar 

  • Martìn ML, Busconi L (2001) A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. Plant Physiol 125(3):1442–1449

    Google Scholar 

  • Matsuo M, Johnson JM, Hieno A, Tokizawa M, Nomoto M, Tada Y, Godfrey R, Obokata J, Sherameti I, Yamamoto YY, Böhmer FD (2015) High redox responsive transcription factor1 levels result in accumulation of reactive oxygen species in Arabidopsis thaliana shoots and roots. Mol Plant 8(8):1253–1273

    Google Scholar 

  • McCormack E, Braam J (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159(3):585–598

    Google Scholar 

  • McCormack E, Tsai Y-C, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10(8):383–389

    Google Scholar 

  • McLoughlin F, Arisz SA, Dekker HL, Kramer G, de Koster CG, Haring MA, Munnik T, Testerink C (2013) Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis Thaliana roots. Biochem J 450(3):573–581

    Google Scholar 

  • Medda R, Padiglia A, Longu S, Bellelli A, Arcovito A, Cavallo S, Pedersen JZ, Floris G (2003) Critical role of Ca2+ ions in the reaction mechanism of euphorbia characias peroxidase. Biochemistry 42(29):8909–8918

    Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54(1):265–306

    Google Scholar 

  • Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis Thaliana. Plant J 15(4):563–568

    Google Scholar 

  • Milla R, Miguel A, Uno Y, Chang I-F, Townsend J, Maher EA, Quilici D, Cushman JC (2006) A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein1. FEBS Lett 580(3):904–911

    Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Sultan C-Y, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 4:453–467

    Google Scholar 

  • Mishkind M, Vermeer JEM, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J 60(1):10–21

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27(1):64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium). Plant Physiol 102(4):1227–1235

    Google Scholar 

  • Moon H, Lee B, Choi G, Dongjin S, Theertha Prasad D, Lee O, Kwak S-S et al (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100(1):358–363

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F, Andreoli S, Tiriac H et al (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and ca(2+)-permeable channels and stomatal closure. PLoS Biol 4(10):e327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47(6):511–517

    Google Scholar 

  • Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci U S A 98(18):10481–10486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling: ‘in a Nutshell’. J Lipid Res 50(Suppl):S260–S265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munnik T, Vermeer JEM (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33(4):655–669

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Meijer HJG, Ter Riet B, Hirt H, Frank W, Bartels D, Musgrave A (2000) Hyperosmotic stress stimulates phospholipase D activity and elevates the levels of phosphatidic acid and diacylglycerol pyrophosphate. Plant J 22(2):147–154

    Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Google Scholar 

  • Mura A, Medda R, Longu S, Floris G, Rinaldi AC, Padiglia A (2005) A Ca2+/calmodulin-binding peroxidase from euphorbia latex: novel aspects of calcium-hydrogen peroxide cross-talk in the regulation of plant defenses. Biochemistry 44(43):14120–14130

    Google Scholar 

  • Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, Sato M, Shimizu T (2003) The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis Thaliana. J Biol Chem 278(43):42240–42246

    Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Google Scholar 

  • Nan W, Wang X, Yang L, Hu Y, Wei Y, Liang X, Mao L, Bi Y (2014) Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. J Exp Bot 65(6):1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narváez-Vásquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase a activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11(11):2249–2260

    Google Scholar 

  • Nath K, Yan L (2015) A paradigm of reactive oxygen species and programed cell death in plants. J Cell Sci Ther 6:202

    Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5(5):388–395

    Article  CAS  PubMed  Google Scholar 

  • Ng CK-Y, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves Sphingosine-1- phosphate. Nature 410(6828):596–599

    Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29(3):409–425

    Google Scholar 

  • Nozawa A, Koizumi N, Sano H (2001) An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, ofwhich transcripts respond to light. Plant Cell Physiol 42(9):976–981

    Google Scholar 

  • O’Brien JA, Daudi A, Butt VS, Paul Bolwell G (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236(3):765–779

    Article  PubMed  CAS  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu J-K (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci 100(20):11771–11776

    Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64(2):445–458

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132(3):1241–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Tiwari SB, Tyagi W, Reddy MK, Upadhyaya KC, Sopory SK (2002) A Ca2+/CaM-dependent kinase from pea is stress regulated and in vitro phosphorylates a protein that binds to AtCaM5 promoter. Eur J Biochem 269(13):3193–3204

    Google Scholar 

  • Pandey GK, Cheong YH, Kim K-N, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16(7):1912–1924

    Google Scholar 

  • Pardo JM, Reddy MP, Yang S, Maggio A, Huh GH, Matsumoto T, Coca MA et al (1998) Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc Natl Acad Sci U S A 95(16):9681–9686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HC, Park CY, Koo SC, Cheong MS, Kim KE, Kim MC, Lim CO, Lee SY, Yun D-J, Chung WS (2010) AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis Thaliana. Plant Cell Rep 29(11):1297–1304

    Google Scholar 

  • Patharkar OR, Cushman JC (2000) A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24(5):679–691

    Google Scholar 

  • Patil S, Takezawa D, Poovaiah BW (1995) Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural Visinin-like calciumbinding domain. Proc Natl Acad Sci 92(11):4897–4901

    Google Scholar 

  • Pauly N, Knight MR, Thuleau P, Graziana A, Muto S, Ranjeva R, Mazars C (2001) The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells. Cell Calcium 30(6):413–421

    Article  CAS  PubMed  Google Scholar 

  • Pei Z-M, Ward JM, Harper JF, Schroeder JI (1996) A novel chloride channel in Vicia Faba guard cell vacuoles activated by the serine/threonine kinase, CDPK. EMBO J 15(23):6564

    Google Scholar 

  • Perochon A, Aldon D, Galaud J-P, Ranty B (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93(12):2048–2053

    Google Scholar 

  • Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22(8):2642–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide–a central hub for information flow in plant cells. AoB PLANTS 2012:pls014

    Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Pharmawati M, Maryani MM, Nikolakopoulos T, Gehring CA, Irving HR (2001) Cyclic GMP modulates stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol Biochem 39(5):385–394

    Article  CAS  Google Scholar 

  • Pical C, Westergren T, Dove SK, Larsson C, Sommarin M (1999) Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4, 5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis Thaliana cells. J Biol Chem 274(53):38232–38240

    Google Scholar 

  • Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111(4):1271–1279

    Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulinrelated proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci 104(11):4730–4735

    Google Scholar 

  • Putnam-Evans C, Harmon AC, Palevitz BA, Fechheimer M, Cormier MJ (1989) Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil Cytoskeleton 12(1):12–22

    Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19(4):1415–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci 99(13):9061–9066

    Google Scholar 

  • Rabbani MA, Maruyama K, Hiroshi A, Ayub Khan M, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767

    Google Scholar 

  • Raichaudhuri A, Bhattacharyya R, Chaudhuri S, Chakrabarti P, DasGupta M (2006) Domain analysis of a groundnut calcium-dependent protein kinase nuclear localization sequence in the junction domain is coupled with nonconsensus calcium binding domains. J Biol Chem 281(15):10399–10409

    Google Scholar 

  • Reddy VS, Reddy ASN (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65(12):1745–1776

    Google Scholar 

  • Reddy ASN, Reddy VS, Golovkin M (2000) A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun 279(3):762–769

    Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23(6):2010–2032

    Google Scholar 

  • Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11(5):331–340

    Google Scholar 

  • Riveras EA, Vidal JM, Oses EA, Vega C, Gutiérrez A, Rodrigo A (2015) The calcium ion is a second messenger in the nitrate signaling pathway of Arabidopsis. Plant Physiol 169(2):1397–1404

    Google Scholar 

  • Roach T, Krieger-Liszkay AK (2014) Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 15(4):351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio F, Flores P, Navarro JM, Martı́ V (2003) Effects of Ca 2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 165(5):1043–1049

    Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7

    Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136(1):2734–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu JK, Albert A (2005) The structure of the Arabidopsis Thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345(5):1253–1264

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Barrena MJ, Fujii H, Angulo I, Martínez-Ripoll M, Zhu J-K, Albert A (2007a) The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26(3):427–435

    Google Scholar 

  • Sánchez-Barrena MJ, Moreno-Pérez S, Angulo I, Martínez-Ripoll M, Albert A (2007b) The complex between SOS3 and SOS2 regulatory domain from Arabidopsis Thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 63(7):568–570

    Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–S417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathyanarayanan PV, Poovaiah BW (2004) Decoding Ca2+ signals in plants. Crit Rev Plant Sci 23(1):1–11

    Google Scholar 

  • Sato EM, Hijazi H, Bennett MJ, Vissenberg K, Swarup R (2014) New insights into root gravitropic signalling. J Exp Bot 66(8):2155–2165

    Google Scholar 

  • Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164(3):1151–1160

    Google Scholar 

  • Scrase-Field SAMG, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6(5):500–506

    Google Scholar 

  • Seltmann MA, Stingl NE, Lautenschlaeger JK, Krischke M, Mueller MJ, Berger S (2010) Differential impact of lipoxygenase 2 and Jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol 152(4):1940–1950

    Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Google Scholar 

  • Shafi A, Chauhan R, Gill T, Swarnkar MK, Sreenivasulu Y, Kumar S, Kumar N, Shankar R, Ahuja PS, Singh AK (2015a) Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress. Plant Mol Biol 87:615–631

    Article  CAS  PubMed  Google Scholar 

  • Shafi A, Gill T, Sreenivasulu Y, Kumar S, Ahuja PS, Singh AK (2015b) Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea. Protoplasma 252:41–51

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144

    Article  CAS  Google Scholar 

  • Shaikhali J, Norén L, de Dios Barajas-López J, Srivastava V, König J, Sauer UH, Wingsle G, Dietz K-J, Strand Å (2012) Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis. J Biol Chem 287(33):27510–27525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Harmon AC (2003) In vivo phosphorylation of a recombinant peptide substrate of CDPK suggests involvement of CDPK in plant stress responses. Plant Mol Biol 53(5):731–740

    Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing Rice seedlings. Plant Growth Regul 46(3):209–221

    Article  CAS  Google Scholar 

  • Sheen J (1996) Ca2 plus-dependent protein kinases and stress signal transduction in plants. Science 274(5294):1900

    Google Scholar 

  • Shi J, Kim K-N, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B–like calcium sensors in Arabidopsis. Plant Cell 11(12):2393–2405

    Google Scholar 

  • Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T, Tan M, Zhang J, Jiang M (2012) OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of Rice. Mol Plant 5(6):1359–1374

    Google Scholar 

  • Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z (2014) The Cysteine2/Histidine2-type transcription factor zinc finger of arabidopsis thaliana6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and c-repeat-binding factor genes in Arabidopsis. Plant Physiol 165(3):1367–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierla M, Waszczak C, Vahisalu T, Kangasjärvi J (2016) Reactive oxygen species in the regulation of stomatal movements. Plant Physiol 171(3):1569–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H (2014) Role of metabolic H2O2 generation redox signaling and oxidative stress. J Biol Chem 289(13):8735–8741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-box binding Factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153(3):1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151(1):35–66

    Google Scholar 

  • Stevenson JM, Perera IY, Heilmann I, Persson S, Boss WF (2000) Inositol signaling and plant growth. Trends Plant Sci 5(6):252–258

    Google Scholar 

  • Subbaiah CC, Sachs MM (2000) Maize cap1 encodes a novel SERCA-type calcium-ATPase with a calmodulin-binding domain. J Biol Chem 275(28):21678–21687

    Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14(6):691–699

    Google Scholar 

  • Suzuki N, Miller G, Salazar C, Mondal HA, Shulaev E, Cortes DF, Shuman JL et al (2013) Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell 25(9):3553–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SX L, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128(3):1008–1021

    Google Scholar 

  • Taddese B, Upton GJG, Bailey GR, Jordan SRD, Abdulla NY, Reeves PJ, Reynolds CA (2014) Do plants contain G protein-coupled receptors? Plant Physiol 164(1):287–307

    Google Scholar 

  • Takahashi S, Katagiri T, Hirayama T, Yamaguchi-Shinozaki K, Shinozaki K (2001) Hyperosmotic stress induces a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol 42(2):214–222

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, Tsutsumi N, Nagamura Y, Nishizawa NK, Nakazono M (2010) A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. J Plant Res 123(6):807–813

    Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41(6):649–660

    Google Scholar 

  • Takano M, Takahashi H, Suge H (1997) Calcium requirement for the induction of hydrotropism and enhancement of calcium-induced curvature by water stress in primary roots of pea, Pisum Sativum L. Plant Cell Physiol 38(4):385–391

    Article  CAS  Google Scholar 

  • Testerink C (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62(7):2349–2361

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Dekker HL, Lim ZY, Johns MK, Holmes AB, De Koster CG, Ktistakis NT, Munnik T (2004) Isolation and identification of phosphatidic acid targets from plants. Plant J 39(4):527–536

    Article  CAS  PubMed  Google Scholar 

  • Testerink C, Larsen PB, van der Does D, van Himbergen JAJ, Munnik T (2007) Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot 58(14):3905–3914

    Google Scholar 

  • Thole JM, Nielsen E (2008) Phosphoinositides in plants: novel functions in membrane trafficking. Curr Opin Plant Biol 11(6):620–631

    Google Scholar 

  • Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, Blake PS, Burbidge A, Taylor IB (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J: Cell Mol Biol 23(3):363–374

    Article  CAS  Google Scholar 

  • Townley HE, Knight MR (2002) Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol 128(4):1169–1172

    Google Scholar 

  • Tsui MM, York JD (2010) Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul 50(1):324

    Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C et al (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161(2):1010–1020

    Article  CAS  PubMed  Google Scholar 

  • Tung SA, Smeeton R, White CA, Black CR, Taylor IB, Hilton HW, Thompson AJ (2008) Over-expression of LeNCED1 in tomato (Solanum Lycopersicum L.) with the rbcS3C promoter allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes. Plant Cell Environ 31(7):968–981

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2(2):79–85

    Google Scholar 

  • Tuteja N, Sopory SK (2008) Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3(2):79–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97(21):11632–11637

    Google Scholar 

  • Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K (1994) Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis Thaliana. Mol Gen Genet MGG 244(4):331–340

    Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121(3):705–714

    Article  PubMed Central  Google Scholar 

  • Van Leeuwen W, Vermeer JEM, Gadella TWJ, Munnik T (2007) Visualization of phosphatidylinositol 4, 5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J 52(6):1014–1026

    Google Scholar 

  • Vergnolle C, Vaultier M-N, Taconnat L, Renou J-P, Kader J-C, Zachowski A, Ruelland E (2005) The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol 139(3):1217–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X (1999) The role of phospholipase D in signaling cascades. Plant Physiol 120(3):645–652

    Google Scholar 

  • Wang P, Song C-P (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178(4):703–718

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zeng H, Hu X, Zhu Y, Yang C, Shen C, Wang H, Poovaiah BW, Du L (2015) Identification and expression analyses of calmodulinbinding transcription activator genes in soybean. Plant and Soil 386(1–2):205–221

    Google Scholar 

  • Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X, Luo Q et al (2014) A Rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14:133

    Google Scholar 

  • Weljie AM, Vogel HJ (2004) Unexpected structure of the Ca2+-regulatory region from soybean calcium-dependent protein kinase-α. J Biol Chem 279(34):35494–35502

    Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H-E, Rajashekar CB, Williams TD, Wang X (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277(35):31994–31992

    Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wi SJ, Seo S, Cho K, Nam MH, Park KY (2014) Lysophosphatidylcholine enhances susceptibility in signaling pathway against pathogen infection through biphasic production of reactive oxygen species and ethylene in tobacco plants. Phytochemistry 104:48–59

    Google Scholar 

  • Williams SP, Gillaspy GE, Perera IY (2015) Biosynthesis and possible functions of inositol pyrophosphates in plants. Front Plant Sci 6:67

    Google Scholar 

  • Worrall D, Liang Y-K, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56(1):64–72

    Google Scholar 

  • Xiong L, Schumaker KS, Zhu J-k (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Suppl:S165–S184

    Google Scholar 

  • G-Y X, Rocha PSCF, Wang M-L, M-L X, Cui Y-C, Li L-Y, Zhu Y-X, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59

    Google Scholar 

  • Xue H-W, Xu C, Yu M (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421(2):145–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamniuk AP, Vogel HJ (2005) Structural investigation into the differential target enzyme regulation displayed by plant calmodulin isoforms. Biochemistry 44(8):3101–3111

    Google Scholar 

  • Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30(10):1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci 99(6):4097–4102

    Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8(10):505–512

    Google Scholar 

  • Yang S-N, Yu J, Mayr GW, Hofmann F, Larsson O, Berggren P-O (2001) Inositol hexakisphosphate increases L-type Ca2+ channel activity by stimulation of adenylyl cyclase. FASEB J 15(10):1753–1763

    Google Scholar 

  • Yang T, Ali GS, Yang L, Du L, Reddy ASN, Poovaiah BW (2010) Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal Behav 5(8):991–994

    Google Scholar 

  • Yao H, Wang G, Liang G, Wang X (2013) Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell 25(12):5030–5042

    Google Scholar 

  • Yuen CY, Christopher DA (2010) The rtole of cyclic nucleotide-gated channels in cation nutrition and abiotic stress. In: Ion channels and plant stress responses. Springer, Berlin, pp 137–157

    Google Scholar 

  • Yoo JH, Park CY, Kim JC, Do Heo W, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH (2005) Direct interaction of a divergent CaMisoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280(5):3697–3706

    Google Scholar 

  • Yoon H-K, Kim S-G, Kim S-Y, Park C-M (2008) Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells (Springer Sci Bus Media BV) 25(3)

    Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO(2) signaling in guard cells: calcium sensitivity response modulation, a ca(2+)-independent phase, and CO(2) insensitivity of the gca2 mutant. Proc Natl Acad Sci U S A 103(19):7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis Thaliana. New Phytol 188(3):762–773

    Article  CAS  PubMed  Google Scholar 

  • Yuasa T, Ichimura K, Mizoguchi T, Shinozaki K (2001) Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase. Plant Cell Physiol 42(9):1012

    Article  CAS  PubMed  Google Scholar 

  • Yuen CCY, Christopher DA (2013) The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis Thaliana. AoB Plants 5 (February)

    Google Scholar 

  • Yunta C, Martínez-Ripoll M, Zhu J-K, Albert A (2011) The structure of Arabidopsis Thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. J Mol Biol 414(1):135–144

    Google Scholar 

  • Zafra A, Rejón JD, Hiscock SJ, de Dios Alché J (2016) Patterns of ROS accumulation in the stigmas of angiosperms and visions into their multifunctionality in plant reproduction. Front Plant Sci 7:1112

    Google Scholar 

  • Zhang XS, Choi JH (2001) Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists. J Mol Evol 53(3):214–224

    Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101(25):9508–9513

    Google Scholar 

  • Zhang W, Yu L, Zhang Y, Wang X (2005) Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736(1):1–9

    CAS  PubMed  Google Scholar 

  • Zhang W, Zhou R-G, Gao Y-J, Zheng S-Z, Xu P, Zhang S-Q, Sun D-Y (2009a) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149(4):1773–1784

    Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009b) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21(8):2357–2377

    Google Scholar 

  • Zhang W, Jeon BW, Assmann SM (2011) Heterotrimeric G-protein regulation of ROS signalling and calcium currents in Arabidopsis guard cells. J Exp Bot 62(7):2371–2379

    Google Scholar 

  • Zhao Y, Liu W, Xu Y-P, Cao J-Y, Braam J, Cai X-Z (2013) Genome-wid identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13(1):1

    Google Scholar 

  • Zhou J, Wang J, Shi K, Xia XJ, Zhou YH, Jing Quan Y (2012) Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol Biochem: PPB 60(November):141–149

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xia X-J, Zhou Y-H, Shi K, Chen Z, Jing-Quan Y (2014) RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. J Exp Bot 65(2):595–607

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S-Y, X-C Y, Wang X-J, Zhao R, Li Y, Fan R-C, Shang Y, Shu-Yuan D, Wang X-F, Fu-Qing W (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19(10):3019–3036

    Google Scholar 

  • Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV, Tan M, Zhang A (2013) MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. J Exp Bot 64(12):3787–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • zu Heringdorf DM, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta (BBA) Biomembr 1768(4):923–940

    Google Scholar 

Download references

Acknowledgements

Funding and support from South Asian University are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Mustafiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, M., Nagar, P., Goel, P., Singh, A.K., Kumari, S., Mustafiz, A. (2018). Second Messengers: Central Regulators in Plant Abiotic Stress Response. In: Zargar, S., Zargar, M. (eds) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_2

Download citation

Publish with us

Policies and ethics