Skip to main content

Biosurfactants from Processed Wastes

  • Chapter
  • First Online:
Waste to Wealth

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Better waste management and economic biosurfactant production have been achieved when scientific studies were piloted concentrating on the three ‘R’ principles: Reduce, Reuse, and Recycle. Waste products from various industries and processes when selected as low-cost substrates having proper nutrient balance for biosurfactant production, biotechnological research contributed a substantial share to its environmental preservation strategies. Utilization of a variety of natural waste materials as alternative cost-effective carbon sources for the economic production of biosurfactants generates a high-value biotechnological product with the potential industrial application and, moreover, a process that can contribute to decreasing the disposal of wastes into the environment. Even though it is a fact that these biosurfactants derived from renewable raw materials are coming progressively on to the market, their growth and development need extensive cooperation across disciplines in order to fully characterize them and identify their potential uses in various sectors and industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2009) Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl Biochem Biotechnol 157(2):329–345

    Article  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697

    Article  Google Scholar 

  • Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soap stock as the sole carbon source. J Food Eng 54:283–288

    Article  Google Scholar 

  • Bento FM, Gaylarde CC (1996) The production of interfacial emulsions by bacterial isolates from diesel. Int Biodeterior Biodegradation 38:31–33

    Article  CAS  Google Scholar 

  • Daniel HJ, Reuss M, Syldatk C (1998) Production of sophorolipids in high concentration from deproteinized whey and rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotech Lett 20:1153–1156

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 42:1191–1199

    Article  CAS  Google Scholar 

  • Dubey K, Juwakar A (2001) Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J Microbiol Biotechnol 17:61–69

    Article  CAS  Google Scholar 

  • Fox SL, Bala GA (2000) Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrate. Biores Technol 75:235–240

    Article  CAS  Google Scholar 

  • George S, Jayachandran K (2009) Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl Biochem Biotechnol 158(3):694–705

    Article  CAS  Google Scholar 

  • George S, Jayachandran K (2012) Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J Appl Microbiol 114:373–383

    Article  Google Scholar 

  • Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from frying oils. J Appl Microbiol 88:379–387

    Article  CAS  Google Scholar 

  • Haba E, Vidal-Mas J, Bassas M, Espuny MJ, Llorens J, Manresa A (2007) Poly 3-(hydroxy alkanoates) produced from oily substrates by Pseudomonas aeruginosa 47T2 (NCBIM 40044): effect of nutrients and incubation temperature on polymer composition. Biochem Eng J 35:99–106

    Article  CAS  Google Scholar 

  • Jeong H-S, Lim D-J, Hwang S-H, Ha S-D, Kong J-Y (2004) Rhamnolipid production by Pseudomonas aeruginosa immobilized in polyvinyl alcohol beads. Biotech Lett 26:35–39

    Article  CAS  Google Scholar 

  • Koch A, Resier KJ, Kapelli O, Fiechter A (1988) Genetic construction of lactose-utilizing strains of P. aeruginosa and their applications in biosurfactants production. Biotechnology 6:1335–1339

    CAS  Google Scholar 

  • Kock JLF, Botha A, Bloch J, Nigam S (1996) Used cooking oil: science tackles a potential health hazard. S Afr J Sci 92:513–514

    CAS  Google Scholar 

  • Lee SC, Lee SJ, Kim SH, Park IH, Lee YS, Chung SY, Choi YL (2008) Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Biores Technol 99:2288–2292

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chemist’s Soc (JAOCS) 74:887–889

    Article  CAS  Google Scholar 

  • Marsudi S, Unno H, Hori K (2008) Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 78:955–961

    Article  CAS  Google Scholar 

  • Mercade ME, Manresa A, Robert M, Espuny MJ, deAndres C, Guinea J (1993) Olive oil mill effluent (OOME), a new substrate for biosurfactant production. Biores Technol 43:1–6

    Article  CAS  Google Scholar 

  • Mercade ME, Monleon L, Andres C, Rodon I, Martinez E, Espuny MJ (1996) Screening and selection of surfactant-producing bacteria from waste lubricating oil. J Appl Microbiol 81:161–166

    CAS  Google Scholar 

  • Monteiro AS, Coutinho JOPA, Junior AC, Rosa CA, Siqueira EP, Santos VL (2009) Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents. J Basic Microbiol 49:553–563

    Article  CAS  Google Scholar 

  • Muriel JM, Bruqu JM, Olfas JM, Jimenez- Sanchez A (1996) Production of biosurfactant by Cladosporiumresinae. Biotech Lett 18:235–240

    Article  CAS  Google Scholar 

  • Neto DC, Meira JA, de Araújo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81:441–448

    Article  Google Scholar 

  • Nitschke M, Ferraz C, Pastore GM (2004) Selection of microorganisms for biosurfactant production using agro industrial wastes. Braz J Microbiol 35:81–85

    Article  Google Scholar 

  • Patowary R, Patowary K, Kalita MC, Deka S (2016) Utilization of paneer whey waste for cost-effective production of rhamnolipid biosurfactant. Appl Biochem Biotechnol 180(3):383–399

    Article  CAS  Google Scholar 

  • Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138

    Article  CAS  Google Scholar 

  • Pini F, Grossi C, Nereo S, Michaud L, Giudice AL, Bruni V, Baldi F, Fani R (2007) Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). Eur J Soil Biol 43:368–379

    Article  CAS  Google Scholar 

  • Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Biores Technol 99:1589–1595

    Article  CAS  Google Scholar 

  • Qiao N, Shao Z (2010) Isolation and characterization of a novel biosurfactant produced by hydrocarbon-degrading bacterium Alcanivorax dieselolei B-5. J Appl Microbiol 108(4):1207–1216

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Merchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281

    Article  CAS  Google Scholar 

  • Rane AN, Baikar VV, Ravi Kumar DV, Deopurkar RL (2017) Agro-industrial wastes for production of biosurfactant by Bacillus subtilis ANR 88 and its application in synthesis of silver and gold nanoparticles. Front Microbiol 8:492

    Article  Google Scholar 

  • Raza ZA, Khan MS, Khalid ZM (2007a) Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. Process Biochem 42:686–692

    Article  CAS  Google Scholar 

  • Raza ZA, Khan MS, Khalid ZM (2007b) Physicochemical and surface-active properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J Environ Sci Health Part A 42:73–80

    Article  CAS  Google Scholar 

  • Rivera OMP, Moldes AB, Torrado AM, Dominguez JM (2007) Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Process Biochem 42:1010–1020

    Article  CAS  Google Scholar 

  • Rocha MVP, Oliveira AHS, Souza MCM, Goncalves LRB (2006) Natural cashew apple juice as fermentation medium for biosurfactant production by Acinetobacter calcoaceticus. World J Microbiol Biotechnol 22:1295–1299

    Article  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Petrol Sci Eng 105:43–50

    Article  CAS  Google Scholar 

  • Saravanan V, Subramaniyan V (2014) Production of bio surfactant by Pseudomonas aeruginosa PB3A using agro-industrial wastes as a carbon source. Malays J Microbiol 10:57–62

    Google Scholar 

  • Sarubbo LA, Marcel MCR, Campose-Takai GM (1997) Comparative study on bioemulsifiers produced by Candida lipolytica strains. Arquivos de Biologia e Tecnologia 40:707–720

    CAS  Google Scholar 

  • Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917

    Article  CAS  Google Scholar 

  • Sudhakar-Babu P, Vaidya AN, Bal AS, Kapur R, Juwarkar A, Khanna P (1996) Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotech Lett 18:263–268

    Article  Google Scholar 

  • Thompson DN, Fox SL, Bala GA (2000) Biosurfactants from potato process effluents. Appl Biochem Biotechnol 84–86:917–930

    Article  Google Scholar 

  • Trummler K, Effenberger F, Syldatk C (2003) An integrated microbial/enzymatic process for production of rhamnolipids and L-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur J Lipid Sci Technol 105:563–571

    Article  CAS  Google Scholar 

  • Veenanadig NK, Gowthaman MK, Karanth NGK (2000) Scale up studies for the production of biosurfactants in packed column bioreactor. Bioprocess Biosyst Eng 22:95–99

    Article  CAS  Google Scholar 

  • Vollbrecht E, Rau U, Lang S (1999) Microbial conversion of vegetable oils to surface-active di-, tri-, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Fett/Lipid 101:389–394

    Article  CAS  Google Scholar 

  • Wei Y-H, Chou C-L, Chang J-S (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154

    Article  CAS  Google Scholar 

  • Zhu Z, Zhang F, Wei Z, Ran W, Shen Q (2013) The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciensXZ-173 in solid-state fermentation. J Environ Manage 127:96–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jayachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, S., Jayachandran, K. (2018). Biosurfactants from Processed Wastes. In: Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R. (eds) Waste to Wealth. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7431-8_2

Download citation

Publish with us

Policies and ethics