Skip to main content

The Dawn of the Era of Bioactive Compounds

  • Chapter
  • First Online:
Metabolic Engineering for Bioactive Compounds

Abstract

Microbes and plants are a major source of naturally occurring compounds. However, a few of them especially the secondary metabolites are among those termed as bioactive compounds. These bioactive compounds have unique biological activities, which can be assigned to unique chemical structures, uncommon chemical groups and structural elements. Due to these specific properties, bioactive compounds have been exploited for diverse biotechnological applications. These compounds have strong flavours and odours with usage as antibacterials and for antineoplastic, anticancer and antiviral activities. A few strategies to enhance their production and efficacy involve metabolic engineering of the process through the use of tools such as molecular biology, nanotechnology, bioinformatics, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticle synthesis and their anti-biofilm activity. Indian J Microbiol 57(2):188–194. doi:10.1007/s12088-017-0640-x

    Article  CAS  PubMed  Google Scholar 

  • Arasu MV, Al-Dhabi NA, Rejiniemon TS, Lee KD, Huxley VAJ, Kim DH, Duraipandiyan V, Karuppiah P, Choi KC (2015) Identification and characterization of Lactobacillus brevis P68 with antifungal, antioxidant and probiotic functional properties. Indian J Microbiol 55:19–28. doi:10.1007/s12088-014-0495-3

    Article  CAS  Google Scholar 

  • Azman CA-S, Othman I, Fang C-M, Chan K-G, Goh B-H, Lee L-H (2017) Antibacterial, anticancer and neuroprotective activities of rare actinobacteria from mangrove forest soils. Indian J Microbiol 57:177–187. doi:10.1007/s12088-016-0627-z

    Article  PubMed  Google Scholar 

  • Balakrishnan D, Bibiana AS, Vijayakumar A, Santhosh RS, Dhevendaran K, Nithyanand P (2015) Antioxidant activity of bacteria associated with the marine sponge Tedania anhelans. Indian J Microbiol 55:13–18. doi:10.1007/s12088-014-0490-8

    Article  CAS  Google Scholar 

  • Bandyopadhyay P, Mishra S, Sarkar B, Swain SK, Pal A, Tripathy PP, Ojha SK (2015) Dietary Saccharomyces cerevisiae boosts growth and immunity of IMC Labeo rohita (Ham.) juveniles. Indian J Microbiol 55:81–87. doi:10.1007/s12088-014-0500-x

    Article  CAS  Google Scholar 

  • Begum IF, Mohankumar R, Jeevan M, Ramani K (2016) GC–MS analysis of bioactive molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol 56:426–432. doi:10.1007/s12088-016-0609-1

    Article  Google Scholar 

  • Bernhoft A (2010) A brief review on bioactive compounds in plants. In: Bernhoft A (ed) Bioactive compounds in plants—benefits and risks for man and animals. Proceedings of the symposium held at the Norwegian Academy of Science and Letters, Oslo, 13–14 Nov 2008. pp 11–7

    Google Scholar 

  • Bose D, Chatterjee S (2015) Antibacterial activity of green synthesized silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract. Indian J Microbiol 55:163–167. doi:10.1007/s12088-015-0512-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debbab A, Aly AH, Lin WH, Proksch P (2010) Bioactive compounds from marine bacteria and fungi. Microb Biotechnol 3:544–563. doi:10.1111/j.1751-7915.2010.00179.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrucka R, DÅ‚ugaszewska J (2015) Antimicrobial activities of silver nanoparticles synthesized by using water extract of Arnicae anthodium. Indian J Microbiol 55:168–174. doi:10.1007/s12088-015-0516-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go T-H, Cho K-S, Lee S-M, Lee O-M, Son H-J (2015) Simultaneous production of antifungal and keratinolytic activities by feather-degrading Bacillus subtilis S8. Indian J Microbiol 55:66–73. doi:10.1007/s12088-014-0502-8

    Article  CAS  Google Scholar 

  • Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoumi M, Hamal A (2014) What is a bioactive compound? A combined definition for a preliminary consensus. Int J Nutrition Food Sci 3:174–179. doi:10.11648/j.ijnfs.20140303.16

    Google Scholar 

  • Hernández-Saldaña OF, Valencia-Posadas M, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE (2016) Bacteriocinogenic bacteria isolated from raw goat milk and goat cheese produced in the Center of México. Indian J Microbiol 56:301–308. doi:10.1007/s12088-016-0587-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeyanthi V, Velusamy P (2016) Anti-methicillin resistant Staphylococcus aureus compound isolation from halophilic Bacillus amyloliquefaciens MHB1 and determination of its mode of action using electron microscope and flow cytometry analysis. Indian J Microbiol 56:148–157. doi:10.1007/s12088-016-0566-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi:10.1038/nbt0803-845

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC, Lal S, Cheema S (2007) Insight into the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi:10.1016/j.gene.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. doi:10.1007/s12088-016-0583-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karumuri S, Singh PK, Shukla P (2015) In silico analog design for terbinafine against Trichophyton rubrum: a preliminary study. Indian J Microbiol 55:333–340. doi:10.1007/s12088-015-0524-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi:10.1007/s12088-014-0509-1

    Article  CAS  Google Scholar 

  • Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015b) Biotechnology in aid of biodiesel industry effluent (glycerol): biofuels and bioplastics. In: Kalia VC (ed) Microbial factories. Springer, New Delhi, pp 105–119. doi: 10.1007/978-81-322-2598-0

    Chapter  Google Scholar 

  • Kumar P, Ray S, Kalia VC (2016) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419. doi:10.1016/j.biortech.2015.10.045

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015c) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. doi:10.1016/j.ijbiomac.2015.03.046

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi:10.1007/s12088-014-0457-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi:10.1111/j.1365-2672.2009. 04160.x

    Article  CAS  PubMed  Google Scholar 

  • Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci. doi:10.3389/fmars.2016.00068

  • Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S (2007) Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod 70:1454–1457. doi:10.1021/np0702032

    Article  CAS  PubMed  Google Scholar 

  • McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732–1737. doi:10.1021/np800286d

    Article  CAS  PubMed  Google Scholar 

  • Park J-M, Radhakrishnan R, Kang S-M, Lee I-J (2015) IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–211. doi:10.1007/s12088-015-0515-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015a) Integrative approach for hydrogen and polyhydroxybutyrate production. In: Kalia VC (ed) Microbial factories waste treatment. Springer, New Delhi, pp 73–85. doi:10.1007/978-81-322-2598-0_5

    Chapter  Google Scholar 

  • Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015b) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  • Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. doi:10.1007/s12088-016-0595-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Yam LP, Esaú Ruíz-Sánchez E, Barboza-Corona JE, Reyes-Ramírez A (2016) Isolation of Mexican Bacillus species and their effects in promoting growth of chili pepper (Capsicum annuum L. cv Jalapeño). Indian J Microbiol 56:375–378. doi:10.1007/s12088-016-0582-8

  • Pessione E, Maxxoli R, Riedel K (2017) Bioactive compounds from microbes. Front Microbiol. doi:10.3389/fmicb.2017.00392

  • Radivojevic J, Skaro S, Senerovic L, Vasiljevic B, Guzik M, Kenny ST, Maslak V, Nikodinovic-Runic J, O’Connor KE (2016) Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives as a platform of bioactive compounds. Appl Microbiol Biotechnol 100:161–172. doi:10.1007/s00253-015-6984-4

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Kalia VC (2017a) Biological significance of degradation of polyhydroxyalkanoates. In: Kalia VC, Kumar P (eds) Microbial applications, Bioremediation and bioenergy, vol Vol 1. SpringerNature, New York. 978-3-319-52665-2

    Google Scholar 

  • Ray S, Kalia VC (2017b) Microbial cometabolism and polyhydroxyalkanaote co-polymers. Indian J Microbiol 57:39–47. doi:10.1007/s12088-016-0622-4

    Article  CAS  PubMed  Google Scholar 

  • Reddy CSK, Ghai R, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi:10.1016/S0960-8524(02)00212-2

    Article  CAS  PubMed  Google Scholar 

  • Saini RK, Keum Y-S (2017) Progress in microbial carotenoids production. Indian J Microbiol 57:129–130. doi:10.1007/s12088-016-0637-x

    Article  CAS  PubMed  Google Scholar 

  • Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S (2017) Lactobacillus futsaii CS3, a new GABA-producing strain isolated from Thai fermented shrimp (Kung–Som). Indian J Microbiol 57:211–217. doi:10.1007/s12088-016-0632-2

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tadit Complement Altern Med 8:1–10

    CAS  Google Scholar 

  • Shiva Krishna P, Sudheer Kumar B, Raju P, Murty MSR, Prabhakar Rao T, Singara Charya MA, Prakasham RS (2015) Fermentative production of pyranone derivate I from marine Vibrio sp. SKMARSP9: isolation, characterization and bioactivity evaluation. Indian J Microbiol 55:292–301. doi:10.1007/s12088-015-0521-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla R (2015) Studies on bioactive compounds from different microorganisms. Int J Sci Eng Res 6:1225–1233. ISSN229-5518

    Google Scholar 

  • Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:235–249. doi:10.1007/s12088-015-0528-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38. doi:10.1186/1475-2859-8-38

    Article  Google Scholar 

  • Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierzanowska-Fangrat K, Jurek AZ, KuÅ› PM, Milewski M (2015) Essential oils, silver nanoparticles and Propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol 55:175–183. doi:10.1007/s12088-014-0508-2

    Article  CAS  PubMed  Google Scholar 

  • Thakur R, Sharma KC, Gulati A, Sud RK, Gulati A (2017) Stress-tolerant Viridibacillus arenosi strain IHB B 7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant. Indian J Microbiol. doi:10.1007/s12088-017-0642-8

  • Varsha KK, Nishant G, Sneha SM, Shilpa G, Devendra L, Priya S, Nampoothiri KM (2016) Antifungal, anticancer and aminopeptidase inhibitory potential of a phenazine compound produced by Lactococcus BSN307. Indian J Microbiol 56:411–416. doi:10.1007/s12088-016-097-1

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Chopade BA (2016) Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment. Indian J Microbiol 56:439–444. doi:10.1007/s12088-016-0598-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology, Delhi, India, OLP1126 (CSIR-HRD ES21(1022)/16/EMR-II) for providing the necessary funds, facilities and moral support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Chandra Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kalia, V.C. (2017). The Dawn of the Era of Bioactive Compounds. In: Kalia, V., Saini, A. (eds) Metabolic Engineering for Bioactive Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-5511-9_1

Download citation

Publish with us

Policies and ethics