Skip to main content

Abstract

Invasive fungal disease (IFD) can be life-threatening. In the past two decades, the incidence of these infections has increased significantly, largely because of the increasing number of patients at risk [1]. Although IFD can affect people with an intact immune systems as well, the vast majority of these infections occur as opportunistic infections in the immunocompromised host. IFD can be caused by both yeasts and filamentous molds. Yeasts are a type of fungi that consist of solitary cells that reproduce by budding, whereas molds occur in the form of hyphae: long, tubular branches with multiple, genetically identical nuclei which grow by apical extension. The most common forms of IFD in the immunocompromised host include invasive candidiasis (yeast) and invasive aspergillosis (mold).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oren I, Paul M (2014) Up to date epidemiology, diagnosis and management of invasive fungal infections. Clin Microbiol Infect 20(Suppl 6):1–4

    Article  PubMed  Google Scholar 

  2. Kullberg BJ, Arendrup MC (2016) Invasive Candidiasis. N Engl J Med 374(8):794–795

    PubMed  Google Scholar 

  3. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L et al (2016) Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis 62(4):e1–50

    Article  PubMed  Google Scholar 

  4. Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH et al (2012) Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54(8):1110–1122

    Article  CAS  PubMed  Google Scholar 

  5. Anaissie EJ, Stratton SL, Dignani MC, Lee CK, Summerbell RC, Rex JH et al (2003) Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies. Blood 101(7):2542–2546

    Article  CAS  PubMed  Google Scholar 

  6. Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ (2009) Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9(12):789–795

    Article  CAS  PubMed  Google Scholar 

  7. Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in invasive Aspergillosis. Clin Microbiol Rev 22(3):447–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baddley JW, Stephens JM, Ji X, Gao X, Schlamm HT, Tarallo M (2013) Aspergillosis in Intensive Care Unit (ICU) patients: epidemiology and economic outcomes. BMC Infect Dis 13:29

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baddley JW (2011) Clinical risk factors for invasive aspergillosis. Med Mycol 49(Suppl 1):S7–S12

    Article  PubMed  Google Scholar 

  10. Taccone FS, Van den Abeele AM, Bulpa P, Misset B, Meersseman W, Cardoso T et al (2015) Epidemiology of invasive aspergillosis in critically ill patients: clinical presentation, underlying conditions, and outcomes. Crit Care 19:7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Meersseman W, Lagrou K, Maertens J, Van WE (2007) Invasive aspergillosis in the intensive care unit. Clin Infect Dis 45(2):205–216

    Google Scholar 

  12. Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86(8):805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sucher AJ, Chahine EB, Balcer HE (2009) Echinocandins: the newest class of antifungals. Ann Pharmacother 43(10):1647–1657

    Article  CAS  PubMed  Google Scholar 

  14. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC et al (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109(7):2234–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46(2):171–179

    Article  CAS  PubMed  Google Scholar 

  16. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14(6):498–509

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50(2):99–110

    Article  CAS  PubMed  Google Scholar 

  18. Spriet I, Annaert P, Meersseman P, Hermans G, Meersseman W, Verbesselt R et al (2009) Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J Antimicrob Chemother 63(4):767–770

    Article  CAS  PubMed  Google Scholar 

  19. Liu P (2013) Population pharmacokinetic-pharmacodynamic analysis of anidulafungin in adult patients with fungal infections. Antimicrob Agents Chemother 57(1):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Wanrooy MJ, Rodgers MG, Uges DR, Arends JP, Zijlstra JG, van der Werf TS et al (2014) Low but sufficient anidulafungin exposure in critically ill patients. Antimicrob Agents Chemother 58(1):304–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bruggemann RJ, Middel-Baars V, de Lange DW, Colbers A, Girbes AR, Pickkers P et al (2017) Pharmacokinetics of Anidulafungin in critically ill patients in the Intensive Care Unit with suspected or proven invasive fungal infections. Antimicrob Agents Chemother 61(2):e01894–e01816

    PubMed  PubMed Central  Google Scholar 

  22. Nguyen TH, Hoppe-Tichy T, Geiss HK, Rastall AC, Swoboda S, Schmidt J et al (2007) Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother 60(1):100–106

    Article  CAS  PubMed  Google Scholar 

  23. van der Elst KC, Veringa A, Zijlstra JG, Beishuizen A, Klont R, Brummelhuis-Visser P et al (2017) Low caspofungin exposure in patients in the Intensive Care Unit. Antimicrob Agents Chemother 61(2):e01582–e01516

    PubMed  PubMed Central  Google Scholar 

  24. Martial LC, Bruggemann RJ, Schouten JA, van Leeuwen HJ, van Zanten AR, de Lange DW et al (2016) Dose reduction of caspofungin in intensive care unit patients with child Pugh B will result in suboptimal exposure. Clin Pharmacokinet 55(6):723–733

    Article  CAS  PubMed  Google Scholar 

  25. Muilwijk EW, Schouten JA, van Leeuwen HJ, van Zanten AR, de Lange DW, Colbers A et al (2014) Pharmacokinetics of caspofungin in ICU patients. J Antimicrob Chemother 69(12):3294–3299

    Article  CAS  PubMed  Google Scholar 

  26. Weiler S, Seger C, Pfisterer H, Stienecke E, Stippler F, Welte R et al (2013) Pharmacokinetics of caspofungin in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother 57(8):4053–4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jullien V, Azoulay E, Schwebel C, Le Saux T, Charles PE, Cornet M et al (2017) Population pharmacokinetics of micafungin in ICU patients with sepsis and mechanical ventilation. J Antimicrob Chemother 72(1):181–189

    Article  PubMed  Google Scholar 

  28. Hebert MF, Smith HE, Marbury TC, Swan SK, Smith WB, Townsend RW et al (2005) Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol 45(10):1145–1152

    Article  CAS  PubMed  Google Scholar 

  29. Dowell JA, Stogniew M, Krause D, Damle B (2007) Anidulafungin does not require dosage adjustment in subjects with varying degrees of hepatic or renal impairment. J Clin Pharmacol 47(4):461–470

    Article  CAS  PubMed  Google Scholar 

  30. European Medicines Agency (2011) Cancidas; summary of product characteristics—28-09-2011. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Product_Information/human/000610/WC500037784.pdf. Accessed Oct 2011

  31. Burkhardt O, Kaever V, Burhenne H, Kielstein JT (2009) Extended daily dialysis does not affect the pharmacokinetics of anidulafungin. Int J Antimicrob Agents 34(3):282–283

    Article  CAS  PubMed  Google Scholar 

  32. Aguilar G, Azanza JR, Carbonell JA, Ferrando C, Badenes R, Parra MA et al (2014) Anidulafungin dosing in critically ill patients with continuous venovenous haemodiafiltration. J Antimicrob Chemother 69(6):1620–1623

    Article  CAS  PubMed  Google Scholar 

  33. Leitner JM, Meyer B, Fuhrmann V, Saria K, Zuba C, Jager W et al (2011) Multiple-dose pharmacokinetics of anidulafungin during continuous venovenous haemofiltration. J Antimicrob Chemother 66(4):880–884

    Article  CAS  PubMed  Google Scholar 

  34. Roger C, Wallis SC, Muller L, Saissi G, Lipman J, Bruggemann RJ et al (2016) Caspofungin population pharmacokinetics in critically ill patients undergoing continuous veno-venous haemofiltration or haemodiafiltration. Clin Pharmacokinet. doi:10.1007/s40262-016-0495-z

  35. Hirata K, Aoyama T, Matsumoto Y, Ogawa F, Yamazaki H, Kikuti A et al (2007) Pharmacokinetics of antifungal agent micafungin in critically ill patients receiving continuous hemodialysis filtration. Yakugaku Zasshi 127(5):897–901

    Article  CAS  PubMed  Google Scholar 

  36. Maseda E, Grau S, Villagran MJ, Hernandez-Gancedo C, Lopez-Tofino A, Roberts JA et al (2014) Micafungin pharmacokinetic/pharmacodynamic adequacy for the treatment of invasive candidiasis in critically ill patients on continuous venovenous haemofiltration. J Antimicrob Chemother 69(6):1624–1632

    Article  CAS  PubMed  Google Scholar 

  37. Ruiz S, Papy E, Da Silva D, Nataf P, Massias L, Wolff M et al (2009) Potential voriconazole and caspofungin sequestration during extracorporeal membrane oxygenation. Intensive Care Med 35(1):183–184

    Article  PubMed  Google Scholar 

  38. Aguilar G, Ferriols R, Carbonell JA, Ezquer C, Alonso JM, Villena A et al (2016) Pharmacokinetics of anidulafungin during venovenous extracorporeal membrane oxygenation. Crit Care 20(1):325

    Article  PubMed  PubMed Central  Google Scholar 

  39. Autmizguine J, Hornik CP, Benjamin DK Jr, Brouwer KL, Hupp SR, Cohen-Wolkowiez M et al (2016) Pharmacokinetics and safety of micafungin in infants supported with extracorporeal membrane oxygenation. Pediatr Infect Dis J 35(11):1204–1210

    Article  PubMed  Google Scholar 

  40. Aguilar G, Azanza JR, Sadaba B, Badenes R, Ferrando C, Delgado C et al (2014) Pharmacokinetics of anidulafungin during albumin dialysis. Crit Care 18(2):422

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mistry GC, Migoya E, Deutsch PJ, Winchell G, Hesney M, Li S et al (2007) Single- and multiple-dose administration of caspofungin in patients with hepatic insufficiency: implications for safety and dosing recommendations. J Clin Pharmacol 47(8):951–961

    Article  CAS  PubMed  Google Scholar 

  42. Spriet I, Meersseman W, Annaert P, de Hoon J, Willems L (2011) Pharmacokinetics of caspofungin in a critically ill patient with liver cirrhosis. Eur J Clin Pharmacol 67(7):753–755

    Article  PubMed  Google Scholar 

  43. van der Elst KC, Bruggemann RJ, Rodgers MG, Alffenaar JW (2012) Plasma concentrations of caspofungin at two different dosage regimens in a patient with hepatic dysfunction. Transpl Infect Dis 14(4):440–443

    Article  PubMed  CAS  Google Scholar 

  44. Spriet I, Meyfroidt G, Maleux G, Verslype C, Willems L (2012) The impact of a transjugular intrahepatic portosystemic shunt on the pharmacokinetics of caspofungin in a critically ill patient. Pharmacology 90(5–6):247–250

    Article  CAS  PubMed  Google Scholar 

  45. Neely M, Jafri HS, Seibel N, Knapp K, Adamson PC, Bradshaw SK et al (2009) Pharmacokinetics and safety of caspofungin in older infants and toddlers. Antimicrob Agents Chemother 53(4):1450–1456

    Article  CAS  PubMed  Google Scholar 

  46. Undre N, Pretorius B, Stevenson P (2015) Pharmacokinetics of micafungin in subjects with severe hepatic dysfunction. Eur J Drug Metab Pharmacokinet 40(3):285–293

    Article  CAS  PubMed  Google Scholar 

  47. Kishino S, Ohno K, Shimamura T, Furukawatodo H (2004) Optimal prophylactic dosage and disposition of micafungin in living donor liver recipients. Clin Transpl 18(6):676–680

    Article  Google Scholar 

  48. Mochizuki N, Matsumoto K, Ohno K, Shimamura T, Furukawa H, Todo S et al (2006) Effects of hepatic CYP3A4 activity on disposition of micafungin in liver transplant recipients with markedly small-for-size grafts. Transplant Proc 38(10):3649–3650

    Article  CAS  PubMed  Google Scholar 

  49. Muraki Y, Iwamoto T, Kagawa Y, Sakurai H, Usui M, Isaji S et al (2009) The impact of total bilirubin on plasma micafungin levels in living-donor liver transplantation recipients with severe liver dysfunction. Biol Pharm Bull 32(4):750–754

    Article  CAS  PubMed  Google Scholar 

  50. Andes D, Diekema DJ, Pfaller MA, Bohrmuller J, Marchillo K, Lepak A (2010) In vivo comparison of the pharmacodynamic target among echinocandin drugs and Candida species. Antimicrob Agents Chemother 54(6):2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andes D, Diekema DJ, Pfaller MA, Prince RA, Marchillo K, Ashbeck J et al (2008) In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52(2):539–550

    Article  CAS  PubMed  Google Scholar 

  52. Andes DR, Diekema DJ, Pfaller MA, Marchillo K, Bohrmueller J (2008) In vivo pharmacodynamic target investigation for micafungin against Candida albicans and C. glabrata in a neutropenic murine candidiasis model. Antimicrob Agents Chemother 52(10):3497–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Andes DR, Reynolds DK, Van Wart SA, Lepak AJ, Kovanda LL, Bhavnani SM (2013) Clinical pharmacodynamic index identification for micafungin in esophageal candidiasis: dosing strategy optimization. Antimicrob Agents Chemother 57(11):5714–5716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang Q, Wang T, Xie J, Wang Y, Zheng X, Chen L et al (2016) Pharmacokinetic/pharmacodynamic adequacy of echinocandins against Candida spp. in intensive care unit patients and general patient populations. Int J Antimicrob Agents 47(5):397–402

    Article  CAS  PubMed  Google Scholar 

  55. Martial LC, Ter Heine R, Schouten JA, Hunfeld NG, van Leeuwen HJ, Verweij PE et al (2017) Population pharmacokinetic model and pharmacokinetic target attainment of micafungin in intensive care unit patients. Clin Pharmacokinet. doi:10.1007/s40262-017-0509-5

  56. Sinnollareddy MG, Roberts JA, Lipman J, Akova M, Bassetti M, De Waele JJ et al (2015) Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: data from multinational defining antibiotic levels in intensive care unit (DALI) patients study. Crit Care 19(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD, Andes D et al (2008) Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol 46(8):2620–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Andes D, Ambrose PG, Hammel JP, Van Wart SA, Iyer V, Reynolds DK et al (2011) Use of pharmacokinetic-pharmacodynamic analyses to optimize therapy with the systemic antifungal micafungin for invasive candidiasis or candidemia. Antimicrob Agents Chemother 55(5):2113–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brüggemann RJ, Alffenaar JW, Blijlevens NM, Billaud EM, Kosterink JG, Verweij PE et al (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48(10):1441–1458

    Article  PubMed  CAS  Google Scholar 

  60. Zonios D, Yamazaki H, Murayama N, Natarajan V, Palmore T, Childs R et al (2014) Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis 209(12):1941–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim SH, Lee DG, Kwon JC, Lee HJ, Cho SY, Park C et al (2013) Clinical impact of cytochrome P450 2C19 genotype on the treatment of invasive aspergillosis under routine therapeutic drug monitoring of voriconazole in a korean population. Infect Chemother 45(4):406–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang G, Lei HP, Li Z, Tan ZR, Guo D, Fan L et al (2009) The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol 65(3):281–285

    Article  CAS  PubMed  Google Scholar 

  63. Friberg LE, Ravva P, Karlsson MO, Liu P (2012) Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother 56(6):3032–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu P, Mould DR (2014) Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob Agents Chemother 58(8):4718–4726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Brüggemann RJM, Blijlevens NMA, Burger DM, Smiet TCM, Bijlsma T, Mouton JW, et al (2007) Pharmacokinetics of intravenous voriconazole in allogeneic haematopoietic stem cell transplant recipients ID-193

    Google Scholar 

  66. Myrianthefs P, Markantonis SL, Evaggelopoulou P, Despotelis S, Evodia E, Panidis D et al (2010) Monitoring plasma voriconazole levels following intravenous administration in critically ill patients: an observational study. Int J Antimicrob Agents 35(5):468–472

    Article  CAS  PubMed  Google Scholar 

  67. Veringa A, Ter Avest M, Span LF, van den Heuvel ER, Touw DJ, Zijlstra JG et al (2017) Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother 72(1):261–267

    Article  PubMed  Google Scholar 

  68. Vanstraelen K, Wauters J, Vercammen I, de Loor H, Maertens J, Lagrou K et al (2014) Impact of hypoalbuminemia on voriconazole pharmacokinetics in critically ill adult patients. Antimicrob Agents Chemother 58(11):6782–6789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Vanstraelen K, Wauters J, De Loor H, Vercammen I, Annaert P, Lagrou K et al (2014) Protein-binding characteristics of voriconazole determined by high-throughput equilibrium dialysis. J Pharm Sci 103(8):2565–2570

    Article  CAS  PubMed  Google Scholar 

  70. Ray J, Campbell L, Rudham S, Nguyen Q, Marriott D (2011) Posaconazole plasma concentrations in critically ill patients. Ther Drug Monit 33(4):387–392

    Article  CAS  PubMed  Google Scholar 

  71. Walravens J, Brouwers J, Spriet I, Tack J, Annaert P, Augustijns P (2011) Effect of pH and comedication on gastrointestinal absorption of posaconazole: monitoring of intraluminal and plasma drug concentrations. Clin Pharmacokinet 50(11):725–734

    Article  CAS  PubMed  Google Scholar 

  72. Dolton MJ, Bruggemann RJ, Burger DM, McLachlan AJ (2014) Understanding variability in posaconazole exposure using an integrated population pharmacokinetic analysis. Antimicrob Agents Chemother 58(11):6879–6885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. van der Elst KC, Brouwers CH, van den Heuvel ER, van Wanrooy MJ, Uges DR, van der Werf TS et al (2015) Subtherapeutic posaconazole exposure and treatment outcome in patients with invasive fungal disease. Ther Drug Monit 37(6):766–771

    Article  PubMed  CAS  Google Scholar 

  74. Dodds Ashley ES, Varkey JB, Krishna G, Vickery D, Ma L, Yu X et al (2009) Pharmacokinetics of posaconazole administered orally or by nasogastric tube in healthy volunteers. Antimicrob Agents Chemother 53(7):2960–2964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosemurgy AS, Markowsky S, Goode SE, Plastino K, Kearney RE (1995) Bioavailability of fluconazole in surgical intensive care unit patients: a study comparing routes of administration. J Trauma 39(3):445–447

    Article  CAS  PubMed  Google Scholar 

  76. Buijk SL, Gyssens IC, Mouton JW, Verbrugh HA, Touw DJ, Bruining HA (2001) Pharmacokinetics of sequential intravenous and enteral fluconazole in critically ill surgical patients with invasive mycoses and compromised gastro-intestinal function. Intensive Care Med 27(1):115–121

    Article  CAS  PubMed  Google Scholar 

  77. Nicolau DP, Crowe H, Nightingale CH, Quintiliani R (1995) Bioavailability of fluconazole administered via a feeding tube in intensive care unit patients. J Antimicrob Chemother 36(2):395–401

    Article  CAS  PubMed  Google Scholar 

  78. Rajagopalan P, Pelz RK, Lipsett PA, Swoboda SM, Rinaldi MG, Hendrix CW (2003) Enteral fluconazole population pharmacokinetics in patients in the surgical intensive care unit. Pharmacotherapy 23(5):592–602

    Article  CAS  PubMed  Google Scholar 

  79. Aoyama T, Hirata K, Hirata R, Yamazaki H, Yamamoto Y, Hayashi H et al (2012) Population pharmacokinetics of fluconazole after administration of fosfluconazole and fluconazole in critically ill patients. J Clin Pharm Ther 37(3):356–363

    Article  CAS  PubMed  Google Scholar 

  80. EMA (2009) Vfend; summary of product characteristics 13-03-2009. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_Product_Information/human/000387/WC500049756.pdf. Accessed June 2009

  81. Hafner V, Czock D, Burhenne J, Riedel KD, Bommer J, Mikus G et al (2010) Pharmacokinetics of sulfobutylether-beta-cyclodextrin and voriconazole in patients with end-stage renal failure during treatment with two hemodialysis systems and hemodiafiltration. Antimicrob Agents Chemother 54(6):2596–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Luke DR, Tomaszewski K, Damle B, Schlamm HT (2010) Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). J Pharm Sci 99(8):3291–3301

    Article  CAS  PubMed  Google Scholar 

  83. Oude Lashof AM, Sobel JD, Ruhnke M, Pappas PG, Viscoli C, Schlamm HT et al (2012) Safety and tolerability of voriconazole in patients with baseline renal insufficiency and candidemia. Antimicrob Agents Chemother 56(6):3133–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lilly CM, Welch VL, Mayer T, Ranauro P, Meisner J, Luke DR (2013) Evaluation of intravenous voriconazole in patients with compromised renal function. BMC Infect Dis 13:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kiser TH, Fish DN, Aquilante CL, Rower JE, Wempe MF, MacLaren R et al (2015) Evaluation of sulfobutylether-beta-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. Crit Care 19:32

    Article  PubMed  PubMed Central  Google Scholar 

  86. Burkhardt O, Thon S, Burhenne J, Welte T, Kielstein JT (2010) Sulphobutylether-beta-cyclodextrin accumulation in critically ill patients with acute kidney injury treated with intravenous voriconazole under extended daily dialysis. Int J Antimicrob Agents 36(1):93–94

    Article  CAS  PubMed  Google Scholar 

  87. Mehta NM, Halwick DR, Dodson BL, Thompson JE, Arnold JH (2007) Potential drug sequestration during extracorporeal membrane oxygenation: results from an ex vivo experiment. Intensive Care Med 33(6):1018–1024

    Article  CAS  PubMed  Google Scholar 

  88. Bruggemann RJ, Antonius T, Heijst A, Hoogerbrugge PM, Burger DM, Warris A (2008) Therapeutic drug monitoring of voriconazole in a child with invasive aspergillosis requiring extracorporeal membrane oxygenation. Ther Drug Monit 30(6):643–646

    Article  PubMed  Google Scholar 

  89. Toon S, Ross CE, Gokal R, Rowland M (1990) An assessment of the effects of impaired renal function and haemodialysis on the pharmacokinetics of fluconazole. Br J Clin Pharmacol 29(2):221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cbg MEB (2003) Diflucan; summary of product characteristics

    Google Scholar 

  91. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 41(8):1159–1166

    Article  CAS  PubMed  Google Scholar 

  92. Pittrow L, Penk A (1999) Dosage adjustment of fluconazole during continuous renal replacement therapy (CAVH, CVVH, CAVHD, CVVHD). Mycoses 42(1–2):17–19

    Article  CAS  PubMed  Google Scholar 

  93. Valtonen M, Tiula E, Neuvonen PJ (1997) Effect of continuous venovenous haemofiltration and haemodiafiltration on the elimination of fluconazole in patients with acute renal failure. J Antimicrob Chemother 40(5):695–700

    Article  CAS  PubMed  Google Scholar 

  94. Muhl E, Martens T, Iven H, Rob P, Bruch HP (2000) Influence of continuous veno-venous haemodiafiltration and continuous veno-venous haemofiltration on the pharmacokinetics of fluconazole. Eur J Clin Pharmacol 56(9–10):671–678

    Article  CAS  PubMed  Google Scholar 

  95. Shekar K, Roberts JA, McDonald CI, Ghassabian S, Anstey C, Wallis SC et al (2015) Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care 19:164

    Article  PubMed  PubMed Central  Google Scholar 

  96. Watt KM, Benjamin DK Jr, Cheifetz IM, Moorthy G, Wade KC, Smith PB et al (2012) Pharmacokinetics and safety of fluconazole in young infants supported with extracorporeal membrane oxygenation. Pediatr Infect Dis J 31(10):1042–1047

    PubMed  PubMed Central  Google Scholar 

  97. Watt KM, Gonzalez D, Benjamin DK Jr, Brouwer KL, Wade KC, Capparelli E et al (2015) Fluconazole population pharmacokinetics and dosing for prevention and treatment of invasive candidiasis in children supported with extracorporeal membrane oxygenation. Antimicrob Agents Chemother 59(7):3935–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alffenaar JW, de Vos T, Uges DR, Daenen SM (2009) High voriconazole trough levels in relation to hepatic function: how to adjust the dosage? Br J Clin Pharmacol 67(2):262–263

    Article  CAS  PubMed  Google Scholar 

  99. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N (2006) Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol 46(2):235–243

    Article  CAS  PubMed  Google Scholar 

  100. Wang Y, Wang T, Xie J, Yang Q, Zheng X, Dong W et al (2016) Risk factors for voriconazole-associated hepatotoxicity in patients in the intensive care unit. Pharmacotherapy 36(7):757–765

    Article  CAS  PubMed  Google Scholar 

  101. Moton A, Krishna G, Ma L, O’Mara E, Prasad P, McLeod J et al (2010) Pharmacokinetics of a single dose of the antifungal posaconazole as oral suspension in subjects with hepatic impairment. Curr Med Res Opin 26(1):1–7

    Article  CAS  PubMed  Google Scholar 

  102. Sobue S, Tan K, Haug-Pihale G (2005) The effects of hepatic impairment on the pharmacokinetics of fosfluconazole and fluconazole following a single intravenous bolus injection of fosfluconazole. Br J Clin Pharmacol 59(2):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ensom MH, Davis GA, Cropp CD, Ensom RJ (1998) Clinical pharmacokinetics in the 21st century. Does the evidence support definitive outcomes? Clin Pharmacokinet 34(4):265–279

    Article  CAS  PubMed  Google Scholar 

  104. Brüggemann RJ, Aarnoutse RE (2015) Fundament and prerequisites for the application of an antifungal tdm service. Curr Fungal Infect Rep 9(2):122–129

    Article  PubMed  PubMed Central  Google Scholar 

  105. Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T et al (2012) Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis 55(3):381–390

    Article  CAS  PubMed  Google Scholar 

  106. Pascual A, Nieth V, Calandra T, Bille J, Bolay S, Decosterd LA et al (2007) Variability of voriconazole plasma levels measured by new high-performance liquid chromatography and bioassay methods. Antimicrob Agents Chemother 51(1):137–143

    Article  CAS  PubMed  Google Scholar 

  107. Jang SH, Colangelo PM, Gobburu JV (2010) Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: evaluating the need to adjust doses based on drug concentrations in plasma. Clin Pharmacol Ther 88(1):115–119

    Article  CAS  PubMed  Google Scholar 

  108. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH et al (2012) The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis 55(8):1080–1087

    Article  CAS  PubMed  Google Scholar 

  109. Seyedmousavi S, Mouton JW, Verweij PE, Bruggemann RJ (2013) Therapeutic drug monitoring of voriconazole and posaconazole for invasive aspergillosis. Expert Rev Anti-Infect Ther 11(9):931–941

    Article  CAS  PubMed  Google Scholar 

  110. Hope WW, Billaud EM, Lestner J, Denning DW (2008) Therapeutic drug monitoring for triazoles. Curr Opin Infect Dis 21(6):580–586

    Article  CAS  PubMed  Google Scholar 

  111. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW (2014) Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother 69(5):1162–1176

    Article  CAS  PubMed  Google Scholar 

  112. Mavridou E, Bruggemann RJ, Melchers WJ, Mouton JW, Verweij PE (2010) Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob Agents Chemother 54(2):860–865

    Article  CAS  PubMed  Google Scholar 

  113. Mavridou E, Bruggemann RJ, Melchers WJ, Verweij PE, Mouton JW (2010) Impact of cyp51A mutations on the pharmacokinetic and pharmacodynamic properties of voriconazole in a murine model of disseminated aspergillosis. Antimicrob Agents Chemother 54(11):4758–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Howard SJ, Lestner JM, Sharp A, Gregson L, Goodwin J, Slater J et al (2011) Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J Infect Dis 203(9):1324–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seyedmousavi S, Mouton JW, Melchers WJ, Bruggemann RJ, Verweij PE (2014) The role of azoles in the management of azole-resistant aspergillosis: from the bench to the bedside. Drug Resist Updat 17(3):37–50

    Article  PubMed  Google Scholar 

  116. Trifilio S, Ortiz R, Pennick G, Verma A, Pi J, Stosor V et al (2005) Voriconazole therapeutic drug monitoring in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transplant 35(5):509–513

    Article  CAS  PubMed  Google Scholar 

  117. Trifilio S, Singhal S, Williams S, Winter J, Tallman M, Gordon L, et al (2006) Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole ID-159

    Google Scholar 

  118. Smith J, Safdar N, Knasinski V, Simmons W, Bhavnani SM, Ambrose PG et al (2006) Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother 50(4):1570–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46(2):201–211

    Article  CAS  PubMed  Google Scholar 

  120. Hope WW, Walsh TJ, Goodwin J, Peloquin CA, Howard A, Kurtzberg J et al (2016) Voriconazole pharmacokinetics following HSCT: results from the BMT CTN 0101 trial. J Antimicrob Chemother 71(8):2234–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Neely M, Rushing T, Kovacs A, Jelliffe R, Hoffman J (2010) Voriconazole pharmacokinetics and pharmacodynamics in children. Clin Infect Dis 50(1):27–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Troke PF, Hockey HP, Hope WW (2011) Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother 55(10):4782–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ (2012) Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother 56(9):4793–4799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huurneman LJ, Neely M, Veringa A, Docobo Perez F, Ramos-Martin V, Tissing WJ et al (2016) Pharmacodynamics of voriconazole in children: further steps along the path to true individualized therapy. Antimicrob Agents Chemother 60(4):2336–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chai LY, Kullberg BJ, Johnson EM, Teerenstra S, Khin LW, Vonk AG et al (2012) Early serum galactomannan trend as a predictor of outcome of invasive aspergillosis. J Clin Microbiol 50(7):2330–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suzuki Y, Tokimatsu I, Sato Y, Kawasaki K, Sato Y, Goto T et al (2013) Association of sustained high plasma trough concentration of voriconazole with the incidence of hepatotoxicity. Clin Chim Acta 424:119–122

    Article  CAS  PubMed  Google Scholar 

  127. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T et al (2009) Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents 34(1):91–94

    Article  CAS  PubMed  Google Scholar 

  128. Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R et al (2007) Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis 44(1):2–12

    Article  CAS  PubMed  Google Scholar 

  129. Dolton MJ, Ray JE, Chen SC, Ng K, Pont L, McLachlan AJ (2012) Multicenter study of posaconazole therapeutic drug monitoring: exposure-response relationship and factors affecting concentration. Antimicrob Agents Chemother 56(11):5503–5510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dolton MJ, Ray JE, Marriott D, McLachlan AJ (2012) Posaconazole exposure-response relationship: evaluating the utility of therapeutic drug monitoring. Antimicrob Agents Chemother 56(6):2806–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Duarte RF, Lopez-Jimenez J, Cornely OA, Laverdiere M, Helfgott D, Haider S et al (2014) Phase 1b study of new posaconazole tablet for prevention of invasive fungal infections in high-risk patients with neutropenia. Antimicrob Agents Chemother 58(10):5758–5765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Maertens J, Cornely OA, Ullmann AJ, Heinz WJ, Krishna G, Patino H et al (2014) Phase 1B study of the pharmacokinetics and safety of posaconazole intravenous solution in patients at risk for invasive fungal disease. Antimicrob Agents Chemother 58(7):3610–3617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Cornely OA, Duarte RF, Haider S, Chandrasekar P, Helfgott D, Jimenez JL et al (2016) Phase 3 pharmacokinetics and safety study of a posaconazole tablet formulation in patients at risk for invasive fungal disease. J Antimicrob Chemother 71(3):718–726

    Article  CAS  PubMed  Google Scholar 

  134. Lebeaux D, Lanternier F, Elie C, Suarez F, Buzyn A, Viard JP et al (2009) Therapeutic drug monitoring of posaconazole: a monocentric study with 54 adults. Antimicrob Agents Chemother 53(12):5224–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bryant AM, Slain D, Cumpston A, Craig M (2011) A post-marketing evaluation of posaconazole plasma concentrations in neutropenic patients with haematological malignancy receiving posaconazole prophylaxis. Int J Antimicrob Agents 37(3):266–269

    Article  CAS  PubMed  Google Scholar 

  136. Hoenigl M, Raggam RB, Salzer HJ, Valentin T, Valentin A, Zollner-Schwetz I et al (2012) Posaconazole plasma concentrations and invasive mould infections in patients with haematological malignancies. Int J Antimicrob Agents 39(6):510–513

    Article  CAS  PubMed  Google Scholar 

  137. Cattaneo C, Panzali A, Passi A, Borlenghi E, Lamorgese C, Petulla M et al (2015) Serum posaconazole levels during acute myeloid leukaemia induction therapy: correlations with breakthrough invasive fungal infections. Mycoses 58(6):362–367

    Article  CAS  PubMed  Google Scholar 

  138. Prattes J, Duettmann W, Hoenigl M (2016) Posaconazole plasma concentrations on days three to five predict steady-state levels. Antimicrob Agents Chemother 60(9):5595–5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. van der Elst KC, Pereboom M, van den Heuvel ER, Kosterink JG, Scholvinck EH, Alffenaar JW (2014) Insufficient fluconazole exposure in pediatric cancer patients and the need for therapeutic drug monitoring in critically ill children. Clin Infect Dis 59(11):1527–1533

    Article  PubMed  Google Scholar 

  140. Alffenaar JW, Wessels AM, van HK, Greijdanus B, Kosterink JG, Uges DR (2010) Method for therapeutic drug monitoring of azole antifungal drugs in human serum using LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 878(1):39–44

    Article  CAS  PubMed  Google Scholar 

  141. Snelders E, Melchers WJ, Verweij PE (2011) Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis? Future Microbiol 6(3):335–347

    Article  CAS  PubMed  Google Scholar 

  142. van de Veerdonk FLKE, Lestrade PA, Rahamat-Langendoen JC, Hodiamont CJ, Freudenburg W, Roescher N, Wiersinga WJ, van den Berg CHSB, Kullberg BJ, Rijnders BJA, Vonk AG, van der Hoven B, van der Beek MT, van Paassen J, Haas PJ, Derde LPG, Brüggemann RJ, Oliveira dos Santos C, Kampinga GA, van Leer C, Aardema H, Oude Lashof A, Bergmans DCJJ, van Dijk K, Ang CW, Netea MG, de Haan AFJ, van Dissel JT, Hoedemaekers AW, Melchers WJG, van der Hoeven HG, Verweij PE (2016) Invasive pulmonary aspergillosis complicating influenza in critically ill patients: a nationwide retrospective observational cohort study. submitted

    Google Scholar 

  143. Verweij PE, Ananda-Rajah M, Andes D, Arendrup M, Brüggemann R, Chowdhary A et al (2013) International expert opinion on the management of infection caused by azole resistant Aspergillus fumigatus. AIDS

    Google Scholar 

  144. van der Linden JW, Arendrup MC, Melchers WJ, Verweij PE (2016) Azole resistance of aspergillus fumigatus in immunocompromised patients with invasive aspergillosis. Emerg Infect Dis 22(1):158–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. van der Linden JW, Arendrup MC, Warris A, Lagrou K, Pelloux H, Hauser PM et al (2015) Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis 21(6):1041–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Verweij PE, Ananda-Rajah M, Andes D, Arendrup MC, Bruggemann RJ, Chowdhary A et al (2015) International expert opinion on the management of infection caused by azole-resistant Aspergillus fumigatus. Drug Resist Updat 21-22:30–40

    Article  PubMed  Google Scholar 

  147. Wurthwein G, Young C, Lanvers-Kaminsky C, Hempel G, Trame MN, Schwerdtfeger R et al (2012) Population pharmacokinetics of liposomal amphotericin B and caspofungin in allogeneic hematopoietic stem cell recipients. Antimicrob Agents Chemother 56(1):536–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Heinemann V, Bosse D, Jehn U, Kahny B, Wachholz K, Debus A et al (1997) Pharmacokinetics of liposomal amphotericin B (Ambisome) in critically ill patients. Antimicrob Agents Chemother 41(6):1275–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M et al (2001) Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother 45(12):3487–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Walsh TJ, Yeldandi V, McEvoy M, Gonzalez C, Chanock S, Freifeld A et al (1998) Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother 42(9):2391–2398

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Seibel NL, Shad AT, Bekersky I, Groll AH, Gonzalez C, Wood LV et al (2017) Safety, tolerability, and pharmacokinetics of liposomal amphotericin B in immunocompromised pediatric patients. Antimicrob Agents Chemother 61(2):e01477–e01416

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Stone NR, Bicanic T, Salim R, Hope W (2016) Liposomal amphotericin B (AmBisome): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76(4):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hong Y, Shaw PJ, Nath CE, Yadav SP, Stephen KR, Earl JW et al (2006) Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases. Antimicrob Agents Chemother 50(3):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Muilwijk EW, Lempers VJ, Burger DM, Warris A, Pickkers P, Aarnoutse RE et al (2015) Impact of special patient populations on the pharmacokinetics of echinocandins. Expert Rev Anti-Infect Ther 13(6):799–815

    Article  CAS  PubMed  Google Scholar 

  155. Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43(S1):S28–S39

    Article  CAS  Google Scholar 

  156. Fungal Pharmacology (2014) http://www.fungal.pharmacology.com

  157. Felton T, Troke PF, Hope WW (2014) Tissue penetration of antifungal agents. Clin Microbiol Rev 27(1):68–88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Seyedmousavi S, Verweij PE, Mouton JW (2015) Isavuconazole, a broad-spectrum triazole for the treatment of systemic fungal diseases. Expert Rev Anti-Infect Ther 13(1):9–27

    Article  CAS  PubMed  Google Scholar 

  159. Kartsonis NA, Nielsen J, Douglas CM (2003) Caspofungin: the first in a new class of antifungal agents. Drug Resist Updat 6(4):197–218

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. M. Brüggemann Pharm.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Brüggemann, R.J.M., de Lange, D.W., Alffenaar, JW.C. (2018). Antifungal PK/PD in the Critically Ill. In: Udy, A., Roberts, J., Lipman, J. (eds) Antibiotic Pharmacokinetic/Pharmacodynamic Considerations in the Critically Ill. Adis, Singapore. https://doi.org/10.1007/978-981-10-5336-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5336-8_11

  • Published:

  • Publisher Name: Adis, Singapore

  • Print ISBN: 978-981-10-5335-1

  • Online ISBN: 978-981-10-5336-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics