Skip to main content
Log in

The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Aim

To study the pharmacokinetic characteristics of voriconazole in healthy Chinese male volunteers in relation to cytochrome P450 (CYP) 2C19 genotype status, including ultra-rapid metabolizers (URMs), homozygous extensive metabolizers (EMs), and poor metabolizers (PMs).

Method

Twenty healthy Chinese male volunteers were recruited for the study. Of these, four were CYP2C19 heterozygous URMs (*1/*17), eight were CYP2C19 homozygous EMs (*1/*1), and eight were CYP2C19 PMs (*2/*2). After a single oral dose of 200 mg voriconazole, plasma concentrations of voriconazole were determined for a 24-h period by liquid chromatography–mass spectrometry/mass spectrometry.

Result

In Chinese male subjects, the allele frequencies of the CYP2C19*17 and CYP2C19*2 alleles were 0.64 and 35.6%, respectively, and both alleles were in Hardy–Weinberg equilibrium. The area under the concentration–time curve (AUC) from predose to 24 h (AUC0–24) and from predose to infinity (AUC0-∞), and apparent oral clearance (CL/F) of voriconazole were statistically different among all three genotypic groups (P < 0.001, respectively). The maximum plasma concentration (Cmax) value of URMs also showed statistically significant differences from those of EMs and PMs (P = 0.036 and P = 0.035, respectively). The elimination half-life (t½) in URMs was 87% (P = 0.58) of that in EMs and 51% (P= 0.002) of that in PMs.

Conclusion

Our data indicate that the presence of the CYP2C19*17 allele results in ultra-rapid metabolism of voriconazole after a single oral dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Theuretzbacher U, Ihle F, Derendorf H (2006) Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 45:649–663

    Article  PubMed  CAS  Google Scholar 

  2. Hyland R, Jones BC, Smith DA (2003) Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos 31:540–547

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52:349–355

    Article  PubMed  CAS  Google Scholar 

  4. Jacqz E, Dulac H, Mathieu H (1988) Phenotyping polymorphic drug metabolism in the French Caucasian population. Eur J Clin Pharmacol 35:167–171

    Article  PubMed  CAS  Google Scholar 

  5. Kubota T, Chiba K, Ishizaki T (1996) Genotyping of S-mephenytoin 4′-hydroxylation in an extended Japanese population. Clin Pharmacol Ther 60:661–666

    Article  PubMed  CAS  Google Scholar 

  6. Shu Y, Zhou HH (2000) Individual and ethnic differences in CYP2C19 activity in Chinese populations. Acta Pharmacol Sin 21:193–199

    PubMed  CAS  Google Scholar 

  7. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al (2006) A common novel CYP2C19 gene variant causes ultra-rapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113

    Article  PubMed  CAS  Google Scholar 

  8. Rengelshausen J, Banfield M, Riedel KD, Burhenne J, Weiss J, Thomsen T et al (2005) Opposite effects of short-term and long-term St John’s wort intake on voriconazole pharmacokinetics. Clin Pharmacol Ther 78:25–33

    Article  PubMed  CAS  Google Scholar 

  9. Wood N, Tan K, Purkins L, Layton G, Hamlin J, Kleinermans D et al (2003) Effect of omeprazole on the steady-state pharmacokinetics of voriconazole. Br J Clin Pharmacol 56[Suppl 1]:56–61

    Article  PubMed  CAS  Google Scholar 

  10. Ikeda Y, Umemura K, Kondo K, Sekiguchi K, Miyoshi S, Nakashima M (2004) Pharmacokinetics of voriconazole and cytochrome P450 2C19 genetic status. Clin Pharmacol Ther 75(6):587–588

    Article  PubMed  CAS  Google Scholar 

  11. He N, Yan F-X, Huang S-l, Wang W, Xiao Z-S, Liu Z-Q et al (2002) CYP2C19 genotype and S-mephentoin 4′-hydroxylation phenotype in a Chinese Dai population. Eur J Clin Pharmacol 58:15–18

    Article  PubMed  CAS  Google Scholar 

  12. Keevil BG, Newman S, Lockhart S, Howard SJ, Moore CB, Denning DW (2004) Validation of an assay for voriconazole in serum samples using liquid chromatography–tandem mass spectrometry. Ther Drug Monit 26:650–657

    Article  PubMed  CAS  Google Scholar 

  13. Vogeser M, Schiel X, Spöhrer U (2005) Quantification of voriconazole in plasma by liquid chromatography-tandem mass spectrometry. Clin Chem Lab Med 43(7):730–734

    Article  PubMed  CAS  Google Scholar 

  14. Purkins L, Wood N, Ghahramani P, Kleinermans D, Layton G, Nichols D (2003) No clinically significant effect of erythromycin or azithromycin on the pharmacokinetics of voriconazole in healthy male volunteers. Br J Clin Pharmacol 56[Suppl 1]:30–36

    Article  PubMed  CAS  Google Scholar 

  15. Mikus G, Schöwel V, Drzewinska M, Rengelshausen J, Ding R, Riedel KD et al (2006) Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther 80:126–135

    Article  PubMed  CAS  Google Scholar 

  16. Geist MJ, Egerer G, Burhenne J, Burhenne J, Mikus G (2006) Safety of Voriconazole in a Patient with CYP2C9*2/CYP2C9*2 Genotype. Antimicrob Agents Chemother 50:3227–3228

    Article  PubMed  CAS  Google Scholar 

  17. Sugimoto K, Uno T, Yamazaki H, Tateishi T (2008) Limited frequency of the CYP2C19*17 allele and its minor role in a Janpanese population. Br J Clin Pharmacol 65(3):437–439

    Article  PubMed  CAS  Google Scholar 

  18. Dürr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, Meier PJ et al (2000) St John’s wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 68:598–604

    Article  PubMed  Google Scholar 

  19. Wang L-S, Zhu B, El-Aty AMA, Zhou G, Li Z, Wu J et al (2004) The influence of St. John’s wort on CYP2C19 activity with respect to genotype. J Clin Pharmacol 44:577–581

    Article  PubMed  Google Scholar 

  20. Wang L-S, Zhou G, Zhu B, Wu J, Wang J-G, El-Aty AMA et al (2004) St John’s wort induces both cytochrome P450 3A4-catalyzed sufoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 75:191–197

    Article  PubMed  CAS  Google Scholar 

  21. US Food and Drug Administration (2001). Briefing document for voriconazole. US Food and Drug Administration, Washington D.C. Available at: http://www.fda.gov/ohrms/dockets/ac/01/briefing/3792b2.htm

  22. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46:201–111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China grants (No.30528026, 30300428, 30672497 and 30500623), by the China Medical Board of New York grants 01–755, and by the Postdoctoral Science Foundation of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Hao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Lei, HP., Li, Z. et al. The CYP2C19 ultra-rapid metabolizer genotype influences the pharmacokinetics of voriconazole in healthy male volunteers. Eur J Clin Pharmacol 65, 281–285 (2009). https://doi.org/10.1007/s00228-008-0574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0574-7

Keywords

Navigation