Skip to main content

Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production

  • Chapter
  • First Online:
Production of Platform Chemicals from Sustainable Resources

Abstract

Furfural has been identified as one of the most important biomass-based platform chemicals and has the potential to be used as a substitute of petrochemical-derived building blocks in the production of chemicals and advanced biofuels. Despite that the current industrial production technology of furfural is well established, it is characterised by moderate production yield and selectivity which reduces its competitiveness with crude oil-based alternatives. Furthermore, conventional furfural production requires high energy and generates acidic waste streams. Thus, research on more economic and environmentally benign furfural production strategies from hemicellulose biomass and pentose sugar feedstocks has become of worldwide interest in the scientific community and chemical industry. The present chapter aims to provide state-of-the-art developments in the field of catalytic synthesis of furfural from C5-sugars and hemicellulose biomass, taking into the consideration of green chemistry principles. Among the many advances, the employment of homogeneous catalysts i.e. metal halides, ionic liquids and high-pressure CO2 is presented. Application of heterogeneous catalysts is addressed briefly. The performance and efficiency of each catalytic approach in terms of catalyst reactivity, furfural yield and selectivity, as well as the sustainability of furfural production are analysed. Finally, critical outlook and perspectives of the development of sustainable furfural production processes are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Furan Chemicals B.V. – Historical overview and industrial development of furfural. 2016. http://www.furan.com/furfural_historical_overview.html Accessed 5 Aug 2016.

  2. Zeitsch KJ. The chemistry and technology of furfural and its many by-products, vol 13. Elsevier; 2000.

    Google Scholar 

  3. Werpy T, Petersen GR. Top Value Added Chemicals From Biomass – Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas vol I. the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL). 2004.

    Google Scholar 

  4. Kamm B, Gruber PR, Kamm M. Biorefineries–industrial processes and products. Status Quo and future directions. KGaA: Wiley-VCH Verlag GmbH & Co; 2006.

    Google Scholar 

  5. Magalhães da Silva SP, Morais ARC, Bogel-Lukasik R. The CO2-assisted autohydrolysis pre-treatment of wheat straw. Green Chem. 2014;16(1):238–46.

    Article  Google Scholar 

  6. Morais ARC, da Costa Lopes AM, Bogel-Lukasik R. Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev. 2015;115(1):3–27.

    Article  CAS  PubMed  Google Scholar 

  7. Garrote G, Dominguez H, Parajo JC. Kinetic modelling of corncob autohydrolysis. Process Biochem (Amsterdam, Neth). 2001;36(6):571–8.

    Article  CAS  Google Scholar 

  8. Antal MJ, Leesomboon T, Mok WS, Richards GN. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydr Res. 1991;217:71–85.

    Article  CAS  Google Scholar 

  9. Feather MS, Harris DW, Nichols SB. Routes of conversion of D-xylose, hexuronic acids, and L-ascorbic-acid to 2-furaldehyde. J Org Chem. 1972;37(10):1606–&.

    Google Scholar 

  10. Ahmad T, Kenne L, Olsson K, Theander O. The formation of 2-furaldehyde and formic-acid from pentoses in slightly acidic deuterium-oxide studied by H-1-Nmr spectroscopy. Carbohydr Res. 1995;276(2):309–20.

    Article  CAS  Google Scholar 

  11. Bonner WA, Roth MR. The conversion of D-Xylose-1-C14 into 2-Furaldehyde-α-C14. J Am Chem Soc. 1959;81(20):5454–6.

    Article  CAS  Google Scholar 

  12. Garrett ER, Dvorchik BH. Kinetics and mechanisms of the acid degradation of the aldopentoses to furfural. J Pharm Sci. 1969;58(7):813–20.

    Article  CAS  PubMed  Google Scholar 

  13. Nimlos MR, Qian X, Davis M, Himmel ME, Johnson DK. Energetics of xylose decomposition as determined using quantum mechanics modeling. J Phys Chem A. 2006;110(42):11824–38.

    Article  CAS  PubMed  Google Scholar 

  14. Wu J, Serianni AS, Vuorinen T. Furanose ring anomerization: kinetic and thermodynamic studies of the d-2-pentuloses by 13 Cn. mr spectroscopy. Carbohydr Res. 1990;206(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  15. Harris DW, Feather MS. Evidence for a C-2→ C-1 intramolecular hydrogen-transfer during the acid-catalyzed isomerization of D-glucose to D-fructose ag. Carbohydr Res. 1973;30(2):359–65.

    Article  CAS  Google Scholar 

  16. Hurd CD, Isenhour LL. Pentose reactions. I Furfural formation. J Am Chem Soc. 1932;54(1):317–30.

    Article  CAS  Google Scholar 

  17. Binder JB, Blank JJ, Cefali AV, Raines RT. Synthesis of furfural from xylose and xylan. ChemSusChem. 2010;3(11):1268–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mansilla HD, Baeza J, Urzúa S, Maturana G, Villaseñor J, Durán N. Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol. 1998;66(3):189–93.

    Article  CAS  Google Scholar 

  19. Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N. Reactions of C-5 and C 6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts. Fuel. 2010;89(10):2873–80.

    Article  CAS  Google Scholar 

  20. Li H, Deng A, Ren J, Liu C, Lu Q, Zhong L, Peng F, Sun R. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour Technol. 2014;158:313–20.

    Article  CAS  PubMed  Google Scholar 

  21. You SJ, Park N, Park ED, Park M-J. Partial least squares modeling and analysis of furfural production from biomass-derived xylose over solid acid catalysts. J Ind Eng Chem. 2015;21:350–5.

    Article  CAS  Google Scholar 

  22. Marcotullio G, De Jong W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem. 2010;12(10):1739–46.

    Article  CAS  Google Scholar 

  23. Morais ARC, Bogel-Lukasik R. Highly efficient and selective CO2-adjunctive dehydration of xylose to furfural in aqueous media with THF. Green Chem. 2016;18(8):2331–4.

    Article  CAS  Google Scholar 

  24. Peleteiro S, da Costa Lopes AM, Garrote G, Parajó JC, Bogel-Łukasik R. Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Ind Eng Chem Res. 2015;54(33):8368–73.

    Article  CAS  Google Scholar 

  25. Win DT. Furfural-gold from garbage. Au J Technol. 2005;8:185–90.

    Google Scholar 

  26. De Jong W, Marcotullio G. Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. Int J Chem React Eng. 2010;8(1):A69.

    Google Scholar 

  27. Fitzpatrick SW. Lignocellulose degradation to furfural and levulinic acid. US4897497A. 1990.

    Google Scholar 

  28. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH. The biofine process – production of levulinic acid, furfural, and formic acid from lignocellulosic feedstock. In: Kamm B, Gruber PR, Kamm M, editors. Biorefineries – industrial processes and products, vol. 1. Winheim: Wiley-VCH Verlag GmbH & Co.; 2006. p. 139–64.

    Google Scholar 

  29. Ritter S. Biorefinery gets ready to deliver the goods. Sci Technol. 2006;84(34):47.

    Google Scholar 

  30. Gravitis J, Vedernikov N, Zandersons J, Kokorevics A. Furfural and levoglucosan production from deciduous wood and agricultural wastes. In: ACS symposium series, 2001. Washington, DC: American Chemical Society, 1974. p. 110–22.

    Google Scholar 

  31. Delmas M, Mlayah B. Organic pulping of cereal straw: from pilot plant to the first factory. In: 16th European Biomass Conference and Exhibition–from Research to Industry and Markets Valencia, Spain, ETA Florence, 2008. p. 1660–4.

    Google Scholar 

  32. CIMV. CIMV The biorefinery concept. 2015. http://www.cimv.fr/cimv-technology/cimv-technology/5-.html. Accessed 11 Feb 2015.

  33. Arato C, Pye EK, Gjennestad G. The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol. 2005;123(1–3):871–82.

    Article  Google Scholar 

  34. Zeitsch KJ. Process for the manufacture of furfural. PCT/ZA2000/000024. 2004.

    Google Scholar 

  35. Steiner P. CEO – International Furan Technology (Pty) Ltd, Personal communication. 2016.

    Google Scholar 

  36. DalinYebo. 2016. http://dalinyebo.com/project/large-scale-furfural-production-from-bagasse Accessed 5 Aug 2016.

  37. Yu QA, Zhuang XS, Yuan ZH, Qi W, Wang QO, Tan XS. The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water. Bioresour Technol. 2011;102(3):3445–50.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang LX, Yu HB, Wang P, Dong H, Peng XH. Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour Technol. 2013;130:110–6.

    Article  CAS  PubMed  Google Scholar 

  39. vom Stein T, Grande PM, Leitner W, de Maria PD (2011) Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock. ChemSusChem 4 (11):1592–1594

    Google Scholar 

  40. Zhang Z, Zhao ZK. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol. 2010;101(3):1111–4.

    Article  CAS  PubMed  Google Scholar 

  41. Kamireddy SR, Li JB, Tucker M, Degenstein J, Ji Y. Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind Eng Chem Res. 2013;52(5):1775–82.

    Article  CAS  Google Scholar 

  42. Roman-Leshkov Y, Davis ME. Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal. 2011;1(11):1566–80.

    Article  CAS  Google Scholar 

  43. Grzybkowski W. Nature and properties of metal cations in aqueous solutions. Pol J Environ Stud. 2006;15(4):655–63.

    CAS  Google Scholar 

  44. Howell I, Neilson G. The coordination of Ni2+ in aqueous solution at elevated temperature and pressure. J Chem Phys. 1996;104(5):2036–42.

    Article  CAS  Google Scholar 

  45. Cotton FA, Wilkinson G. Advanced inorganic chemistry, vol. 594. New York: Wiley; 1988.

    Google Scholar 

  46. Marcotullio G, Krisanti E, Giuntoli J, de Jong W. Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour Technol. 2011;102(10):5917–23.

    Article  CAS  PubMed  Google Scholar 

  47. Voigt B, Gobler A. Formation of pure hematite by hydrolysis of iron(Iii) salt-solutions under hydrothermal conditions. Cryst Res Technol. 1986;21(9):1177–83.

    Article  CAS  Google Scholar 

  48. Danon B, Marcotullio G, de Jong W. Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem. 2014;16(1):39–54.

    Article  CAS  Google Scholar 

  49. Liu L, Sun JS, Cai CY, Wang SH, Pei HS, Zhang JS. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresource Technol. 2009;100(23):5865–71.

    Article  CAS  Google Scholar 

  50. Mao LY, Zhang L, Gao NB, Li AM. Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam. Green Chem. 2013;15(3):727–37.

    Article  CAS  Google Scholar 

  51. Marcotullio G, de Jong W. Furfural formation from D-xylose: the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields. Carbohydr Res. 2011;346(11):1291–3.

    Article  CAS  PubMed  Google Scholar 

  52. Enslow KR, Bell AT. The role of metal halides in enhancing the dehydration of xylose to furfural. ChemCatChem. 2015;7(3):479–89.

    Article  CAS  Google Scholar 

  53. Yang Y, Hu CW, Abu-Omar MM. Synthesis of furfural from xylose, xylan and biomass using AlCl3 .6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem. 2012;5(2):405–10.

    Article  CAS  PubMed  Google Scholar 

  54. Parr RG, Pearson RG. Absolute Hardness - Companion Parameter to Absolute Electronegativity. J Am Chem Soc. 1983;105(26):7512–6.

    Article  CAS  Google Scholar 

  55. Liu CG, Wyman CE. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 degrees C. Carbohydr Res. 2006;341(15):2550–6.

    Article  CAS  PubMed  Google Scholar 

  56. Cai CM, Nagane N, Kumar R, Wyman CE. Coupling metal halides with a co-solvent to produce furfural and 5-HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chem. 2014;16(8):3819–29.

    Article  CAS  Google Scholar 

  57. Wang W, Ren J, Li H, Deng A, Sun R. Direct transformation of xylan-type hemicelluloses to furfural via SnCl 4 catalysts in aqueous and biphasic systems. Bioresour Technol. 2015;183:188–94.

    Article  CAS  PubMed  Google Scholar 

  58. Wiberg N. Holleman-Wiberg’s inorganic chemistry. New York: Academic; 2001.

    Google Scholar 

  59. Wang W, Li H, Ren J, Sun R, Zheng J, Sun G, Liu S. An efficient process for dehydration of xylose to furfural catalyzed by inorganic salts in water/dimethyl sulfoxide system. Chin J Catal. 2014;35(5):741–7.

    Article  CAS  Google Scholar 

  60. Peleteiro S, Garrote G, Santos V, Parajó JC. Conversion of hexoses and pentoses into furans in an ionic liquid. Afinidad. 2014;71(567)

    Google Scholar 

  61. Peleteiro S, Garrote G, Santos V, Parajó JC. Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. J Clean Prod. 2014;76:200–3.

    Article  CAS  Google Scholar 

  62. Sievers C, Musin I, Marzialetti T, Valenzuela Olarte MB, Agrawal PK, Jones CW. Acid-catalyzed conversion of sugars and furfurals in an ionic liquid phase. ChemSusChem. 2009;2(7):665–71.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang LX, Yu HB. Conversion of xylan and xylose into furfural in biorenewable deep eutectic solvent with trivalent metal chloride added. Bioresources. 2013;8(4):6014–25.

    Google Scholar 

  64. Zhang LX, Yu HB, Wang P, Li Y. Production of furfural from xylose, xylan and corncob in γ-valerolactone using FeCl3·6H2O as catalyst. Bioresour Technol. 2014;151:355–60.

    Google Scholar 

  65. Dunlop A. Furfural formation and behavior. Ind Eng Chem. 1948;40(2):204–9.

    Article  CAS  Google Scholar 

  66. Brunner G. Stofftrennung mit ueberkritischen gasen (gasextraktion). Chem Ing Tech. 1987;59(1):12–22.

    Article  CAS  Google Scholar 

  67. Morais ARC, Matuchaki MDJ, Andreaus J, Bogel-Lukasik R. A green and efficient approach of selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as sustainable catalyst. Green Chem. 2016;18:2985–94.

    Article  CAS  Google Scholar 

  68. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. Hemicelluloses for fuel ethanol: a review. Bioresour Technol. 2010;101(13):4775–800.

    Article  CAS  PubMed  Google Scholar 

  69. Brunner G. Supercritical fluids: technology and application to food processing. J Food Eng. 2005;67(1–2):21–33.

    Article  Google Scholar 

  70. Clark JH, Deswarte FEI, Farmer TJ. The integration of green chemistry into future biorefineries. Biofuels Bioprod Biorefining. 2009;3(1):72–90.

    Article  CAS  Google Scholar 

  71. Morais ARC, Mata AC, Bogel-Lukasik R. Integrated conversion of agroindustrial residue with high pressure CO2 within the biorefinery concept. Green Chem. 2014;16(9):4312–22.

    Article  CAS  Google Scholar 

  72. Relvas FM, Morais ARC, Bogel-Lukasik R. Selective hydrolysis of wheat straw hemicellulose using high-pressure CO2 as catalyst. RSC Adv. 2015;5:73935–44.

    Article  CAS  Google Scholar 

  73. Sako T, Sugeta T, Nakazawa N, Okubo T, Sato M, Taguchi T, Hiaki T. Kinetic-study of furfural formation accompanying supercritical carbon-dioxide extraction. J Chem Eng Jpn. 1992;25(4):372–7.

    Article  CAS  Google Scholar 

  74. Sangarunlert W, Piumsomboon P, Ngamprasertsith S. Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean J Chem Eng. 2007;24(6):936–41.

    Article  CAS  Google Scholar 

  75. Gairola K, Smirnova I. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2 – Kinetics and application to biomass hydrolysates. Bioresour Technol. 2012;123:592–8.

    Article  CAS  PubMed  Google Scholar 

  76. Jing Q, Lu XY. Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. Chin J Chem Eng. 2007;15(5):666–9.

    Article  CAS  Google Scholar 

  77. Ryu J, Suh YW, Suh DJ, Ahn DJ. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon. 2010;48(7):1990–8.

    Article  CAS  Google Scholar 

  78. Pollet P, Davey EA, Urena-Benavides EE, Eckert CA, Liotta CL. Solvents for sustainable chemical processes. Green Chem. 2014;16(3):1034–55.

    Article  CAS  Google Scholar 

  79. Cai CM, Zhang TY, Kumar R, Wyman CE. THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass. Green Chem. 2013;15(11):3140–5.

    Article  CAS  Google Scholar 

  80. Bogel-Lukasik R. Ionic liquids in the biorefinery concept. RSC Green Chemistry, vol 36. RSC, Cambridge; 2015.

    Google Scholar 

  81. Tao F, Song H, Chou L. Efficient process for the conversion of xylose to furfural with acidic ionic liquid. Can J Chem. 2011;89(1):83–7.

    Article  CAS  Google Scholar 

  82. Serrano-Ruiz JC, Campelo JM, Francavilla M, Romero AA, Luque R, Menendez-Vazquez C, García AB, García-Suárez EJ. Efficient microwave-assisted production of furfural from C 5 sugars in aqueous media catalysed by Brönsted acidic ionic liquids. Cat Sci Technol. 2012;2(9):1828–32.

    Article  CAS  Google Scholar 

  83. Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA. Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A-Gen. 2009;363(1–2):93–9.

    Article  CAS  Google Scholar 

  84. Xu H, Zhao H, Song H, Miao Z, Yang J, Zhao J, Liang N, Chou L. Functionalized ionic liquids supported on silica as mild and effective heterogeneous catalysts for dehydration of biomass to furan derivatives. J Mol Catal A Chem. 2015;410:235–41.

    Article  CAS  Google Scholar 

  85. Peleteiro S, Santos V, Garrote G, Parajó JC. Furfural production from Eucalyptus wood using an acidic ionic liquid. Carbohydr Polym. 2016;146:20–5.

    Article  CAS  PubMed  Google Scholar 

  86. Peleteiro S, da Costa Lopes AM, Garrote G, Bogel-Łukasik R, Parajó JC. Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent. Ind Crop Product. 2015;77:163–6.

    Article  CAS  Google Scholar 

  87. Carvalho AV, da Costa Lopes AM, Bogel-Lukasik R. Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of biomass hemicellulose fraction. RSC Adv. 2015;5:47153–64.

    Article  CAS  Google Scholar 

  88. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chem. 2011;13(9):2489–99.

    Article  CAS  Google Scholar 

  89. Rinaldi R, Schüth F. Design of solid catalysts for the conversion of biomass. Energy Environ Sci. 2009;2(6):610–26.

    Article  CAS  Google Scholar 

  90. Lessard J, Morin J-F, Wehrung J-F, Magnin D, Chornet E. High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran. Top Catal. 2010;53(15–18):1231–4.

    Article  CAS  Google Scholar 

  91. Metkar PS, Till EJ, Corbin DR, Pereira CJ, Hutchenson KW, Sengupta SK. Reactive distillation process for the production of furfural using solid acid catalysts. Green Chem. 2015;17(3):1453–66.

    Article  CAS  Google Scholar 

  92. Gürbüz EI, Gallo JMR, Alonso DM, Wettstein SG, Lim WY, Dumesic JA. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone. Angew Chem Int Ed. 2013;52(4):1270–4.

    Article  CAS  Google Scholar 

  93. Li H, Ren J, Zhong L, Sun R, Liang L. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresour Technol. 2015;176:242–8.

    Article  CAS  PubMed  Google Scholar 

  94. Dias AS, Pillinger M, Valente AA. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal. 2005;229(2):414–23.

    Article  CAS  Google Scholar 

  95. Kaiprommarat S, Kongparakul S, Reubroycharoen P, Guan G, Samart C. Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent. Fuel. 2016;174:189–96.

    Article  CAS  Google Scholar 

  96. Dias AS, Pillinger M, Valente AA. Mesoporous silica-supported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of D-xylose. Microporous Mesoporous Mater. 2006;94(1):214–25.

    Article  CAS  Google Scholar 

  97. Dias AS, Lima S, Pillinger M, Valente AA. Modified versions of sulfated zirconia as catalysts for the conversion of xylose to furfural. Catal Lett. 2007;114(3–4):151–60.

    Article  CAS  Google Scholar 

  98. Shi X, Wu Y, Yi H, Rui G, Li P, Yang M, Wang G. Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous Sba-15 materials. Energies. 2011;4(4):669–84.

    Article  CAS  Google Scholar 

  99. Agirrezabal-Telleria I, Requies J, Güemez M, Arias P. Dehydration of d-xylose to furfural using selective and hydrothermally stable arenesulfonic SBA-15 catalysts. Appl Catal B Environ. 2014;145:34–42.

    Article  CAS  Google Scholar 

  100. Agirrezabal-Telleria I, Requies J, Güemez M, Arias P. Pore size tuning of functionalized SBA-15 catalysts for the selective production of furfural from xylose. Appl Catal B Environ. 2012;115:169–78.

    Article  CAS  Google Scholar 

  101. Shi X, Wu Y, Li P, Yi H, Yang M, Wang G. Catalytic conversion of xylose to furfural over the solid acid/ZrO 2–Al 2 O 3/SBA-15 catalysts. Carbohydr Res. 2011;346(4):480–7.

    Article  CAS  PubMed  Google Scholar 

  102. Lima S, Antunes MM, Fernandes A, Pillinger M, Ribeiro MF, Valente AA. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Appl Catal A Gen. 2010;388(1):141–8.

    Article  CAS  Google Scholar 

  103. Lima S, Antunes MM, Fernandes A, Pillinger M, Ribeiro MF, Valente AA. Acid-catalysed conversion of saccharides into furanic aldehydes in the presence of three-dimensional mesoporous Al-TUD-1. Molecules. 2010;15(6):3863–77.

    Article  CAS  PubMed  Google Scholar 

  104. Lam E, Majid E, Leung AC, Chong JH, Mahmoud KA, Luong JH. Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts. ChemSusChem. 2011;4(4):535–41.

    Article  CAS  PubMed  Google Scholar 

  105. Dias AS, Lima S, Carriazo D, Rives V, Pillinger M, Valente AA. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. J Catal. 2006;244(2):230–7.

    Article  CAS  Google Scholar 

  106. Zhang J, Lin L, Liu S. Efficient production of furan derivatives from a sugar mixture by catalytic process. Energ Fuel. 2012;26(7):4560–7.

    Article  CAS  Google Scholar 

  107. Agirrezabal-Telleria I, Hemmann F, Jäger C, Arias P, Kemnitz E. Functionalized partially hydroxylated MgF 2 as catalysts for the dehydration of d-xylose to furfural. J Catal. 2013;305:81–91.

    Article  CAS  Google Scholar 

  108. Antunes MM, Lima S, Fernandes A, Candeias J, Pillinger M, Rocha SM, Ribeiro MF, Valente AA. Catalytic dehydration of d-xylose to 2-furfuraldehyde in the presence of Zr-(W, Al) mixed oxides. Tracing by-products using two-dimensional gas chromatography-time-of-flight mass spectrometry. Catal Today. 2012;195(1):127–35.

    Article  CAS  Google Scholar 

  109. Agirrezabal-Telleria I, Garcia-Sancho C, Maireles-Torres P, ARIAS PL. Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N 2 stripping. Chin J Catal. 2013;34(7):1402–6.

    Article  CAS  Google Scholar 

  110. Brazdausks P, Paze A, Rizhikovs J, Puke M, Meile K, Vedernikovs N, Tupciauskas R, Andzs M. Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives. Biomass Bioenerg. 2016;89:98–104.

    Article  CAS  Google Scholar 

  111. Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P. Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crop Product. 1998;7(2):95–9.

    Article  CAS  Google Scholar 

  112. Kim SB, You SJ, Kim YT, Lee S, Lee H, Park K, Park ED. Dehydration of D-xylose into furfural over H-zeolites. Korean J Chem Eng. 2011;28(3):710–6.

    Article  CAS  Google Scholar 

  113. O’Neill R, Ahmad MN, Vanoye L, Aiouache F. Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Ind Eng Chem Res. 2009;48(9):4300–6.

    Article  CAS  Google Scholar 

  114. Lima S, Pillinger M, Valente AA. Dehydration of D-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6 (1). Catal Commun. 2008;9(11):2144–8.

    Article  CAS  Google Scholar 

  115. Lima S, Fernandes A, Antunes MM, Pillinger M, Ribeiro F, Valente AA. Dehydration of xylose into furfural in the presence of crystalline microporous silicoaluminophosphates. Catal Lett. 2010;135(1–2):41–7.

    Article  CAS  Google Scholar 

  116. Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. ACS Catal. 2011;1(12):1724–8.

    Article  CAS  Google Scholar 

  117. Dhepe PL, Sahu R. A solid-acid-based process for the conversion of hemicellulose. Green Chem. 2010;12(12):2153–6.

    Article  CAS  Google Scholar 

  118. Bruce SM, Zong Z, Chatzidimitriou A, Avci LE, Bond JQ, Carreon MA, Wettstein SG. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. J Mol Catal A Chem. 2016;422:18–22.

    Article  CAS  Google Scholar 

  119. Chen H, Qin L, Yu B. Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5). Biomass Bioenerg. 2015;73:77–83.

    Article  CAS  Google Scholar 

  120. Dias AS, Lima S, Pillinger M, Valente AA. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural. Carbohydr Res. 2006;341(18):2946–53.

    Article  CAS  PubMed  Google Scholar 

  121. Dias AS, Lima S, Brandão P, Pillinger M, Rocha J, Valente AA. Liquid-phase dehydration of D-xylose over microporous and mesoporous niobium silicates. Catal Lett. 2006;108(3–4):179–86.

    Article  CAS  Google Scholar 

  122. Jeong GH, Kim EG, Kim SB, Park ED, Kim SW. Fabrication of sulfonic acid modified mesoporous silica shells and their catalytic performance with dehydration reaction of d-xylose into furfural. Microporous Mesoporous Mater. 2011;144(1):134–9.

    Article  CAS  Google Scholar 

  123. Galarneau A, Cambon H, Martin T, De Ménorval L-C, Brunel D, Di Renzo F, Fajula F. SBA-15 versus MCM-41: are they the same materiais? Stud Surf Sci Catal. 2002;141:395–402.

    Article  CAS  Google Scholar 

  124. Weingarten R, Tompsett GA, Conner WC, Huber GW. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal. 2011;279(1):174–82.

    Article  CAS  Google Scholar 

  125. Suzuki T, Yokoi T, Otomo R, Kondo JN, Tatsumi T. Dehydration of xylose over sulfated tin oxide catalyst: influences of the preparation conditions on the structural properties and catalytic performance. Appl Catal A Gen. 2011;408(1):117–24.

    Article  CAS  Google Scholar 

  126. Li H, Deng A, Ren J, Liu C, Wang W, Peng F, Sun R. A modified biphasic system for the dehydration of d-xylose into furfural using SO 4 2−/TiO 2-ZrO 2/La 3+ as a solid catalyst. Catal Today. 2014;234:251–6.

    Article  CAS  Google Scholar 

  127. Doiseau A-C, Rataboul F, Burel L, Essayem N. Synergy effect between solid acid catalysts and concentrated carboxylic acids solutions for efficient furfural production from xylose. Catal Today. 2014;226:176–84.

    Article  CAS  Google Scholar 

  128. Kim Y-C, Lee HS. Selective synthesis of furfural from xylose with supercritical carbon dioxide and solid acid catalyst. J Ind Eng Chem. 2001;7(6):424–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał M. Łukasik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

da Costa Lopes, A.M., Morais, A.R.C., Łukasik, R.M. (2017). Sustainable Catalytic Strategies for C5-Sugars and Biomass Hemicellulose Conversion Towards Furfural Production. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_2

Download citation

Publish with us

Policies and ethics