Skip to main content

Advertisement

Log in

Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk

  • Catalysis, Reaction Engineering, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The aim of this research was to study the effect of furfural production from rice husk by hydrolysis accompanying supercritical CO2 (SC-CO2) extraction. The two-level fractional factorial design method was used to investigate the production process carried out with respect to furfural yield. The process variables are temperature range of 373–453 K, pressure 9.1–18.2 MPa, CO2 flow rate 8.3 × 10−5–1.7 × 10−4 kg/s (5–10 g/min), sulfuric acid concentration 1 to 7 (%wt) and ratio of liquid to solid (L/S) 5 : 1 to 15 : 1 (vol/wt). The results obtained from the experimental design showed that increasing temperature, pressure, CO2 flow rate and sulfuric acid concentration but decreasing ratio of liquid to solid would improve furfural yield. Moreover, furfural production by two-stage process (pre-hydrolysis and dehydration) can improve furfural yield further to be around 90% of theoretical maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Dunlop, Furfural, Kirk-Othmer Encyclopedia of Chemical Technology, vol 11, 3rd ed., John Wiley & Sons, New York (1984).

    Google Scholar 

  2. D. R. Arnold and J. L. Buzzard, A novel process for furfural production, Proceedings of South African Chemical Engineering Congress (2003).

  3. K. J. Zeitsch, The chemistry and technology of furfural and its many by-products, Elsevier (2000).

  4. H. D. Mansilla, J. Baeza, S. Urzua, G. Maturana, J. Villasenor and N. Duran, Bioresour. Technol., 66, 189 (1998).

    Article  CAS  Google Scholar 

  5. B. P. Lavarack, G. J. Griffin and D. Rodman, Biomass Bioenerg., 23, 367 (2002).

    Article  CAS  Google Scholar 

  6. C. Y. Park, Y. W. Ryu and C. Kim, Korean J. Chem. Eng., 18, 475 (2001).

    Article  CAS  Google Scholar 

  7. T. Sako, T. Sugeta, N. Nakazawa, T. Okubo and M. Sako, J. Chem. Eng. Jpn., 25, 372 (1992).

    Article  CAS  Google Scholar 

  8. T. Sako, T. Sugeta, N. Nakazawa, K. Otake, M. Sato, K. Ishihara and M. Kato, Fluid Phase Equilib., 108, 293 (1995).

    Article  CAS  Google Scholar 

  9. T. Gamse and R. Marr, Sep. Sci. Technol., 32, 355 (1997).

    Article  CAS  Google Scholar 

  10. M. Sihvonen, E. Jarvenpaa, V. Hietaniemi and R. Huopalahti Trends Food Sci. Technol., 10, 217 (1999).

    Article  CAS  Google Scholar 

  11. A. Demirbas, Energy Conv. Manag., 42, 279 (2001).

    Article  CAS  Google Scholar 

  12. H. L. Dinsmore and S. Nagy, J. Assoc. Off. Ana. Chem., 57, 332 (1974).

    CAS  Google Scholar 

  13. D. C. Montgomery, Design and analysis of experiments, 5th ed., John Wiley & Sons New York (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somkiat Ngamprasertsith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangarunlert, W., Piumsomboon, P. & Ngamprasertsith, S. Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean J. Chem. Eng. 24, 936–941 (2007). https://doi.org/10.1007/s11814-007-0101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0101-z

Key words

Navigation