Skip to main content
Log in

Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Microporous silicoaluminophosphates SAPO-5, SAPO-11 and SAPO-40 have been tested as solid acid catalysts in the dehydration of xylose into furfural (FUR) under biphasic aqueous-organic conditions, at 170 °C. For all materials, no decrease in catalytic activity is observed after three consecutive recycling runs. Furfural yields at 4 h using SAPO-11 (34–38%) are comparable with that for HMOR zeolite with Si/Al ~ 6 (34%), under similar reaction conditions, while H2SO4 (0.03 M) gives 2% FUR. Complete xylose conversion is reached within 16–24 h, with furfural yields of up to 65%. Brønsted and Lewis acidity of the silicoaluminophosphates was determined through FTIR analysis of adsorbed pyridine, and tentatively correlated with the catalytic performances.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Leshkov YR, Chheda JN, Dumesic JA (2006) Science 312:933

    Google Scholar 

  2. Chheda JN, Leshkov YR, Dumesic JA (2007) Green Chem 9:342

    Article  CAS  Google Scholar 

  3. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products. In: Sugar Series, 1st edn, vol. 13. Elsevier, The Netherlands

  4. Lourvanij K, Rorrer G (1993) Ind Eng Chem Res 32:11

    Article  CAS  Google Scholar 

  5. Moreau C, Durand R, Pourcheron C, Razigade S (1994) Ind Crop Prod 3:85

    Article  CAS  Google Scholar 

  6. Moreau C (2002) Agro-food-industry hi-tech 17

  7. Carlini C, Patrono P, Galletti AMR, Sbrana G (2004) Appl Catal A: Gen 275:111

    Article  CAS  Google Scholar 

  8. Dias AS, Lima S, Carriazo D, Rives V, Pillinger M, Valente AA (2006) J Catal 244:230

    Article  CAS  Google Scholar 

  9. Lima S, Pillinger M, Valente AA (2008) Catal Commun 9:2144

    Article  CAS  Google Scholar 

  10. Rinaldi R, Schüth F (2009) Energy Environ Sci 2:610

    Article  Google Scholar 

  11. Mertens M, Martens JA, Grobet PJ, Jacobs PA (1990) In: Barthomeuf D, Derouane EG, Hölderich W (eds) Guidelines for mastering the properties of molecular sieves. Plenum Press, New York, p 1

    Google Scholar 

  12. Pastore HO, Coluccia S, Marchese L (2005) Annu Rev Mater Res 35:351

    Article  CAS  Google Scholar 

  13. Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Appl Catal A: Gen 145:211

    Article  CAS  Google Scholar 

  14. Moreau C, Durand R, Peyrin D, Duhamet J, Rivalier P (1998) Ind Crops Prod 7:95

    Article  CAS  Google Scholar 

  15. Weyda H, Lechert H (1990) Zeolites 10:251

    Article  CAS  Google Scholar 

  16. Lourenço JP, Ribeiro MF, Ribeiro FR, Rocha J, Gabelica Z, Derouane EG (1995) Microporous Mater 4:445

    Article  Google Scholar 

  17. Fernandes A, Ribeiro MF, Lourenço JP, Gabelica Z (2008) Stud Surf Sci Catal 174:281

    Article  Google Scholar 

  18. Campelo JM, Lafont F, Marinas JM (1995) J Chem Soc Faraday Trans 91:1551

    Article  CAS  Google Scholar 

  19. Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414

    Article  CAS  Google Scholar 

  20. Dias AS, Pillinger M, Valente AA (2005) Appl Catal A: Gen 285:126

    Article  CAS  Google Scholar 

  21. Lok BM, Messina CA, Patton RL, Gajek RT, Cannan TR, Flaningen E (1984) US Patent 4,440,871

  22. Sinha AK, Sainkar S, Sivasanker S (1999) Microporous Mesoporous Mater 31:321

    Article  CAS  Google Scholar 

  23. Renzo FD, Dumont N, Trens P, Gabelica Z (2003) J Cryst Growth 259:160

    Article  Google Scholar 

  24. Webster CE, Drago RS, Zerner MC (1998) J Am Chem Soc 120:5509

    Article  CAS  Google Scholar 

  25. Derewinski M, Briend M, Peltre MJ, Man PP, Barthomeuf D (1993) J Phys Chem 97:13730

    Article  CAS  Google Scholar 

  26. Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Carbohydr Res 217:71

    Article  CAS  Google Scholar 

  27. O’Neill R, Ahmad MN, Vanoye L, Aiouache F (2009) Ind Eng Chem Res 48:4300

    Article  Google Scholar 

  28. Webster CE, Drago RS, Zerner MC (1999) J Phys Chem B 103:1242, and references cited therein

  29. Netrabukkana R, Lourvanij K, Rorrer GL (1996) Ind Eng Chem Res 35:458

    Article  CAS  Google Scholar 

  30. Dias AS, Lima S, Brandão P, Pillinger M, Rocha J, Valente AA (2006) Catal Lett 108:179

    Article  CAS  Google Scholar 

  31. Dias AS, Pillinger M, Valente AA (2006) Microporous Mesoporous Mater 94:214

    Article  CAS  Google Scholar 

  32. Dias AS, Lima S, Pillinger M, Valente AA (2006) Carbohydr Res 341:2946

    Article  CAS  Google Scholar 

  33. Dias AS, Lima S, Pillinger M, Valente AA (2007) Catal Lett 114:151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly funded by the FCT, POCTI and FEDER (project POCTI/QUI/56112/2004 and PTDC/QUI/71198/2006). The authors thank Prof. C.P. Neto for helpful discussions, Dr. Z. Lin (CICECO) for supplying a mordenite sample, and Dr. F. Domingues for access to HPLC equipment. S.L. and M.M.A. are grateful to the FCT for grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela A. Valente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, S., Fernandes, A., Antunes, M.M. et al. Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates. Catal Lett 135, 41–47 (2010). https://doi.org/10.1007/s10562-010-0259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0259-6

Keywords

Navigation