Skip to main content

Carbon Nanomaterials Derived from Graphene and Graphene Oxide Nanosheets

  • Chapter
  • First Online:
Recent Trends in Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 83))

Abstract

This chapter is aimed to overview the recent progress in the development and characterization of a new group of nanomaterials, in free-standing forms, such as fiber/yarns (1D), paper/sheet (2D), and bulk (3D), which were derived from graphene nanosheets prepared by using various fabrication technologies. These materials have special and unique mechanical, thermal, and electrical properties, with potential applications in various aspects, such as energy storage, environmental protection, wearable electronics, and so on. Significant progress and important applications of these new carbon nanomaterials will be highlighted. Materials (synthesis), processing strategies (spinning, filtration, casting, spark plasma sintering), morphologies, properties (mechanical, electrical, and thermal), and potential applications, as well as their interrelationships, will be presented and discussed in a more detailed way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  2. A. Bianco, H.M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar et al., All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013)

    Article  Google Scholar 

  3. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  4. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010)

    Article  Google Scholar 

  5. J.Y. Luo, H.D. Jang, T. Sun, L. Xiao, Z. He, A.P. Katsoulidis et al., Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5, 8943–8949 (2011)

    Article  Google Scholar 

  6. H.H. Cheng, C.G. Hu, Y. Zhao, L.T. Qu, Graphene fiber: a new material platform for unique applications. NPG Asia Mater. 6, e113 (2014)

    Article  Google Scholar 

  7. D.Q. Wu, F.B. Zhang, H.W. Liang, X.L. Feng, Nanocomposites and macroscopic materials: assembly of chemically modified graphene sheets. Chem. Soc. Rev. 41, 6160–6177 (2012)

    Article  Google Scholar 

  8. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)

    Article  Google Scholar 

  9. J.H. Du, S.F. Pei, L.P. Ma, H.M. Cheng, 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 26, 1958–1991 (2014)

    Article  Google Scholar 

  10. Q.W. Chen, L.Y. Zhang, G.H. Chen, Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal. Chem. 84, 171–178 (2012)

    Article  Google Scholar 

  11. F. Yavari, Z.P. Chen, A.V. Thomas, W.C. Ren, H.M. Cheng, N. Koratkar, High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1, 166 (2011)

    Article  Google Scholar 

  12. Z.Q. Niu, J. Chen, H.H. Hng, J. Ma, X.D. Chen, A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 24, 4144–4150 (2012)

    Article  Google Scholar 

  13. Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)

    Article  Google Scholar 

  14. Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011)

    Article  Google Scholar 

  15. B. Dan, N. Behabtu, A. Martinez, J.S. Evans, D.V. Kosynkin, J.M. Tour et al., Liquid crystals of aqueous, giant graphene oxide flakes. Soft Matter 7, 11154–11159 (2011)

    Article  Google Scholar 

  16. B. Konkena, S. Vasudevan, Glass, gel, and liquid crystals: arrested states of graphene oxide aqueous dispersions. J. Phys. Chem. C 118, 21706–21713 (2014)

    Article  Google Scholar 

  17. Z. Xu, C. Gao, Aqueous liquid crystals of graphene oxide. ACS Nano 5, 2908–2915 (2011)

    Article  Google Scholar 

  18. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko et al., Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  Google Scholar 

  19. Z. Xu, Y. Zhang, P.G. Li, C. Gao, Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6, 7103–7113 (2012)

    Article  Google Scholar 

  20. X.Z. Hu, Z.P. Xu, Z. Liu, C. Gao, Liquid crystal self-templating approach to ultrastrong and tough biomimic composites. Sci. Rep. 3, 2374 (2013)

    Article  Google Scholar 

  21. H.B. Yao, H.Y. Fang, X.H. Wang, S.H. Yu, Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chem. Soc. Rev. 40, 3764–3785 (2011)

    Article  Google Scholar 

  22. J.F. Wang, Q.F. Cheng, Z.Y. Tang, Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem. Soc. Rev. 41, 1111–1129 (2012)

    Article  Google Scholar 

  23. R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R.L. Shepherd, J. Chen, S. Aminorroaya-Yamini et al., Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv. Func. Mater. 23, 5345–5354 (2013)

    Article  Google Scholar 

  24. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers. Sci. Rep. 2, 613 (2012)

    Article  Google Scholar 

  25. L. Chen, Y.L. He, S.G. Chai, H. Qiang, F. Chen, Q. Fu, Toward high performance graphene fibers. Nanoscale 5, 5809–5815 (2013)

    Article  Google Scholar 

  26. C.S. Xiang, C.C. Young, X. Wang, Z. Yan, C.C. Hwang, G. Cerioti et al., Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers. Adv. Mater. 25, 4592–4597 (2013)

    Article  Google Scholar 

  27. Y. Zhao, C.C. Jiang, C.G. Hu, Z.L. Dong, J.L. Xue, Y.N. Meng et al., Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers. ACS Nano 7, 2406–2412 (2013)

    Article  Google Scholar 

  28. J.K. Sun, Y.H. Li, Q.Y. Peng, S.C. Hou, D.C. Zou, Y.Y. Shang et al., Macroscopic, flexible, high-performance graphene ribbons. ACS Nano 7, 10225–10232 (2013)

    Article  Google Scholar 

  29. Z.L. Dong, C.C. Jiang, H.H. Cheng, Y. Zhao, G.Q. Shi, L. Jiang et al., Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24, 1856–1861 (2012)

    Article  Google Scholar 

  30. C.G. Hu, Y. Zhao, H.H. Cheng, Y.H. Wang, Z.L. Dong, C.C. Jiang et al., Graphene microtubings: controlled fabrication and site-specific functionalization. Nano Lett. 12, 5879–5884 (2012)

    Article  Google Scholar 

  31. X.M. Li, T.S. Zhao, K.L. Wang, Y. Yang, J.Q. Wei, F.Y. Kang et al., Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 27, 12164–12171 (2011)

    Article  Google Scholar 

  32. X. Li, P.Z. Sun, L.L. Fan, M. Zhu, K.L. Wang, M.L. Zhong et al., Multifunctional graphene woven fabrics. Sci. Rep. 2, 395 (2012)

    Google Scholar 

  33. C.G. Hu, X.Q. Zhai, L.L. Liu, Y. Zhao, L. Jiang, L.T. Qu, Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 3, 2065 (2013)

    Article  Google Scholar 

  34. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  Google Scholar 

  35. L.Y. Jiao, X.R. Wang, G. Diankov, H.L. Wang, H.J. Dai, Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010)

    Article  Google Scholar 

  36. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  Google Scholar 

  37. A.G. Cano-Marquez, F.J. Rodriguez-Macias, J. Campos-Delgado, C.G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez et al., Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9, 1527–1533 (2009)

    Article  Google Scholar 

  38. J. Carretero-Gonzalez, E. Castillo-Martinez, M. Dias-Lima, M. Acik, D.M. Rogers, J. Sovich et al., Oriented graphene nanoribbon yarn and sheet from aligned multi-walled carbon nanotube sheets. Adv. Mater. 24, 5695–5701 (2012)

    Article  Google Scholar 

  39. C.S. Xiang, N. Behabtu, Y.D. Liu, H.G. Chae, C.C. Young, B. Genorio et al., Graphene nanoribbons as an advanced precursor for making carbon fiber. ACS Nano 7, 1628–1637 (2013)

    Article  Google Scholar 

  40. M.L. Minus, S. Kumar, The processing, properties, and structure of carbon fibers. JOM 57, 52–58 (2005)

    Article  Google Scholar 

  41. E.Y. Jang, J. Carretero-Gonzalez, A. Choi, W.J. Kim, M.E. Kozlov, T. Kim et al., Fibers of reduced graphene oxide nanoribbons. Nanotechnology 23, 235601 (2012)

    Article  Google Scholar 

  42. Z.S. Tian, C.X. Xu, J.T. Li, G.Y. Zhu, Z.L. Shi, Y. Lin, Self-assembled free-standing graphene oxide fibers. ACS Appl. Mater. Interfaces 5, 1489–1493 (2013)

    Article  Google Scholar 

  43. R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks et al., Carbon nanotube actuators. Science 284, 1340–1344 (1999)

    Article  Google Scholar 

  44. F. Hennrich, S. Lebedkin, S. Malik, J. Tracy, M. Barczewski, H. Rosner et al., Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys. Chem. Chem. Phys. 4, 2273–2277 (2002)

    Article  Google Scholar 

  45. H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557–3561 (2008)

    Article  Google Scholar 

  46. W.B. Hu, C. Peng, W.J. Luo, M. Lv, X.M. Li, D. Li et al., Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010)

    Article  Google Scholar 

  47. G.Y. He, H.Q. Chen, J.W. Zhu, F.L. Bei, X.Q. Sun, X. Wang, Synthesis and characterization of graphene paper with controllable properties via chemical reduction. J. Mater. Chem. 21, 14631–14638 (2011)

    Article  Google Scholar 

  48. M. Lian, J.C. Fan, Z.X. Shi, S. Zhang, H. Li, J. Yin, Gelatin-assisted fabrication of graphene-based nacre with high strength, toughness, and electrical conductivity. Carbon 89, 279–289 (2015)

    Article  Google Scholar 

  49. H. Gwon, H.S. Kim, K.U. Lee, D.H. Seo, Y.C. Park, Y.S. Lee et al., Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 4, 1277–1283 (2011)

    Article  Google Scholar 

  50. X.W. Yang, L. Qiu, C. Cheng, Y.Z. Wu, Z.F. Ma, D. Li, Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. 50, 7325–7328 (2011)

    Article  Google Scholar 

  51. Q.F. Cheng, M.X. Wu, M.Z. Li, L. Jiang, Z.Y. Tang, Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew. Chem. Int. Ed. 52, 3750–3755 (2013)

    Article  Google Scholar 

  52. S.J. Park, K.S. Lee, G. Bozoklu, W.W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  Google Scholar 

  53. K.W. Putz, O.C. Compton, C. Segar, Z. An, S.T. Nguyen, L.C. Brinson, Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5, 6601–6609 (2011)

    Article  Google Scholar 

  54. A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 2809–2815 (2013)

    Article  Google Scholar 

  55. Y. Tian, Y.W. Cao, Y. Wang, W.L. Yang, J.C. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers. Adv. Mater. 25, 2980–2983 (2013)

    Article  Google Scholar 

  56. W. Guo, C. Cheng, Y.Z. Wu, Y.N. Jiang, J. Gao, D. Li et al., Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 25, 6064–6068 (2013)

    Article  Google Scholar 

  57. H.Y. Liu, H.T. Wang, X.W. Zhang, Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27, 249–254 (2015)

    Article  Google Scholar 

  58. D.D. Han, Y.L. Zhang, H.B. Jiang, H. Xia, J. Feng, Q.D. Chen et al., Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv. Mater. 27, 332–338 (2015)

    Article  Google Scholar 

  59. S.H. Ha, Y.S. Jeong, Y.J. Lee, Free standing reduced graphene oxide film cathodes for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 12295–12303 (2013)

    Article  Google Scholar 

  60. Z.L. Hou, W.L. Song, P. Wang, M.J. Meziani, C.Y. Kong, A. Anderson et al., Flexible graphene-graphene composites of superior thermal and electrical transport properties. ACS Appl. Mater. Interfaces 6, 15026–15032 (2014)

    Google Scholar 

  61. Y.F. Li, Y.Z. Liu, W.Z. Shen, Y.G. Yang, M.Z. Wang, Y.F. Wen, Free-standing optoelectronic graphene-CdS-graphene oxide composite paper produced by vacuum-assisted self-assembly. Appl. Phys. A-Mater. Sci. Process. 106, 779–784 (2012)

    Article  Google Scholar 

  62. J.L. Xiang, L.T. Drzal, Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49, 773–778 (2011)

    Article  Google Scholar 

  63. C. Valles, J.D. Nunez, A.M. Benito, W.K. Maser, Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50, 835–844 (2012)

    Article  Google Scholar 

  64. S. Park, J.W. Suk, J.H. An, J. Oh, S. Lee, W. Lee et al., The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon 50, 4573–4578 (2012)

    Article  Google Scholar 

  65. W. Lee, J.U. Lee, B.M. Jung, J.H. Byun, J.W. Yi, S.B. Lee et al., Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon 65, 296–304 (2013)

    Article  Google Scholar 

  66. D.Y. Kim, M.K. Kim, D.W. Kim, J.D. Suk, O.O. Park, Y.K. Kang, Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 93, 625–635 (2015)

    Article  Google Scholar 

  67. L. Paliotta, G. De Bellis, A. Tamburrano, F. Marra, A. Rinaldi, S.K. Balijepalli et al., Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon 89, 260–271 (2015)

    Article  Google Scholar 

  68. P. Kumar, F. Shahzad, S.G. Yu, S.M. Hong, Y.H. Kim, C.M. Koo, Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94, 494–500 (2015)

    Article  Google Scholar 

  69. S. Stankovich, D.A. Dikin, O.C. Compton, G.H.B. Dommett, R.S. Ruoff, S.T. Nguyen, Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Chem. Mater. 22, 4153–4157 (2010)

    Article  Google Scholar 

  70. P. He, J. Sun, S.Y. Tian, S.W. Yang, S.J. Ding, G.Q. Ding et al., Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218–226 (2015)

    Article  Google Scholar 

  71. X.Q. Zhang, S.H. Wan, J.B. Pu, L.P. Wang, X.Q. Liu, Highly hydrophobic and adhesive performance of graphene films. J. Mater. Chem. 21, 12251–12258 (2011)

    Article  Google Scholar 

  72. C. Zhang, W.W. Tjiu, W. Fan, Z. Yang, S. Huang, T.X. Liu, Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. J. Mater. Chem. 21, 18011–18017 (2011)

    Article  Google Scholar 

  73. S.D. Zhang, Q.H. Tao, Z.Y. Wang, Z.P. Zhang, Controlled heat release of new thermal storage materials: the case of polyethylene glycol intercalated into graphene oxide paper. J. Mater. Chem. 22, 20166–20169 (2012)

    Article  Google Scholar 

  74. G.Q. Ning, C.G. Xu, Y.M. Cao, X. Zhu, Z.M. Jiang, Z.J. Fan et al., Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries. J. Mater. Chem. A 1, 408–414 (2013)

    Article  Google Scholar 

  75. K.W. Shu, C.Y. Wang, S. Li, C. Zhao, Y. Yang, H.K. Liu et al., Flexible free-standing graphene paper with interconnected porous structure for energy storage. J. Mater. Chem. A 3, 4428–4434 (2015)

    Article  Google Scholar 

  76. C. Cheng, J.W. Zhu, X.W. Yang, L. Qiu, Y.F. Wang, D. Li, Dynamic electrosorption analysis: a viable liquid-phase characterization method for porous carbon? J. Mater. Chem. A 1, 9332–9340 (2013)

    Article  Google Scholar 

  77. J.U. Lee, W. Lee, J.W. Yi, S.S. Yoon, S.B. Lee, B.M. Jung et al., Preparation of highly stacked graphene papers via site-selective functionalization of graphene oxide. J. Mat. Chem. A 1, 12893–12899 (2013)

    Article  Google Scholar 

  78. Z.Q. Jiang, Y.L. Shi, Z.J. Jiang, X.N. Tian, L.J. Luo, W.H. Chen, High performance of a free-standing sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for airbreathing direct methanol fuel cells. J. Mater. Chem. A 2, 6494–6503 (2014)

    Article  Google Scholar 

  79. W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao et al., Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3, 2097–2107 (2015)

    Article  Google Scholar 

  80. Q. Liu, L.Q. Liu, K. Xie, Y.N. Meng, H.P. Wu, G.R. Wang et al., Synergistic effect of a rGO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J. Mater. Chem. A. 3, 8380–8388 (2015)

    Article  Google Scholar 

  81. J.F. Ping, Y.X. Wang, K. Fan, W.Z. Tang, J. Wu, Y.B. Ying, High-performance flexible potentiometric sensing devices using free-standing graphene paper. J. Mater. Chem. B 1, 4781–4791 (2013)

    Article  Google Scholar 

  82. I.W.P. Chen, S.H. Saint Jhou, W. Chen, Preparation of high-quality graphene sheets and their applications in highly conductive papers and a high-performance electromechanical actuator. J. Mater. Chem. C 1, 5970–5975 (2013)

    Article  Google Scholar 

  83. A. Abouimrane, O.C. Compton, K. Amine, S.T. Nguyen, Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 114, 12800–12804 (2010)

    Article  Google Scholar 

  84. J.Q. Liu, R. Wang, L. Cui, J.G. Tang, Z. Liu, Q.S. Kong et al., Using molecular level modification to tune the conductivity of graphene papers. J. Phys. Chem. C 116, 17939–17946 (2012)

    Article  Google Scholar 

  85. J.M. Zhu, L.W. Zhu, Z.F. Lu, L. Gu, S.L. Cao, X.B. Cao, Selectively expanding graphene oxide paper for creating multifunctional carbon materials. J. Phys. Chem. C 116, 23075–23082 (2012)

    Article  Google Scholar 

  86. T. Cetinkaya, S. Ozcan, M. Uysal, M.O. Guler, H. Akbulut, Free-standing flexible graphene oxide paper electrode for rechargeable Li-O2 batteries. J. Power Sources 267, 140–147 (2014)

    Article  Google Scholar 

  87. M.H. Yang, S.H. Ko, J.S. Im, B.G. Choi, Free-standing molybdenum disulfide/graphene composite paper as a binder- and carbon-free anode for lithium-ion batteries. J. Power Sources 288, 76–81 (2015)

    Article  Google Scholar 

  88. H.B. Huang, Z.G. Song, N. Wei, L. Shi, Y.Y. Mao, Y.L. Ying et al., Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Communi. 4, 2979 (2013)

    Google Scholar 

  89. Y.X. Xu, C.Y. Chen, Z.P. Zhao, Z.Y. Lin, C. Lee, X. Xu et al., Solution processable holey graphene oxide and Its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605–4610 (2015)

    Article  Google Scholar 

  90. D. Zhong, Q.L. Yang, L. Guo, S.X. Dou, K.S. Liu, L. Jiang, Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration. Nanoscale 5, 5758–5764 (2013)

    Article  Google Scholar 

  91. A.B. Dichiara, T.J. Sherwood, J. Benton-Smith, J.C. Wilson, S.J. Weinstein, R.E. Rogers, Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents. Nanoscale 6, 6322–6327 (2014)

    Article  Google Scholar 

  92. X.Y. Huang, C.Y. Zhi, P.K. Jiang, D. Golberg, Y. Bando, T. Tanaka, Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012)

    Article  Google Scholar 

  93. H. Bi, J. Chen, W. Zhao, S.R. Sun, Y.F. Tang, T.Q. Lin et al., Highly conductive, free-standing and flexible graphene papers for energy conversion and storage devices. RSC Adv. 3, 8454–8460 (2013)

    Article  Google Scholar 

  94. S.J. Park, J.H. An, J.W. Suk, R.S. Ruoff, Graphene-Based Actuators. Small 6, 210–212 (2010)

    Article  Google Scholar 

  95. J.W. Zhang, G. Shi, C. Jiang, S. Ju, D.Z. Jiang, 3D bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small 11, 6197–6204 (2015)

    Article  Google Scholar 

  96. F. Xiao, Y.Q. Li, H.C. Gao, S.B. Ge, H.W. Duan, Growth of coral-like PtAu-MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors. Biosens. Bioelectron. 41, 417–423 (2013)

    Article  Google Scholar 

  97. F. Xiao, J.B. Song, H.C. Gao, X.L. Zan, R. Xu, H.W. Duan, Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: a modular approach toward high-performance flexible electrodes. ACS Nano 6, 100–110 (2012)

    Article  Google Scholar 

  98. W. Cui, M.Z. Li, J.Y. Liu, B. Wang, C. Zhang, L. Jiang et al., A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 8, 9511–9517 (2014)

    Article  Google Scholar 

  99. F. Xiao, Y.Q. Li, X.L. Zan, K. Liao, R. Xu, H.W. Duan, Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv. Func. Mater. 22, 2487–2494 (2012)

    Article  Google Scholar 

  100. B. Shen, W.T. Zhai, W.G. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Func. Mater. 24, 4542–4548 (2014)

    Article  Google Scholar 

  101. M. Zhang, L. Huang, J. Chen, C. Li, G.Q. Shi, Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes. Adv. Mater. 26, 7588–7592 (2014)

    Article  Google Scholar 

  102. S.J. Yang, J.H. Kang, H.S. Jung, T.H. Kim, C.R. Park, Preparation of a freestanding, macroporous reduced graphene oxide film as an efficient and recyclable sorbent for oils and organic solvents. J. Mater. Chem. A 1, 9427–9432 (2013)

    Article  Google Scholar 

  103. S. Korkut, J.D. Roy-Mayhew, D.M. Dabbs, D.L. Milius, I.A. Aksay, High surface area tapes produced with functionalized graphene. ACS Nano 5, 5214–5222 (2011)

    Article  Google Scholar 

  104. G.Q. Xin, H.T. Sun, T. Hu, H.R. Fard, X. Sun, N. Koratkar et al., Large-area freestanding graphene paper for superior thermal management. Adv. Mater. 26, 4521–4526 (2014)

    Article  Google Scholar 

  105. M. Wang, D. Le Dai, J.S. Oh, M. Nguyen Thi, S.H. Kim, S.C. Hong et al., Large-area, conductive and flexible reduced graphene oxide (rGO) membrane fabricated by electrophoretic deposition (EPD). ACS Appl. Mater. Interfaces 6, 1747–1753 (2014)

    Article  Google Scholar 

  106. S.Y. Liu, K. Chen, Y. Fu, S.Y. Yu, Z.H. Bao, Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties. Appl. Surf. Sci. 258, 5299–5303 (2012)

    Article  Google Scholar 

  107. C.M. Chen, J.Q. Huang, Q. Zhang, W.Z. Gong, Q.H. Yang, M.Z. Wang et al., Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 50, 659–667 (2012)

    Article  Google Scholar 

  108. K.W. Shu, C.Y. Wang, M. Wang, C. Zhao, G.G. Wallace, Graphene cryogel papers with enhanced mechanical strength for high performance lithium battery anodes. J. Mater. Chem. A 2, 1325–1331 (2014)

    Article  Google Scholar 

  109. I.F. Cheng, Y.Q. Xie, R.A. Gonzales, P.R. Brejna, J.P. Sundararajan, B.A.F. Kengne et al., Synthesis of graphene paper from pyrolyzed asphalt. Carbon 49, 2852–2861 (2011)

    Article  Google Scholar 

  110. L. Zhang, N.T. Alvarez, M.X. Zhang, M. Haase, R. Malik, D. Mast et al., Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82, 353–359 (2015)

    Article  Google Scholar 

  111. N. Li, G.Z. Yang, Y. Sun, H.W. Song, H. Cui, G.W. Yang et al., Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors. Nano Lett. 15, 3195–3203 (2015)

    Article  Google Scholar 

  112. A. Lerf, A. Buchsteiner, J. Pieper, S. Schottl, I. Dekany, T. Szabo et al., Hydration behavior and dynamics of water molecules in graphite oxide. J. Phys. Chem. Solids 67, 1106–1110 (2006)

    Article  Google Scholar 

  113. R. Mukherjee, A.V. Thomas, A. Krishnamurthy, N. Koratkar, Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 6, 7867–7878 (2012)

    Article  Google Scholar 

  114. Y.H. Hu, X.F. Li, D.S. Geng, M. Cai, R.Y. Li, X.L. Sun, Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries. Electrochim. Acta 91, 227–233 (2013)

    Article  Google Scholar 

  115. X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 5, 8739–8749 (2011)

    Article  Google Scholar 

  116. Z.H. Jin, P. Owour, S.D. Lei, L.H. Ge, Graphene, graphene quantum dots and their applications in optoelectronics. Curr. Opin. Colloid Interface Sci. 20, 439–453 (2015)

    Article  Google Scholar 

  117. X.J. Zhou, S.W. Guo, J.Y. Zhang, Solution-processable graphene quantum dots. ChemPhysChem 14, 2627–2640 (2013)

    Article  Google Scholar 

  118. I. Ozfidan, M. Korkusinski, P. Hawrylak, Electronic properties and electron-electron interactions in graphene quantum dots. Phys. Status Solidi-Rapid Res. Lett. 10, 13–23 (2016)

    Article  Google Scholar 

  119. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L.H. Ge et al., Graphene puantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)

    Article  Google Scholar 

  120. S.W. Yang, J. Sun, X.B. Li, W. Zhou, Z.Y. Wang, P. He et al., Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2, 8660–8667 (2014)

    Article  Google Scholar 

  121. N.V. Medhekar, A. Ramasubramaniam, R.S. Ruoff, V.B. Shenoy, Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4, 2300–2306 (2010)

    Article  Google Scholar 

  122. K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-nanofiller-content graphene oxide-polymer nanocomposites via vacuum-assisted self-assembly. Adv. Func. Mater. 20, 3322–3329 (2010)

    Article  Google Scholar 

  123. X.W. Yang, C. Cheng, Y.F. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 534–537 (2013)

    Article  Google Scholar 

  124. O.C. Compton, D.A. Dikin, K.W. Putz, L.C. Brinson, S.T. Nguyen, Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv. Mater. 22, 892–896 (2010)

    Article  Google Scholar 

  125. I. Dekany, R. Kruger-Grasser, A. Weiss, Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid Polym. Sci. 276, 570–576 (1998)

    Article  Google Scholar 

  126. S. Park, N. Mohanty, J.W. Suk, A. Nagaraja, J.H. An, R.D. Piner et al., Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv. Mater. 22, 17361740 (2010)

    Google Scholar 

  127. J.J. Liang, Y.F. Xu, D. Sui, L. Zhang, Y. Huang, Y.F. Ma et al., Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J. Phys. Chem. C 114, 17465–17471 (2010)

    Article  Google Scholar 

  128. R. Rozada, J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Res. 6, 216–233 (2013)

    Article  Google Scholar 

  129. T. Ghosh, C. Biswas, J.S. Oh, G. Arabale, T.S. Hwang, L. Nguyen Dang et al., Solution-processed graphite membrane from reassembled graphene oxide. Chem. Mater. 24, 594–599 (2012)

    Article  Google Scholar 

  130. Y. Almog, J. Klein, Interactions between mica surfaces in a polystyrene-cyclopentane solution near the theta-temperature. J. Colloid Interface Sci. 106, 33–44 (1985)

    Article  Google Scholar 

  131. P. Alexandridis, T.A. Hatton, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block-copolymer surfactants in aqueous-solutions and at interfaces—thermodynamics, structure, dynamics, and modeling. Colloids Surfaces A Physicochem. Eng. Aspects 96, 1–46 (1995)

    Article  Google Scholar 

  132. K.W. Ebagninin, A. Benchabane, K. Bekkour, Rheological characterization of poly(ethylene oxide) solutions of different molecular weights. J. Colloid Interface Sci. 336, 360–367 (2009)

    Article  Google Scholar 

  133. I. Bihannic, C. Baravian, J.F.L. Duval, E. Paineau, F. Meneau, P. Levitz et al., Orientational order of colloidal disk-shaped particles under shear-flow conditions: a rheological-small-angle X-ray scattering study. J. Phys. Chem. B 114, 16347–16355 (2010)

    Article  Google Scholar 

  134. E.L. Decker, S. Garoff, Contact line structure and dynamics on surfaces with contact angle hysteresis. Langmuir 13, 6321–6332 (1997)

    Article  Google Scholar 

  135. A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology: An overview. J. Electrostat. 66, 197–219 (2008)

    Article  Google Scholar 

  136. M. Pal, U. Pal, Y. Gracia, J.M. Jimenez, F. Perez-Rodriguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 7, 1 (2012)

    Article  Google Scholar 

  137. Y.N. Meng, G.Q. Xin, J.W. Nam, S.M. Cho, H.Y. Chae, Electrospray deposition of carbon nanotube thin films for flexible transparent electrodes. J. Nanosci. Nanotechnol. 13, 6125–6129 (2013)

    Article  Google Scholar 

  138. M. Mustafa, M.N. Awais, G. Pooniah, K.H. Choi, J.B. Ko, Y.H. Doh, Electrospray deposition of a graphene-oxide thin film, its characterization and investigation of its resistive switching performance. J. Korean Phys. Soc. 61, 470–475 (2012)

    Article  Google Scholar 

  139. C.K. Lee, K.W. Park, S.W. Hwang, S.B. Lee, J.K. Shim, Direct electrospray deposition of graphene onto paper and effect of binder on its surface resistance. J. Nanosci. Nanotechnol. 13, 7108–7111 (2013)

    Article  Google Scholar 

  140. M.H. Jin, T.H. Kim, S.C. Lim, D.L. Duong, H.J. Shin, Y.W. Jo et al., Facile physical route to highly crystalline graphene. Adv. Func. Mater. 21, 3496–3501 (2011)

    Article  Google Scholar 

  141. L. Song, F. Khoerunnisa, W. Gao, W.H. Dou, T. Hayashi, K. Kaneko et al., Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide. Carbon 52, 608–612 (2013)

    Article  Google Scholar 

  142. C.M. Chen, Q.H. Yang, Y.G. Yang, W. Lv, Y.F. Wen, P.X. Hou et al., Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21, 3007–3011 (2009)

    Article  Google Scholar 

  143. J.Y. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J.X. Huang, Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180–8186 (2010)

    Article  Google Scholar 

  144. L. Chen, L.L. Huang, J.H. Zhu, Stitching graphene oxide sheets into a membrane at a liquid/liquid interface. Chem. Commun. 50, 15944–15947 (2014)

    Article  Google Scholar 

  145. F. Kim, L.J. Cote, J.X. Huang, Graphene oxide: Surface activity and two-dimensional assembly. Adv. Mater. 22, 1954–1958 (2010)

    Article  Google Scholar 

  146. H. Bai, C. Li, G.Q. Shi, Functional composite materials based on chemically converted graphene. Adv. Mater. 23, 1089–1115 (2011)

    Article  Google Scholar 

  147. X.J. Wan, Y. Huang, Y.S. Chen, Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 45, 598–607 (2012)

    Article  Google Scholar 

  148. X. Huang, X.Y. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  Google Scholar 

  149. B. Luo, S.M. Liu, L.J. Zhi, Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small 8, 630–646 (2012)

    Article  Google Scholar 

  150. Y.Q. Sun, Q. Wu, G.Q. Shi, Graphene based new energy materials. Energy Environ. Sci. 4, 1113–1132 (2011)

    Article  Google Scholar 

  151. W.R. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010)

    Article  Google Scholar 

  152. Y.X. Xu, G.Q. Shi, Assembly of chemically modified graphene: methods and applications. J. Mater. Chem. 21, 3311–3323 (2011)

    Article  Google Scholar 

  153. D. Li, R.B. Kaner, Materials science—graphene-based materials. Science 320, 1170–1171 (2008)

    Article  Google Scholar 

  154. D. Li, M.B. Mueller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  Google Scholar 

  155. H. Bai, C. Li, X.L. Wang, G.Q. Shi, A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. 46, 2376–2378 (2010)

    Article  Google Scholar 

  156. Y.X. Xu, Q. Wu, Y.Q. Sun, H. Bai, G.Q. Shi, Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4, 7358–7362 (2010)

    Article  Google Scholar 

  157. H. Bai, C. Li, X.L. Wang, G.Q. Shi, On the gelation of graphene oxide. J. Phys. Chem. C 115, 5545–5551 (2011)

    Article  Google Scholar 

  158. C.C. Huang, H. Bai, C. Li, G.Q. Shi, A graphene oxide/hemoglobin composite hydrogel for enzymatic catalysis in organic solvents. Chem. Commun. 47, 4962–4964 (2011)

    Article  Google Scholar 

  159. O.C. Compton, Z. An, K.W. Putz, B.J. Hong, B.G. Hauser, L.C. Brinson et al., Additive-free hydrogelation of graphene oxide by ultrasonication. Carbon 50, 3399–3406 (2012)

    Article  Google Scholar 

  160. A. Sahu, W.I. Choi, G.Y. Tae, A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem. Commun. 48, 5820–5822 (2012)

    Article  Google Scholar 

  161. J. Zhang, Y.W. Cao, J.C. Feng, P.Y. Wu, Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J. Phys. Chem. C 116, 8063–8068 (2012)

    Article  Google Scholar 

  162. X. Wang, L.L. Lu, Z.L. Yu, X.W. Xu, Y.R. Zheng, S.H. Yu, Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties. Angew. Chem. Int. Ed. 54, 2397–2401 (2015)

    Article  Google Scholar 

  163. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  164. Y.R. Lin, G.J. Ehlert, C. Bukowsky, H.A. Sodano, Superhydrophobic functionalized graphene aerogels. ACS Appl. Mater. Interfaces 3, 2200–2203 (2011)

    Article  Google Scholar 

  165. N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008)

    Article  Google Scholar 

  166. A.J. Patil, J.L. Vickery, T.B. Scott, S. Mann, Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 21, 3159–3164 (2009)

    Article  Google Scholar 

  167. S.J. He, B. Song, D. Li, C.F. Zhu, W.P. Qi, Y.Q. Wen et al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Func. Mater. 20, 453–459 (2010)

    Article  Google Scholar 

  168. H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Ultralight and highly compressible graphene aerogels. Adv. Mater. 25, 2219–2223 (2013)

    Article  Google Scholar 

  169. Q.L. Fang, B.L. Chen, Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification. J. Mater. Chem. A 2, 8941–8951 (2014)

    Article  Google Scholar 

  170. G.L. Fan, F. Li, D.G. Evans, X.F. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev. 43, 7040–7066 (2014)

    Article  Google Scholar 

  171. C.M. Li, M. Wei, D.G. Evans, X.F. Duan, Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small 10, 4469–4486 (2014)

    Article  Google Scholar 

  172. Li W, Yan D, Gao R, Lu J, Wei M, Duan X. Recent advances in stimuli-responsive photofunctional materials based on accommodation of chromophore into layered double hydroxide nanogallery. J. Nanomaterials. 2013:586462

    Google Scholar 

  173. J. Qu, Q.W. Zhang, X.W. Li, X.M. He, S.X. Song, Mechanochemical approaches to synthesize layered double hydroxides: a review. Appl. Clay Sci. 119, 185–192 (2016)

    Article  Google Scholar 

  174. Q. Wang, D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)

    Article  Google Scholar 

  175. K. Zhang, Z.P. Xu, J. Lu, Z.Y. Tang, H.J. Zhao, D.A. Good et al., Potential for layered double hydroxides-based, innovative drug delivery systems. Int. J. Mol. Sci. 15, 7409–7428 (2014)

    Article  Google Scholar 

  176. X.L. Wang, H. Bai, G.Q. Shi, Size fractionation of graphene oxide sheets by pH-assisted selective sedimentation. J. Am. Chem. Soc. 133, 6338–6342 (2011)

    Article  Google Scholar 

  177. F. Liu, T.S. Seo, A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv. Func. Mater. 20, 1930–1936 (2010)

    Article  Google Scholar 

  178. J.Y. Cao, Y.M. Wang, P. Xiao, Y.C. Chen, Y. Zhou, J.H. Ouyang et al., Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon 56, 389–391 (2013)

    Article  Google Scholar 

  179. Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew. Chem. Int. Ed. 49, 4603–4607 (2010)

    Article  Google Scholar 

  180. Y.Q. Sun, Q. Wu, G.Q. Shi, Supercapacitors based on self-assembled graphene organogel. Phys. Chem. Chem. Phys. 13, 17249–17254 (2011)

    Article  Google Scholar 

  181. J.P. Zhao, W.C. Ren, H.M. Cheng, Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J. Mater. Chem. 22, 20197–20202 (2012)

    Article  Google Scholar 

  182. X.X. Sun, P. Cheng, H.J. Wang, H. Xu, L.Q. Dang, Z.H. Liu et al., Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon 92, 1–10 (2015)

    Article  Google Scholar 

  183. W.J. Liu, Y.K. Wang, Z.H. Li, Tuning of surface wettability of RGO-based aerogels for various adsorbates in water using different amino acids. Chem. Commun. 50, 10311–10314 (2014)

    Article  Google Scholar 

  184. K.X. Sheng, Y.X. Xu, C. Li, G.Q. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26, 9–15 (2011)

    Article  Google Scholar 

  185. X. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, Y.J. Luo, W.C. Zhan et al., Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494–6497 (2011)

    Article  Google Scholar 

  186. P. Hai Dinh, P. Viet Hung, C. Tran Viet, N.P. Thuy-Duong, J.S. Chung, E.W. Shin et al., Synthesis of the chemically converted graphene xerogel with superior electrical conductivity. Chem. Commun. 47, 9672–9674 (2011)

    Article  Google Scholar 

  187. W.F. Chen, L.F. Yan, In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3, 3132–3137 (2011)

    Article  Google Scholar 

  188. W.F. Chen, S.R. Li, C.H. Chen, L.F. Yan, Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 23, 5679–5683 (2011)

    Article  Google Scholar 

  189. W.F. Chen, L.F. Yan, P.R. Bangal, Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 114, 19885–19890 (2010)

    Article  Google Scholar 

  190. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012)

    Article  Google Scholar 

  191. X.W. Yang, J.W. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23, 2833–2838 (2011)

    Article  Google Scholar 

  192. S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski et al., Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. International Ed. 49, 10084–10088 (2010)

    Article  Google Scholar 

  193. N. Ayres, Atom transfer radical polymerization: a robust and versatile route for polymer synthesis. Polym. Rev. 51, 138–162 (2011)

    Article  Google Scholar 

  194. K. Matyjaszewski, Atom transfer radical polymerization: From mechanisms to applications. Isr. J. Chem. 52, 206–220 (2012)

    Article  Google Scholar 

  195. K. Matyjaszewski, J.H. Xia, Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001)

    Article  Google Scholar 

  196. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  197. S.J. An, Y.W. Zhu, S.H. Lee, M.D. Stoller, T. Emilsson, S.J. Park et al., Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J. Phys. Chem. Lett. 1, 1259–1263 (2010)

    Article  Google Scholar 

  198. X.F. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product dtructures, and reaction design. J. Phys. Chem. C 114, 832–842 (2010)

    Article  Google Scholar 

  199. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira et al., Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  Google Scholar 

  200. L.L. Zhang, X. Zhao, M.D. Stoller, Y.W. Zhu, H.X. Ji, S. Murali et al., Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)

    Article  Google Scholar 

  201. J.L. Vickery, A.J. Patil, S. Mann, Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. 21, 2180–2184 (2009)

    Article  Google Scholar 

  202. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  Google Scholar 

  203. L. Estevez, A. Kelarakis, Q.M. Gong, E.H. Da’as, E.P. Giannelis, Multifunctional graphene/platinum/nafion hybrids via ice templating. J. Am. Chem. Soc. 133, 6122–6125 (2011)

    Article  Google Scholar 

  204. B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020–4028 (2012)

    Article  Google Scholar 

  205. H.M. Sun, L.Y. Cao, L.H. Lu, Bacteria promoted hierarchical carbon materials for high-performance supercapacitor. Energy Environ. Sci. 5, 6206–6213 (2012)

    Article  Google Scholar 

  206. X.Y. Xiao, T.E. Beechem, M.T. Brumbach, T.N. Lambert, D.J. Davis, J.R. Michael et al., Lithographically defined three-dimensional graphene structures. ACS Nano 6, 3573–3579 (2012)

    Article  Google Scholar 

  207. M. Batzill, The surface science of graphene: metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 67, 83–115 (2012)

    Article  Google Scholar 

  208. P.L. Huang, S.C. Lin, C.Y. Yeh, H.H. Kuo, S.H. Huang, G.R. Lin et al., Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express 20, 2460–2465 (2012)

    Article  Google Scholar 

  209. E. Kibena, M. Mooste, J. Kozlova, M. Marandi, V. Sammelselg, K. Tammeveski, Surface and electrochemical characterisation of CVD grown graphene sheets. Electrochem. Commun. 35, 26–29 (2013)

    Article  Google Scholar 

  210. J.R. Kyle, A. Guvenc, W. Wang, M. Ghazinejad, J. Lin, S.R. Guo et al., Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets. Small 7, 2599–2606 (2011)

    Article  Google Scholar 

  211. R. Munoz, C. Gomez-Aleixandre, Review of CVD synthesis of graphene. Chem. Vap. Deposition 19, 297–322 (2013)

    Article  Google Scholar 

  212. A.W. Tsen, L. Brown, R.W. Havener, J. Park, Polycrystallinity and stacking in CVD graphene. Acc. Chem. Res. 46, 2286–2296 (2013)

    Article  Google Scholar 

  213. T. Yamada, J. Kim, M. Ishihara, M. Hasegawa, Low-temperature graphene synthesis using microwave plasma CVD. J. Phys. D-Appl. Phys. 46, 063001 (2013)

    Article  Google Scholar 

  214. W.L. Li, K. Lu, J.Y. Walz, Freeze casting of porous materials: review of critical factors in microstructure evolution. Int. Mater. Rev. 57, 37–60 (2012)

    Article  Google Scholar 

  215. S. Deville, Ice-templating, freeze casting: Beyond materials processing. J. Mater. Res. 28, 2202–2219 (2013)

    Article  Google Scholar 

  216. V. Medri, D. Sciti, D.D. Fabbriche, A. Piancastelli, E. Landi, Ice templating of ZrB2–SiC systems. Ceram. Int. 41, 10324–10330 (2015)

    Article  Google Scholar 

  217. E. Papa, V. Medri, P. Benito, A. Vaccari, S. Bugani, J. Jaroszewicz et al., Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous Mesoporous Mater. 215, 206–214 (2015)

    Article  Google Scholar 

  218. S. Deville, E. Saiz, A.P. Tomsia, Ice-templated porous alumina structures. Acta Mater. 55, 1965–1974 (2007)

    Article  Google Scholar 

  219. M.C. Gutierrez, M.L. Ferrer, F. del Monte, Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem. Mater. 20, 634–648 (2008)

    Article  Google Scholar 

  220. M. Kota, X. Yu, S.H. Yeon, H.W. Cheong, H.S. Park, Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J. Power Sources 303, 372–378 (2016)

    Article  Google Scholar 

  221. K.H. Lee, Y.W. Lee, S.W. Lee, J.S. Ha, S.S. Lee, J.G. Son, Ice-templated self-assembly of VOPO4-graphene nanocomposites for vertically porous 3D supercapacitor electrodes. Sci. Rep. 5, 13696 (2015)

    Article  Google Scholar 

  222. J.A. Slotwinski, E.J. Garboczi, Metrology needs for metal additive manufacturing powders. JOM 67, 538–543 (2015)

    Article  Google Scholar 

  223. J. Deckers, J. Vleugels, J.P. Kruthl, Additive manufacturing of ceramics: a review. J. Ceram. Sci. Technol. 5, 245–260 (2014)

    Google Scholar 

  224. S.M. Giannitelli, P. Mozetic, M. Trombetta, A. Rainer, Combined additive manufacturing approaches in tissue engineering. Acta Biomater. 24, 1–11 (2015)

    Article  Google Scholar 

  225. R. Gmeiner, U. Deisinger, J. Schoenherr, B. Lechner, R. Detsch, A.R. Boccaccini et al., Additive manufacturing of bioactive glasses and silicate bioceramics. J. Ceram. Sci. Technol. 6, 75–86 (2015)

    Google Scholar 

  226. A.R. Studart, Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45, 359–376 (2016)

    Article  Google Scholar 

  227. N. Travitzky, A. Bonet, B. Dermeik, T. Fey, I. Filbert-Demut, L. Schlier et al., Additive manufacturing of ceramic-based materials. Adv. Eng. Mater. 16, 729–754 (2014)

    Article  Google Scholar 

  228. S. Yang, Y.Y.F. Zhao, Additive manufacturing-enabled design theory and methodology: a critical review. Int. J. Adv. Manuf. Technol. 80, 327–342 (2015)

    Article  Google Scholar 

  229. J.H. Kim, W.S. Chang, D.H. Kim, J.R. Yang, J.T. Han, G.W. Lee et al., 3D printing of reduced graphene oxide nanowires. Adv. Mater. 27, 157–161 (2015)

    Article  Google Scholar 

  230. D. Lin, S.Y. Jin, F. Zhang, C. Wang, Y.Q. Wang, C. Zhou, et al. 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology. 2015; 26

    Google Scholar 

  231. Z.X. Yang, C.Z. Yan, J.H. Liu, S. Chabi, Y.D. Xia, Y.Q. Zhu, Designing 3D graphene networks via a 3D-printed Ni template. RSC Adv. 5, 29397–29400 (2015)

    Article  Google Scholar 

  232. A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9, 4636–4648 (2015)

    Article  Google Scholar 

  233. C.F. Zhu, T.Y.J. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini et al., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015)

    Article  Google Scholar 

  234. S.S. Duan, K. Yang, Z.H. Wang, M.T. Chen, L. Zhang, H.B. Zhang et al., Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network. ACS Appl. Mater. Interfaces 8, 2187–2192 (2016)

    Article  Google Scholar 

  235. M.A. Worsley, T.Y. Olson, J.R.I. Lee, Willey TrM, M.H. Nielsen, S.K. Roberts et al., High surface area, sp2-cross-linked three-dimensional graphene monoliths. J. Phys. Chem. Lett. 2, 921–925 (2011)

    Article  Google Scholar 

  236. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  Google Scholar 

  237. E.A. Olevsky, S. Kandukuri, L. Froyen, Consolidation enhancement in spark-plasma sintering: impact of high heating rates. J. Appl. Phys. 102, 114913 (2007)

    Article  Google Scholar 

  238. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al Aqeeli, T. Laoui et al. Spark plasma sintering of metals and metal matrix nanocomposites: a review. J. Nanomater. 2012:983470

    Google Scholar 

  239. L.J. Wang, J.F. Zhang, W. Jiang, Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int. J. Refract Metal Hard Mater. 39, 103–112 (2013)

    Article  Google Scholar 

  240. M.S. Yurlova, V.D. Demenyuk, L.Y. Lebedeva, D.V. Dudina, E.G. Grigoryev, E.A. Olevsky, Electric pulse consolidation: an alternative to spark plasma sintering. J. Mater. Sci. 49, 952–985 (2014)

    Article  Google Scholar 

  241. K. Lu, Sintering of nanoceramics. Int. Mater. Rev. 53, 21–38 (2008)

    Article  Google Scholar 

  242. T. He, J.L. Li, L.J. Wang, J.J. Zhu, W. Jiang, Preparation and consolidation of alumina/graphene composite powders. Mater. Trans. 50, 749–751 (2009)

    Article  Google Scholar 

  243. K. Wang, Y.F. Wang, Z.J. Fan, J. Yan, T. Wei, Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46, 315–318 (2011)

    Article  Google Scholar 

  244. Y.C. Fan, L.J. Wang, J.L. Li, J.Q. Li, S.K. Sun, F. Chen et al., Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon 48, 1743–1749 (2010)

    Article  Google Scholar 

  245. L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites. ACS Nano 5, 3182–3190 (2011)

    Article  Google Scholar 

  246. A. Nieto, D. Lahiri, A. Agarwal, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50, 4068–4077 (2012)

    Article  Google Scholar 

  247. B. Apak, F.C. Sahin, C-CNT produced by spark plasma sintering. Acta Phys. Pol. A 127, 1029–1031 (2015)

    Article  Google Scholar 

  248. J.L. Li, G.Z. Bai, J.W. Feng, W. Jiang, Microstructure and mechanical properties of hot-pressed carbon nanotubes compacted by spark plasma sintering. Carbon 43, 2649–2653 (2005)

    Article  Google Scholar 

  249. Y. Sato, H. Nishizaka, S. Sawano, A. Yoshinaka, K. Hirano, S. Hashiguchi et al., Influence of the structure of the nanotube on the mechanical properties of binder-free multi-walled carbon nanotube solids. Carbon 50, 34–39 (2012)

    Article  Google Scholar 

  250. G. Yamamoto, Y. Sato, T. Takahashi, M. Omori, T. Hashida, A. Okubo et al., Single-walled carbon nanotube-derived novel structural material. J. Mater. Res. 21, 1537–1542 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Bing Kong or Wenxiu Que .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kong, L.B., Que, W., Zhou, K., Li, S., Zhang, T. (2017). Carbon Nanomaterials Derived from Graphene and Graphene Oxide Nanosheets. In: Khan, Z. (eds) Recent Trends in Nanomaterials. Advanced Structured Materials, vol 83. Springer, Singapore. https://doi.org/10.1007/978-981-10-3842-6_8

Download citation

Publish with us

Policies and ethics