Skip to main content

Clofarabine: Structure, Mechanism of Action, and Clinical Pharmacology

  • Chapter
  • First Online:
Chemotherapy for Leukemia

Abstract

Similar to fludarabine and cladribine, clofarabine (2-chloro-2′-fluoro-2′-deoxyarabinosyladenine) is resistant to deamination by adenosine deaminase due to the presence of a halogen group at the two position of the base. However, unlike other 2′-deoxyadenosine analogs, clofarabine also has a halogen in the sugar that prevents cleavage of the glycosidic bond by purine nucleoside phosphorylase. The cytotoxic activity of clofarabine is due to both its inhibition of ribonucleotide reductase and its efficient incorporation in DNA, where it inhibits DNA synthesis. While some activity has been observed in lymphoid malignancies, clinical efficacy has primarily been observed in acute leukemias. The recommended dose of clofarabine for adult acute leukemia (40 mg/m2/day × 5 days) results in plasma levels of around 1 μM. The accumulation of clofarabine triphosphate in circulating leukemia cells is dose dependent, with a long half-life. This is particularly the case in responders, resulting in incremental increases in clofarabine triphosphate with every daily infusion of the drug. The actions of clofarabine triphosphate on ribonucleotide reductase and incorporation in the DNA repair patch suggest that a mechanism-based combination with arabinosylcytosine and DNA-damaging agents would be effective. Combination clinical trials have been conducted, while new trials are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordheim LP, Durantel D, Zoulim F, Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov. 2013;12(6):447–64.

    Article  CAS  PubMed  Google Scholar 

  2. Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009;109(7):2880–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zimmerman TP, Gersten NB, Ross AF, Miech RP. Adenine as substrate for purine nucleoside phosphorylase. Can J Biochem. 1971;49(9):1050–4.

    Article  CAS  PubMed  Google Scholar 

  4. Jensen KF, Nygaard P. Purine nucleoside phosphorylase from Escherichia coli and Salmonella typhimurium. Purification and some properties. Eur J Biochem/FEBS. 1975;51(1):253–65.

    Article  CAS  Google Scholar 

  5. Secrist 3rd JA, Thottassery J, Parker WB. Clofarabine: from design to approval. In: Herdewijn P, editor. Modified nucleosides: in biochemistry, biotechnology and medicine. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2008. p. 631–46.

    Chapter  Google Scholar 

  6. Maguire MH, Sim MK. Studies on adenosine deaminase. 2. Specificity and mechanism of action of bovine placental adenosine deaminase. Eur J Biochem/FEBS. 1971;23(1):22–9.

    Article  CAS  Google Scholar 

  7. Watanabe KA, Reichman U, Hirota K, Lopez C, Fox JJ. Nucleosides. 110. Synthesis and antiherpes virus activity of some 2′-fluoro-2′-deoxyarabinofuranosylpyrimidine nucleosides. J Med Chem. 1979;22(1):21–4.

    Article  CAS  PubMed  Google Scholar 

  8. Montgomery JA, Shortnacy-Fowler AT, Clayton SD, Riordan JM, Secrist 3rd JA. Synthesis and biologic activity of 2′-fluoro-2-halo derivatives of 9-beta-D-arabinofuranosyladenine. J Med Chem. 1992;35(2):397–401.

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi T, Kanazawa J, Akinaga S, Tamaoki T, Okabe M. Antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine, a novel deoxyadenosine analog, against human colon tumor xenografts by oral administration. Cancer Chemother Pharmacol. 1999;43(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  10. Waud WR, Schmid SM, Montgomery JA, Secrist 3rd JA. Preclinical antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)adenine (Cl-F-ara-A). Nucleosides Nucleotides Nucleic Acids. 2000;19(1–2):447–60.

    Article  CAS  PubMed  Google Scholar 

  11. Cass CE. Nucleoside transport. In: Georgopapadakou NH, editor. Drug transport in antimicrobial and cancer chemotherapy. New York: Marcel Dekker; 1995. p. 403–51.

    Google Scholar 

  12. King KM, Damaraju VL, Vickers MF, Yao SY, Lang T, Tackaberry TE, et al. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol Pharmacol. 2006;69(1):346–53.

    CAS  PubMed  Google Scholar 

  13. Elwi AN, Damaraju VL, Kuzma ML, Mowles DA, Baldwin SA, Young JD, et al. Transepithelial fluxes of adenosine and 2′-deoxyadenosine across human renal proximal tubule cells: roles of nucleoside transporters hENT1, hENT2, and hCNT3. Am J Physiol Renal Physiol. 2009;296(6):F1439–51.

    Article  CAS  PubMed  Google Scholar 

  14. de Wolf C, Jansen R, Yamaguchi H, de Haas M, van de Wetering K, Wijnholds J, et al. Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides. Mol Cancer Ther. 2008;7(9):3092–102.

    Article  PubMed  Google Scholar 

  15. Nagai S, Takenaka K, Nachagari D, Rose C, Domoney K, Sun D, et al. Deoxycytidine kinase modulates the impact of the ABC transporter ABCG2 on clofarabine cytotoxicity. Cancer Res. 2011;71(5):1781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fukuda Y, Schuetz JD. ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol. 2012;83(8):1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parker WB, Shaddix SC, Chang CH, White EL, Rose LM, Brockman RW, et al. Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5′-triphosphate. Cancer Res. 1991;51(9):2386–94.

    CAS  PubMed  Google Scholar 

  18. Xie C, Plunkett W. Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res. 1995;55(13):2847–52.

    CAS  PubMed  Google Scholar 

  19. Avery TL, Rehg JE, Lumm WC, Harwood FC, Santana VM, Blakley RL. Biochemical pharmacology of 2-chlorodeoxyadenosine in malignant human hematopoietic cell lines and therapeutic effects of 2-bromodeoxyadenosine in drug combinations in mice. Cancer Res. 1989;49(18):4972–8.

    CAS  PubMed  Google Scholar 

  20. Gandhi V, Kantarjian H, Faderl S, Bonate P, Du M, Ayres M, et al. Pharmacokinetics and pharmacodynamics of plasma clofarabine and cellular clofarabine triphosphate in patients with acute leukemias. Clin Cancer Res. 2003;9(17):6335–42.

    CAS  PubMed  Google Scholar 

  21. Parker WB, Shaddix SC, Rose LM, Shewach DS, Hertel LW, Secrist 3rd JA, et al. Comparison of the mechanism of cytotoxicity of 2-chloro-9-(2-deoxy-2- fluoro-beta-D-arabinofuranosyl)adenine, 2-chloro-9-(2-deoxy-2-fluoro- beta-D-ribofuranosyl)adenine, and 2-chloro-9-(2-deoxy-2,2-difluoro- beta-D-ribofuranosyl)adenine in CEM cells. Mol Pharmacol. 1999;55(3):515–20.

    CAS  PubMed  Google Scholar 

  22. Lotfi K, Mansson E, Spasokoukotskaja T, Pettersson B, Liliemark J, Peterson C, et al. Biochemical pharmacology and resistance to 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine, a novel analogue of cladribine in human leukemic cells. Clin Cancer Res. 1999;5(9):2438–44.

    CAS  PubMed  Google Scholar 

  23. Kantarjian H, Gandhi V, Cortes J, Verstovsek S, Du M, Garcia-Manero G, et al. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood. 2003;102(7):2379–86.

    Article  CAS  PubMed  Google Scholar 

  24. Jordheim LP, Marton Z, Rhimi M, Cros-Perrial E, Lionne C, Peyrottes S, et al. Identification and characterization of inhibitors of cytoplasmic 5′-nucleotidase cN-II issued from virtual screening. Biochem Pharmacol. 2013;85(4):497–506.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Secrist 3rd JA, Ealick SE. The structure of human deoxycytidine kinase in complex with clofarabine reveals key interactions for prodrug activation. Acta Crystallogr D Biol Crystallogr. 2006;62(Pt 2):133–9.

    Article  PubMed  Google Scholar 

  26. Leegwater PA, De Abreu RA, Albertioni F. Analysis of DNA methylation of the 5′ region of the deoxycytidine kinase gene in CCRF-CEM-sensitive and cladribine (CdA)- and 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine (CAFdA)-resistant cells. Cancer Lett. 1998;130(1–2):169–73.

    Article  CAS  PubMed  Google Scholar 

  27. Mansson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S, et al. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol. 2003;65(2):237–47.

    Article  CAS  PubMed  Google Scholar 

  28. Waud WR, Gilbert KS, Parker WB, Secrist JA. Isolation and characterization of a murine P388 leukemia line resistant to clofarabine. Nucleosides Nucleotides Nucleic Acids. 2011;30(11):826–38.

    Article  CAS  PubMed  Google Scholar 

  29. Yamauchi T, Uzui K, Nishi R, Shigemi H, Ueda T. Cytarabine-resistant leukemia cells are moderately sensitive to clofarabine in vitro. Anticancer Res. 2014;34(4):1657–62.

    CAS  PubMed  Google Scholar 

  30. Shigemi H, Yamauchi T, Tanaka Y, Ueda T. Novel leukemic cell lines resistant to clofarabine by mechanisms of decreased active metabolite and increased antiapoptosis. Cancer Sci. 2013;104(6):732–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lamba JK, Crews K, Pounds S, Schuetz EG, Gresham J, Gandhi V, et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther. 2007;323(3):935–45.

    Article  CAS  PubMed  Google Scholar 

  32. Spasokoukotskaja T, Sasvari-Szekely M, Hullan L, Albertioni F, Eriksson S, Staub M. Activation of deoxycytidine kinase by various nucleoside analogues. Adv Exp Med Biol. 1998;431:641–5.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper T, Ayres M, Nowak B, Gandhi V. Biochemical modulation of cytarabine triphosphate by clofarabine. Cancer Chemother Pharmacol. 2005;55(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  34. Parker WB, Shaddix SC, Gilbert KS, Shepherd RV, Waud WR. Enhancement of the in vivo antitumor activity of clofarabine by 1-beta-D-[4-thio-arabinofuranosyl]-cytosine. Cancer Chemother Pharmacol. 2009;64(2):253–61.

    Article  CAS  PubMed  Google Scholar 

  35. Csapo Z, Sasvari-Szekely M, Spasokoukotskaja T, Talianidis I, Eriksson S, Staub M. Activation of deoxycytidine kinase by inhibition of DNA synthesis in human lymphocytes. Biochem Pharmacol. 2001;61(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  36. Spasokoukotskaja T, Sasvari-Szekely M, Keszler G, Albertioni F, Eriksson S, Staub M. Treatment of normal and malignant cells with nucleoside analogues and etoposide enhances deoxycytidine kinase activity. Eur J Cancer. 1999;35(13):1862–7.

    Article  CAS  PubMed  Google Scholar 

  37. Amsailale R, Van Den Neste E, Arts A, Starczewska E, Bontemps F, Smal C. Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol. 2012;84(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  38. Keszler G, Spasokoukotskaja T, Sasvari-Szekely M, Eriksson S, Staub M. Deoxycytidine kinase is reversibly phosphorylated in normal human lymphocytes. Nucleosides Nucleotides Nucleic Acids. 2006;25(9–11):1147–51.

    Article  CAS  PubMed  Google Scholar 

  39. Guo Y, Xu X, Qi W, Xie C, Wang G, Zhang A, et al. Synergistic antitumor interactions between gemcitabine and clofarabine in human pancreatic cancer cell lines. Mol Med Rep. 2012;5(3):734–8.

    CAS  PubMed  Google Scholar 

  40. Valdez BC, Li Y, Murray D, Ji J, Liu Y, Popat U, et al. Comparison of the cytotoxicity of cladribine and clofarabine when combined with fludarabine and busulfan in AML cells: enhancement of cytotoxicity with epigenetic modulators. Exp Hematol. 2015;43(6):448–61.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Valdez BC, Wang G, Murray D, Nieto Y, Li Y, Shah J, et al. Mechanistic studies on the synergistic cytotoxicity of the nucleoside analogs gemcitabine and clofarabine in multiple myeloma: relevance of p53 and its clinical implications. Exp Hematol. 2013;41(8):719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sjoberg AH, Wang L, Eriksson S. Substrate specificity of human recombinant mitochondrial deoxyguanosine kinase with cytostatic and antiviral purine and pyrimidine analogs. Mol Pharmacol. 1998;53(2):270–3.

    CAS  PubMed  Google Scholar 

  43. Arner ES, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther. 1995;67(2):155–86.

    Article  CAS  PubMed  Google Scholar 

  44. Lindemalm S, Liliemark J, Gruber A, Eriksson S, Karlsson MO, Wang Y, et al. Comparison of cytotoxicity of 2-chloro- 2′-arabino-fluoro-2′-deoxyadenosine (clofarabine) with cladribine in mononuclear cells from patients with acute myeloid and chronic lymphocytic leukemia. Haematologica. 2003;88(3):324–32.

    CAS  PubMed  Google Scholar 

  45. Xie KC, Plunkett W. Deoxynucleotide pool depletion and sustained inhibition of ribonucleotide reductase and DNA synthesis after treatment of human lymphoblastoid cells with 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) adenine. Cancer Res. 1996;56(13):3030–7.

    CAS  PubMed  Google Scholar 

  46. Chen LS, Plunkett W, Gandhi V. Polyadenylation inhibition by the triphosphates of deoxyadenosine analogues. Leuk Res. 2008;32:1573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 2006;75:681–706.

    Article  CAS  PubMed  Google Scholar 

  48. Aye Y, Stubbe J. Clofarabine 5′-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proc NatAcad Sci. 2011;108(24):9815–20.

    Article  CAS  Google Scholar 

  49. Aye Y, Brignole EJ, Long MJ, Chittuluru J, Drennan CL, Asturias FJ, et al. Clofarabine targets the large subunit (alpha) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem Biol. 2012;19(7):799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fu Y, Lin HY, Wisitpitthaya S, Blessing WA, Aye Y. A fluorimetric readout reporting the kinetics of nucleotide-induced human ribonucleotide reductase oligomerization. Chem Biochem: Eur J Chem Biol. 2014;15(17):2598–604.

    CAS  Google Scholar 

  51. Yamauchi T, Nowak BJ, Keating MJ, Plunkett W. DNA repair initiated in chronic lymphocytic leukemia lymphocytes by 4-hydroperoxycyclophosphamide is inhibited by fludarabine and clofarabine. Clin Cancer Res. 2001;7(11):3580–9.

    CAS  PubMed  Google Scholar 

  52. Carson DA, Wasson DB, Esparza LM, Carrera CJ, Kipps TJ, Cottam HB. Oral antilymphocyte activity and induction of apoptosis by 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine. Proc Natl Acad Sci. 1992;89(7):2970–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartman WR, Hentosh P. The antileukemia drug 2-chloro-2′-deoxyadenosine: an intrinsic transcriptional antagonist. Mol Pharmacol. 2004;65(1):227–34.

    Article  CAS  PubMed  Google Scholar 

  54. Hartman WR, Walters DE, Hentosh P. Presence of the anti-leukemic nucleotide analog, 2-chloro-2′-deoxyadenosine-5′-monophosphate, in a promoter sequence alters DNA binding of TATA-binding protein (TBP). Arch Biochem Biophys. 2007;459(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  55. Dimitrova DS, Gilbert DM. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nat Cell Biol. 2000;2(10):686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee YJ, Hwang IS, Lee YJ, Lee CH, Kim SH, Nam HS, et al. Knockdown of Bcl-xL enhances growth-inhibiting and apoptosis-inducing effects of resveratrol and clofarabine in malignant mesothelioma H-2452 cells. J Korean Med Sci. 2014;29(11):1464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takahashi T, Shimizu M, Akinaga S. Mechanisms of the apoptotic activity of Cl-F-araA in a human T-ALL cell line. CCRF-CEM Cancer Chemother Pharmacol. 2002;50(3):193–201.

    Article  CAS  PubMed  Google Scholar 

  58. Wang X, Albertioni F. Effect of clofarabine on apoptosis and DNA synthesis in human epithelial colon cancer cells. Nucleosides Nucleotides Nucleic Acids. 2010;29(4–6):414–8.

    Article  CAS  PubMed  Google Scholar 

  59. Genini D, Adachi S, Chao Q, Rose DW, Carrera CJ, Cottam HB, et al. Deoxyadenosine analogs induce programmed cell death in chronic lymphocytic leukemia cells by damaging the DNA and by directly affecting the mitochondria. Blood. 2000;96(10):3537–43.

    CAS  PubMed  Google Scholar 

  60. Genini D, Budihardjo I, Plunkett W, Wang X, Carrera CJ, Cottam HB, et al. Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J Biol Chem. 2000;275(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  61. Miura S, Izuta S. DNA polymerases as targets of anticancer nucleosides. Curr Drug Targets. 2004;5(2):191–5.

    Article  CAS  PubMed  Google Scholar 

  62. Jensen K, Johnson LA, Jacobson PA, Kachler S, Kirstein MN, Lamba J, et al. Cytotoxic purine nucleoside analogues bind to A1, A2A, and A3 adenosine receptors. Naunyn Schmiedeberg’s Arch Pharmacol. 2012;385(5):519–25.

    Article  CAS  Google Scholar 

  63. Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K. Clofarabine, a novel adenosine analogue, reactivates DNA methylation-silenced tumour suppressor genes and inhibits cell growth in breast cancer cells. Eur J Pharmacol. 2014;723:276–87.

    Article  CAS  PubMed  Google Scholar 

  64. Majda K, Kaufman-Szymczyk A, Lubecka-Pietruszewska K, Bednarek A, Fabianowska-Majewska K. Influence of clofarabine on transcriptional activity of PTEN, APC, RARB2, ZAP70 genes in K562 cells. Anticancer Res. 2010;30(11):4601–6.

    CAS  PubMed  Google Scholar 

  65. Seedhouse C, Grundy M, Shang S, Ronan J, Pimblett H, Russell N, et al. Impaired S-phase arrest in acute myeloid leukemia cells with a FLT3 internal tandem duplication treated with clofarabine. Clin Cancer Res. 2009;15(23):7291–8.

    Article  CAS  PubMed  Google Scholar 

  66. Krett NL, Ayres M, Nabhan C, Ma C, Nowak B, Nawrocki S, et al. In vitro assessment of nucleoside analogs in multiple myeloma. Cancer Chemother Pharmacol. 2004;54(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  67. Uy GL, Tomasson MH, Ruddell A, DiPersio JF, Vij R. The activity and toxicity of low dose clofarabine against relapsed or refractory myeloma. Haematologica. 2006;91(11):1581–2.

    CAS  PubMed  Google Scholar 

  68. Abramson JS, Takvorian RW, Fisher DC, Feng Y, Jacobsen ED, Brown JR, et al. Oral clofarabine for relapsed/refractory non-Hodgkin lymphomas: results of a phase 1 study. Leuk Lymphoma. 2013;54(9):1915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blum KA, Hamadani M, Phillips GS, Lozanski G, Johnson AJ, Lucas DM, et al. Prolonged myelosuppression with clofarabine in the treatment of patients with relapsed or refractory, aggressive non-Hodgkin lymphoma. Leuk Lymphoma. 2009;50(3):349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nabhan C, Davis N, Bitran JD, Galvez A, Fried W, Tolzien K, et al. Efficacy and safety of clofarabine in relapsed and/or refractory non-Hodgkin lymphoma, including rituximab-refractory patients. Cancer. 2011;117(7):1490–7.

    Article  CAS  PubMed  Google Scholar 

  71. Rahmati-Yamchi M, Zarghami N, Nozad Charoudeh H, Ahmadi Y, Baradaran B, Khalaj-Kondori M, et al. Clofarabine has apoptotic effect on T47D breast cancer cell line via P53R2 gene expression. Adv Pharm Bull. 2015;5(4):471–6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Patel YT, Jacus MO, Boulos N, Dapper JD, Davis AD, Vuppala PK, et al. Preclinical examination of clofarabine in pediatric ependymoma: intratumoral concentrations insufficient to warrant further study. Cancer Chemother Pharmacol. 2015;75(5):897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonate PL, Arthaud L, Cantrell Jr WR, Stephenson K, Secrist 3rd JA, Weitman S. Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov. 2006;5(10):855–63.

    Article  CAS  PubMed  Google Scholar 

  74. Collins JM, Grieshaber CK, Chabner BA. Pharmacologically guided phase I clinical trials based upon preclinical drug development. J Natl Cancer Inst. 1990;82(16):1321–6.

    Article  CAS  PubMed  Google Scholar 

  75. Kantarjian HM, Gandhi V, Kozuch P, Faderl S, Giles F, Cortes J, et al. Phase I clinical and pharmacology study of clofarabine in patients with solid and hematologic cancers. J Clin Oncol. 2003;21(6):1167–73.

    Article  CAS  PubMed  Google Scholar 

  76. Jeha S, Gandhi V, Chan KW, McDonald L, Ramirez I, Madden R, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood. 2004;103(3):784–9.

    Article  CAS  PubMed  Google Scholar 

  77. Ajavon AD, Bonate PL, Taft DR. Renal excretion of clofarabine: assessment of dose-linearity and role of renal transport systems on drug excretion. Eur J Pharm Sci. 2010;40(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  78. Bonate PL, Craig A, Gaynon P, Gandhi V, Jeha S, Kadota R, et al. Population pharmacokinetics of clofarabine, a second-generation nucleoside analog, in pediatric patients with acute leukemia. J Clin Pharmacol. 2004;44(11):1309–22.

    Article  CAS  PubMed  Google Scholar 

  79. Bonate PL, Cunningham CC, Gaynon P, Jeha S, Kadota R, Lam GN, et al. Population pharmacokinetics of clofarabine and its metabolite 6-ketoclofarabine in adult and pediatric patients with cancer. Cancer Chemother Pharmacol. 2011;67(4):875–90.

    Article  CAS  PubMed  Google Scholar 

  80. Rudrapatna VK, Morley K, Boucher KM, Pierson AS, Shull CT, Kushner JP, et al. Phase I trial of low-dose oral Clofarabine in myelodysplastic syndromes patients who have failed frontline therapy. Leuk Res. 2015;39(8):835–9.

    Article  CAS  PubMed  Google Scholar 

  81. Jacoby MA, Martin MG, Uy GL, Westervelt P, Dipersio JF, Cashen A, et al. Phase I study of oral clofarabine consolidation in adults aged 60 and older with acute myeloid leukemia. Am J Hematol. 2014;89(5):487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Faderl S, Garcia-Manero G, Estrov Z, Ravandi F, Borthakur G, Cortes JE, et al. Oral clofarabine in the treatment of patients with higher-risk myelodysplastic syndrome. J Clin Oncol. 2010;28(16):2755–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Al Ustwani O, Greene JD, Wetzler M. The use of low-dose protracted oral clofarabine in a patient with myelodysplastic syndrome after failing 5-azacitidine. Leuk Res Rep. 2013;2(1):34–5.

    PubMed  PubMed Central  Google Scholar 

  84. Buckley SA, Mawad R, Gooley TA, Becker PS, Sandhu V, Hendrie P, et al. A phase I/II study of oral clofarabine plus low-dose cytarabine in previously treated acute myeloid leukaemia and high-risk myelodysplastic syndrome patients at least 60 years of age. Br J Haematol. 2015;170(3):349–55.

    Article  CAS  PubMed  Google Scholar 

  85. Gandhi V, Plunkett W. Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res. 1988;48(2):329–34.

    CAS  PubMed  Google Scholar 

  86. Gandhi V, Estey E, Keating MJ, Chucrallah A, Plunkett W. Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood. 1996;87(1):256–64.

    CAS  PubMed  Google Scholar 

  87. Gandhi V, Estey E, Keating MJ, Plunkett W. Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol. 1993;11(1):116–24.

    Article  CAS  PubMed  Google Scholar 

  88. Faderl S, Gandhi V, O’Brien S, Bonate P, Cortes J, Estey E, et al. Results of a phase 1-2 study of clofarabine in combination with cytarabine (ara-C) in relapsed and refractory acute leukemias. Blood. 2005;105(3):940–7.

    Article  CAS  PubMed  Google Scholar 

  89. Faderl S, Wetzler M, Rizzieri D, Schiller G, Jagasia M, Stuart R, et al. Clofarabine plus cytarabine compared with cytarabine alone in older patients with relapsed or refractory acute myelogenous leukemia: results from the CLASSIC I Trial. J Clin Oncol. 2012;30(20):2492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Becker PS, Kantarjian HM, Appelbaum FR, Petersdorf SH, Storer B, Pierce S, et al. Clofarabine with high dose cytarabine and granulocyte colony-stimulating factor (G-CSF) priming for relapsed and refractory acute myeloid leukaemia. Br J Haematol. 2011;155(2):182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Valdez BC, Li Y, Murray D, Champlin RE, Andersson BS. The synergistic cytotoxicity of clofarabine, fludarabine and busulfan in AML cells involves ATM pathway activation and chromatin remodeling. Biochem Pharmacol. 2011;81(2):222–32.

    Article  CAS  PubMed  Google Scholar 

  92. Valdez BC, Murray D, Nieto Y, Li Y, Wang G, Champlin RE, et al. Synergistic cytotoxicity of the DNA alkylating agent busulfan, nucleoside analogs and suberoylanilide hydroxamic acid in lymphoma cell lines. Leuk Lymphoma. 2012;53(5):973–81.

    Article  CAS  PubMed  Google Scholar 

  93. Karp JE, Ricklis RM, Balakrishnan K, Briel J, Greer J, Gore SD, et al. A phase 1 clinical-laboratory study of clofarabine followed by cyclophosphamide for adults with refractory acute leukemias. Blood. 2007;110(6):1762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Faderl S, Balakrishnan K, Thomas DA, Ravandi F, Borthakur G, Burger J, et al. Phase I and extension study of clofarabine plus cyclophosphamide in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Lymph Myelo Leuk. 2014;14(3):231–8.

    Article  Google Scholar 

  95. Inaba H, Rubnitz JE, Coustan-Smith E, Li L, Furmanski BD, Mascara GP, et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol. 2011;29(24):3293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chiarini F, Lonetti A, Teti G, Orsini E, Bressanin D, Cappellini A, et al. A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget. 2012;3(12):1615–28.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Thudium KE, Ghoshal S, Fetterly GJ, Haese JP, Karpf AR, Wetzler M. Synergism between clofarabine and decitabine through p53R2: a pharmacodynamic drug-drug interaction modeling. Leuk Res. 2012;36(11):1410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Faderl S, Ravandi F, Huang X, Wang X, Jabbour E, Garcia-Manero G, et al. Clofarabine plus low-dose cytarabine followed by clofarabine plus low-dose cytarabine alternating with decitabine in acute myeloid leukemia frontline therapy for older patients. Cancer. 2012;118(18):4471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Foster MC, Amin C, Voorhees PM, van Deventer HW, Richards KL, Ivanova A, et al. A phase I dose-escalation study of clofarabine in combination with fractionated gemtuzumab ozogamicin in patients with refractory or relapsed acute myeloid leukemia. Leuk Lymphoma. 2012;53(7):1331–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Hima Vangapandu, PhD, for her help with the references. The authors also thank Ms. Ann Sutton for scientific editing.

Conflict of Interest

Clofarabine was discovered at Southern Research Institute, which receives licensing fees and royalty payments from its commercial development. Some of this money is distributed to Dr. Parker. Dr. Gandhi has no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Parker, W.B., Gandhi, V. (2017). Clofarabine: Structure, Mechanism of Action, and Clinical Pharmacology. In: Ueda, T. (eds) Chemotherapy for Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-10-3332-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3332-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3330-8

  • Online ISBN: 978-981-10-3332-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics