Skip to main content
Log in

In vitro assessment of nucleoside analogs in multiple myeloma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To identify nucleoside analogs that may be effective for multiple myeloma (MM), we tested fludarabine, clofarabine, arabinosylguanine, cytarabine, troxacitabine, and gemcitabine in MM cell lines.

Methods

We employed biologic and biochemical assays in MM cell lines to evaluate the clinical potential of these nucleoside analogs.

Results

Among these purine and pyrimidine nucleoside analogs, fludarabine, clofarabine and gemcitabine were the most potent. MM cell lines, resistant to commonly used chemotherapeutic agents for this disease, were more sensitive to gemcitabine with an IC50 in the nanomolar range. The greater cytotoxicity of gemcitabine in MM cells was consistent with greater accumulation of gemcitabine triphosphate, the major cytotoxic metabolite of this drug. MM.1S cells accumulated >100 μM gemcitabine triphosphate but accumulated <20 μM of the other analogs as the respective triphosphates. In addition incubation with gemcitabine resulted in inhibition of DNA synthesis. Incubation with 25, 50 or 100 nM gemcitabine resulted in a dose- and time-dependent increase in the cell population with a subG1 DNA content indicative of apoptosis.

Conclusions

These results suggest that gemcitabine is a potent nucleoside analog in MM cell lines including cell types resistant to other chemotherapeutic agents. The greater activity of gemcitabine compared to other analogs seems to be due to favorable metabolism of this agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A, B
Fig. 3A–C
Fig. 4
Fig. 5A, B
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexanian R, Dimopoulos M (1994) The treatment of multiple myeloma. N Engl J Med 330:484–489

    Google Scholar 

  2. Attal M, Haroussequ JL, Stoppa AM, Sotto JJ, Fuzibet JG, Fossi JF, Casaccus R, Maisonneuve H, Facon T, Ifrah N, Payen C, Bataille R (1996) A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. New Engl J Med 335:91–97

    Google Scholar 

  3. Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ, Lippert B, Jarvi E, Resvick R (1991) 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′- diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 34:1879–1884

    Google Scholar 

  4. Bellamy WT, Dalton WS, Gleason MC, Grogan TM, Trent JM (1991) Development and characterization of a melphalan-resistant human multiple myeloma cell line. Cancer Res 51:995–1002

    Google Scholar 

  5. Braakhuis BJ, van Dongen GA, Vermorken JB, Snow GB (1991) Preclinical in vivo activity of 2′,2′-difluorodeoxycytidine (gemcitabine) against human head and neck cancer. Cancer Res 51:211–214

    Google Scholar 

  6. Gandhi V, Plunkett W (1990) Modulatory activity of 2′,2′-difluorodeoxycytidine on the phosphorylation and cytotoxicity of arabinosyl nucleosides. Cancer Res 50:3675–3680

    Google Scholar 

  7. Gandhi V, Plunkett W (2001) Combination strategies for purine nucleoside analogs. Marcel Dekker, New York

  8. Gandhi V, Danhauser L, Plunkett W (1987) Separation of 1-beta-d-arabinofuranosylcytosine 5′-triphosphate and 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-triphosphate in human leukemia cells by high-pressure liquid chromatography. J Chromatogr 413:293–299

    Google Scholar 

  9. Gandhi V, Legha J, Chen F, Hertel LW, Plunkett W (1996) Excision of 2′,2′-difluorodeoxycytidine (gemcitabine) monophosphate residues from DNA. Cancer Res 56:4453–4459

    Google Scholar 

  10. Gazitt Y, Rothenberg ML, Hilsenbeck SG, Fey V, Thomas C, Montegomrey W (1998) Bcl-2 overexpression is associated with resistance to paclitaxel, but not gemcitabine, in multiple myeloma cells. Int J Oncol 13:839–848

    Google Scholar 

  11. Gazitt Y, Roodman D, Freytes C (2000) A phase I-II clinical trial with a combination of gemcitabine and paclitaxel for the treatment of refractory multiple myeloma patients (abstract no. 4984). Blood 96

  12. Goldman-Leikin RE, Salwen HR, Herst CV, Variakojis D, Bian M, Lebeau M, Selvanayagan P, Marder R, Anderson R, Weitzman S, Rosen ST (1980) Characterization of a novel myeloma cell line. J Lab Clin Invest 113:335–345

    Google Scholar 

  13. Gruber J, Geisen F, Sgonc R, Egle A, Villunger A, Boeck G, Konwalinka G, Greil R (1996) 2′,2′-Difluorodeoxycytidine (gemcitabine) induces apoptosis in myeloma cell lines resistant to steroids and 2-chlorodeoxyadenosine (2-CdA). Stem Cells 14:351–362

    Google Scholar 

  14. Grunewald R, Kantarjian H, Keating MJ, Abbruzzese J, Tarassoff P, Plunkett W (1990) Pharmacologically directed design of the dose rate and schedule of 2′,2′-difluorodeoxycytidine (gemcitabine) administration in leukemia. Cancer Res 50:6823–6826

    Google Scholar 

  15. Heinemann V, Hertel LW, Grindey GB, Plunkett W (1988) Comparison of the cellular pharmacokinetics and toxicity of 2′,2′- difluorodeoxycytidine and 1-beta-d-arabinofuranosylcytosine. Cancer Res 48:4024–4031

    Google Scholar 

  16. Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W (1990) Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′- difluorodeoxycytidine. Mol Pharmacol 38:567–572

    Google Scholar 

  17. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, Grindey GB (1990) Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′- deoxycytidine). Cancer Res 50:4417–4422

    Google Scholar 

  18. Hjertner O, Borset M, Waage A (1996) Comparison of the effects of 2-chlorodeoxyadenosine and melphalan in myeloma cell lines. Leuk Res 20:155–160

    Google Scholar 

  19. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51:6110–6117

    Google Scholar 

  20. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ (2003) Cancer statistics, 2003. CA Cancer J Clin 53:5–26

    Google Scholar 

  21. Katarjian H, Dreicer R, Barlogie B, Plunkett W, Alexanian R (1984) High-dose cytosine arabinoside in multiple myeloma. Eur J Cancer Clin Oncol 20:227–231

    Google Scholar 

  22. Kaye SB (1994) Gemcitabine: current status of phase I and II trials. J Clin Oncol 12:1527–1531

    Google Scholar 

  23. Kraut EH, Crowley JJ, Grever MR (1990) Phase II study of fludarabine phosphate in multiple myeloma. Invest New Drugs 8:199–200

    Google Scholar 

  24. Krenitsky TA, Tuttle JV, Koszalka GW, Chen IS, Beacham LM, Hideout JL, Elion GB (1976) Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem 251:4055–4061

    Google Scholar 

  25. Krett NL, Zell JL, Halgren RG, Pillay S, Traynor AE, Rosen ST (1997) Cyclic adenosine-3′,5′-monophosphate-mediated cytotoxicity in steroid sensitive and resistant myeloma. Clin Cancer Res 3:1781–1787

    Google Scholar 

  26. Lambe CU, Averett DR, Paff MT, Reardon JE, Wilson JG, Krenitsky TA (1995) 2-Amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res 55:3352–3356

    Google Scholar 

  27. Lewis RA, Link L (1989) Phosphorylation of arabinosyl guanine by a mitochondrial enzyme of bovine liver. Biochem Pharmacol 38:2001–2006

    Google Scholar 

  28. Lichman SM, Mittelman A, Budman DR, Puccio CA, Chun HG, Allen SL, Ahmed T, Arlin ZA (1991) Phase II trials of fludarabine phosphate in multiple myeloma using a loading dose and continuous infusion schedule. Leuk Lymphoma 6:61–63

    Google Scholar 

  29. Lund B, Kristjansen PE, Hansen HH (1993) Clinical and preclinical activity of 2′,2′-difluorodeoxycytidine (gemcitabine). Cancer Treat Rev 19:45–55

    Google Scholar 

  30. Meinhardt G, Grun G, Dayyani F, Emmerich B, Schmidmaier R (2003) Gemcitabine is a potent inducer of apoptosis in multiple myeloma cells in vitro and has synergistic effects with modulators of protein kinase C. Blood 102:933a

    Google Scholar 

  31. Moalli PA, Pillay S, Weiner D, Leikin R, Rosen ST (1992) A mechanism of resistance to glucocorticoids in multiple myeloma: transient expression of a truncated glucocorticoid receptor mRNA. Blood 79:213–222

    Google Scholar 

  32. Nabhan C, Krett N, Gandhi V, Rosen S (2001) Gemcitabine in hematologic malignancies. Curr Opin Oncol 13:514–521

    Google Scholar 

  33. Nabhan C, Gajria D, Krett NL, Gandhi V, Ghias K, Rosen ST (2002) Caspase activation is required for gemcitabine activity in multiple myeloma cell lines. Mol Cancer Ther 1:1221–1227

    Google Scholar 

  34. Nagourney RA, Evans SS, Messenger JC, Su YZ, Weisenthal LM (1993) 2 Chlorodeoxyadenosine activity and cross resistance patterns in primary cultures of human hematologic neoplasms. Br J Cancer 67:10–14

    Google Scholar 

  35. Offidani MA, Corvatta L, Marconi M, Malerba L, Olivieri A, Rupoli F, Alesiani F, Leoni P (2002) Gemcitabine alone or in combination with cisplatin in relapsed or refractory multiple myeloma. Leuk Lymphoma 43:1273–1279

    Google Scholar 

  36. Oken M (1992) New agents for the treatment of multiple myeloma and non-Hodgkin lymphoma. Cancer 70:946–948

    Google Scholar 

  37. Parker WB, Cheng YC (1987) Inhibition of DNA primase by nucleoside triphosphates and their arabinofuranosyl analogs. Mol Pharmacol 31:146–151

    Google Scholar 

  38. Plunkett W, Gandhi V (1997) Nucleoside analogs: cellular pharmacology, mechanisms of actions, and strategies for combination therapy. In: Cheson B, Keating MJ, Plunkett W (eds) Nucleoside analogs in cancer therapy. Marcel Dekker, New York, pp 1–36

  39. Plunkett W, Gandhi V (2001) Purine and pyrimidine nucleoside analogs. Elsevier Science, Amsterdam

  40. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V (1995) Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 22:3–10

    Google Scholar 

  41. Plunkett W, Huang P, Searcy CE, Gandhi V (1996) Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol 23:3–15

    Google Scholar 

  42. Rodriguez CO, Mitchell BS, Eriksson S, Gandhi V (2002) Arabinosylguanine is phosphorylated by both cytoplasmic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. Cancer Res 62:3100–3105

    Google Scholar 

  43. Shewach DS, Reynolds KK, Hertel L (1992) Nucleotide specificity of human deoxycytidine kinase. Mol Pharmacol 42:518–524

    Google Scholar 

  44. Spasokoukotskaja T, Arner ES, Brosjo O, Gunven P, Juliusson G, Liliemark J (1995) Expression of deoxycytidine kinase and phosphorylation of 2-chlorodeoxyadenosine in human normal and tumour cells and tissues. Eur J Cancer 31A:202–208

    Google Scholar 

  45. Tempero M, Plunkett W, Ruiz Van Haperen V, Hainsworth J, Hochster H, Lenzi R, Abbruzzese J (2003) Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol 21:3402–3408

    Google Scholar 

  46. Wang L, Karlsson A, Arner ES, Eriksson S (1993) Substrate specificity of mitochondrial 2′-deoxyguanosine kinase. Efficient phosphorylation of 2-chlorodeoxyadenosine. J Biol Chem 268:22847–22852

    Google Scholar 

  47. Weick JK, Crowley JJ, Hussein MA, Moore DF, Barlogie B (2002) The evaluation of gemcitabine in resistant or relapsing multiple myeloma, phase II: a Southwest Oncology Group study. Invest New Drugs 20:117–121

    Google Scholar 

  48. Xie C, Plunkett W (1995) Metabolism and actions of 2-chloro-9-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)-adenine in human lymphoblastoid cells. Cancer Res 55:2847–2852

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. William Dalton of the H. Lee Moffitt Cancer Center and Research Institution (Tampa, Fl.) for generously sharing the RPMI 8226 and the melphalan-resistant derivative LR5 MM cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Krett.

Additional information

This work was supported in part by grants CA57629 and CA85915 from the National Cancer Institute, Department of Health and Human Services and a Translational Research Award #6506-00 from the Leukemia and Lymphoma Society of America. Steven T. Rosen is the Dr. Ralph and Marion Falk Research Trust Translational Researcher of the Lymphoma Society of America.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krett, N.L., Ayres, M., Nabhan, C. et al. In vitro assessment of nucleoside analogs in multiple myeloma. Cancer Chemother Pharmacol 54, 113–121 (2004). https://doi.org/10.1007/s00280-004-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0777-2

Keywords

Navigation