Skip to main content

ADAM and ADAMTS Family of Metalloproteinases: Role in Cancer Progression and Acquisition of Hallmarks

  • Chapter
  • First Online:
Proteases in Human Diseases

Abstract

The adamalysins, which include the ADAMs and ADAMTSs, are multidomain, multifunctional proteins of the metzincin superfamily of zinc-dependent metalloproteinases that play a key role in extracellular matrix remodeling and regulation of the tissue microenvironment. While ADAMs are mostly membrane-anchored proteinases, the ADAMTSs are secreted proteinases and/or adhesion molecules. A major function of the ADAMs is ectodomain shedding of membrane-bound growth factors, receptors, cytokines, chemokines, and proteoglycans. The adamalysins are also involved in a multitude of biological processes including fertilization, organogenesis, hemostasis, cell adhesion, intracellular signaling, angiogenesis, and ECM assembly and turnover. These metalloproteinases exert both promoting and inhibitory effects on tumorigenesis and serve as biomarkers of cancer progression and prognosis. Dysregulated expression of adamalysins leads to acquisition of cancer hallmarks such as increased cell proliferation, apoptosis evasion, migration, neovascularization, invasion, and metastasis. In addition, aberrant expression of these proteases also results in drug resistance. Of late, the adamalysins have emerged as potential molecular targets for cancer therapeutics. This chapter summarizes current knowledge on the different types of ADAMs and ADAMTSs, their general structure, functions, role in cancer progression, and acquisition of major cancer hallmarks as well as their potential as diagnostic and prognostic aids and therapeutic targets based on available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nature Rev Cancer 8:929–941

    Article  CAS  Google Scholar 

  5. Cal S, Lopez-Otin C (2015) ADAMTS proteases and cancer. Matrix Biol 44–46:77–85

    Article  PubMed  CAS  Google Scholar 

  6. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circul Res 92:827–839

    Article  CAS  Google Scholar 

  9. Alexius-Lindgren M, Andersson E, Lindstedt I, Engstrom W (2014) The RECK gene and biological malignancy—its significance in angiogenesis and inhibition of matrix metalloproteinases. Anticancer Res 34:3867–3873

    CAS  PubMed  Google Scholar 

  10. Nagini S (2012) RECKing MMP: relevance of reversion-inducing cysteine-rich protein with kazal motifs as a prognostic marker and therapeutic target for cancer (a review). Anti-Cancer Agents Med Chem 12:718–725

    Article  CAS  Google Scholar 

  11. Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379

    Article  CAS  PubMed  Google Scholar 

  12. Turner SL, Blair-Zajdel ME, Bunning RA (2009) ADAMs and ADAMTSs in cancer. Brit J Biomed Sci 66:117–128

    Article  CAS  Google Scholar 

  13. Horiuchi K, Zhou HM, Kelly K, Manova K, Blobel CP (2005) Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283:459–471

    Article  CAS  PubMed  Google Scholar 

  14. Melenhorst WB, van den Heuvel MC, Timmer A, Huitema S, Bulthuis M, Timens W, van Goor H (2006) ADAM19 expression in human nephrogenesis and renal disease: associations with clinical and structural deterioration. Kidney Int 70:1269–1278

    Article  CAS  PubMed  Google Scholar 

  15. Haitchi HM, Powell RM, Shaw TJ, Howarth PH, Wilson SJ, Wilson DI, Holgate ST, Davies DE (2005) ADAM33 expression in asthmatic airways and human embryonic lungs. Am J Resp Crit Care Med 171:958–965

    Article  PubMed  Google Scholar 

  16. Asayesh A, Alanentalo T, Khoo NK, Ahlgren U (2005) Developmental expression of metalloproteases ADAM 9, 10, and 17 becomes restricted to divergent pancreatic compartments. Dev Dyn 232:1105–1114

    Article  CAS  PubMed  Google Scholar 

  17. Stanton H, Melrose J, Little CB, Fosang AJ (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta 1812:1616–1629

    Article  CAS  PubMed  Google Scholar 

  18. Kurohara K, Komatsu K, Kurisaki T, Masuda A, Irie N, Asano M, Sudo K, Nabeshima Y, Iwakura Y, Sehara-Fujisawa A (2004) Essential roles of Meltrin beta (ADAM19) in heart development. Dev Biol 267:14–28

    Article  CAS  PubMed  Google Scholar 

  19. Overall CM, Kleifeld O (2006) Tumour microenvironment- opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev Cancer 6:227–239

    Article  CAS  Google Scholar 

  20. Turker KS, Miles TS (1991) Threshold depolarization measurements in resting human motoneurones. J Neurosci Methods 39:103–107

    Article  CAS  PubMed  Google Scholar 

  21. van Goor H, Melenhorst WB, Turner AJ, Holgate ST (2009) Adamalysins in biology and disease. J Pathol 219:277–286

    Article  PubMed  CAS  Google Scholar 

  22. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    Article  CAS  PubMed  Google Scholar 

  23. Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10:654–659

    Article  CAS  PubMed  Google Scholar 

  24. Eto K, Huet C, Tarui T, Kupriyanov S, Liu HZ, Puzon-McLaughlin W, Zhang XP, Sheppard D, Engvall E, Takada Y (2002) Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm-egg binding and other cell interactions. J Biol Chem 277:17804–17810

    Article  CAS  PubMed  Google Scholar 

  25. Reiss K, Ludwig A, Saftig P (2006) Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther 111:985–1006

    Article  CAS  PubMed  Google Scholar 

  26. Huovila AP, Almeida EA, White JM (1996) ADAMs and cell fusion. Curr Opin Cell Biol 8:692–699

    Article  CAS  PubMed  Google Scholar 

  27. Stone AL, Kroeger M, Sang QX (1999) Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). J Protein Chem 18:447–465

    Article  CAS  PubMed  Google Scholar 

  28. Endres K, Anders A, Kojro E, Gilbert S, Fahrenholz F, Postina R (2003) Tumor necrosis factor-alpha converting enzyme is processed by proprotein-convertases to its mature form which is degraded upon phorbol ester stimulation. Eur J Biochem 270:2386–2393

    Article  CAS  PubMed  Google Scholar 

  29. Schlomann U, Wildeboer D, Webster A, Antropova O, Zeuschner D, Knight CG, Docherty AJ, Lambert M, Skelton L, Jockusch H, Bartsch JW (2002) The metalloprotease disintegrin ADAM8. Processing by autocatalysis is required for proteolytic activity and cell adhesion. J Biol Chem 277:48210–48219

    Article  CAS  PubMed  Google Scholar 

  30. Kaushal GP, Shah SV (2000) The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J Clin Invest 105:1335–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang BL, Hong W (1999) ADAMTS: a novel family of proteases with an ADAM protease domain and thrombospondin 1 repeats. FEBS Lett 445:223–225

    Article  CAS  PubMed  Google Scholar 

  32. Tan Ide A, Ricciardelli C, Russell DL (2013) The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. Int J Cancer 133:2263–2276

    Article  PubMed  CAS  Google Scholar 

  33. Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329

    Article  CAS  PubMed  Google Scholar 

  34. Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colige A, Ruggiero F, Vandenberghe I, Dubail J, Kesteloot F, Van Beeumen J, Beschin A, Brys L, Lapiere CM, Nusgens B (2005) Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J Biol Chem 280:34397–34408

    Article  CAS  PubMed  Google Scholar 

  36. Ham C, Levkau B, Raines EW, Herren B (2002) ADAM15 is an adherens junction molecule whose surface expression can be driven by VE-cadherin. Exp Cell Res 279:239–247

    Article  CAS  PubMed  Google Scholar 

  37. Lieber T, Kidd S, Young MW (2002) Kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev 16:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  CAS  PubMed  Google Scholar 

  39. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733

    Article  CAS  PubMed  Google Scholar 

  40. Weskamp G, Ford JW, Sturgill J, Martin S, Docherty AJ, Swendeman S, Broadway N, Hartmann D, Saftig P, Umland S, Sehara-Fujisawa A, Black RA, Ludwig A, Becherer JD, Conrad DH, Blobel CP (2006) ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nature Immunol 7:1293–1298

    Article  CAS  Google Scholar 

  41. Moss ML, Jin SL, Becherer JD, Bickett DM, Burkhart W, Chen WJ, Hassler D, Leesnitzer MT, McGeehan G, Milla M, Moyer M, Rocque W, Seaton T, Schoenen F, Warner J, Willard D (1997) Structural features and biochemical properties of TNF-alpha converting enzyme (TACE). J Neuroimmunol 72:127–129

    Article  CAS  PubMed  Google Scholar 

  42. Lemieux GA, Blumenkron F, Yeung N, Zhou P, Williams J, Grammer AC, Petrovich R, Lipsky PE, Moss ML, Werb Z (2007) The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10. J Biol Chem 282:14836–14844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng Y, Lee DY, Jiang L, Ma Z, Schachter SC, Lemere CA (2007) Huperzine A regulates amyloid precursor protein processing via protein kinase C and mitogen-activated protein kinase pathways in neuroblastoma SK-N-SH cells over-expressing wild type human amyloid precursor protein 695. Neuroscience 150:386–395

    Article  CAS  PubMed  Google Scholar 

  44. Groot AJ, Vooijs MA (2012) The role of Adams in Notch signaling. Adv Exp Med Biol 727:15–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Shea C, McKie N, Buggy Y, Duggan C, Hill AD, McDermott E, O’Higgins N, Duffy MJ (2003) Expression of ADAM-9 mRNA and protein in human breast cancer. Int J Cancer 105:754–761

    Article  PubMed  CAS  Google Scholar 

  46. Fritzsche FR, Wassermann K, Jung M, Tolle A, Kristiansen I, Lein M, Johannsen M, Dietel M, Jung K, Kristiansen G (2008) ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression. BMC Cancer 8:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fritzsche FR, Jung M, Tolle A, Wild P, Hartmann A, Wassermann K, Rabien A, Lein M, Dietel M, Pilarsky C, Calvano D, Grutzmann R, Jung K, Kristiansen G (2008) ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur Urol 54:1097–1106

    Article  CAS  PubMed  Google Scholar 

  48. Wu X, Tang H, Liu G, Wang H, Shu J, Sun F (2016) miR-448 suppressed gastric cancer proliferation and invasion by regulating ADAM10. Tumour Biol J Int Soc Onco Dev Biol Med (in press)

    Google Scholar 

  49. McGowan PM, McKiernan E, Bolster F, Ryan BM, Hill AD, McDermott EW, Evoy D, O’Higgins N, Crown J, Duffy MJ (2008) ADAM-17 predicts adverse outcome in patients with breast cancer. Ann Oncol 19:1075–1081

    Article  CAS  PubMed  Google Scholar 

  50. Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M, Kimura EY, Bechet S, Dumas G, Brissard M, Merle-Beral H, Yamamoto M, Dighiero G, Davi F, French Cooperative Group on CLL (2005) The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 106:650–657

    Google Scholar 

  51. Wagstaff L, Kelwick R, Decock J, Edwards DR (2011) The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Front Biosci 16:1861–1872

    Article  CAS  Google Scholar 

  52. Braconi C, Meng F, Swenson E, Khrapenko L, Huang N, Patel T (2009) Candidate therapeutic agents for hepatocellular cancer can be identified from phenotype-associated gene expression signatures. Cancer 115:3738–3748

    Article  CAS  PubMed  Google Scholar 

  53. Porter S, Scott SD, Sassoon EM, Williams MR, Jones JL, Girling AC, Ball RY, Edwards DR (2004) Dysregulated expression of adamalysin-thrombospondin genes in human breast carcinoma. Clin Cancer Res 10:2429–2440

    Article  CAS  PubMed  Google Scholar 

  54. Heighway J, Knapp T, Boyce L, Brennand S, Field JK, Betticher DC, Ratschiller D, Gugger M, Donovan M, Lasek A, Rickert P (2002) Expression profiling of primary non-small cell lung cancer for target identification. Oncogene 21:7749–7763

    Article  CAS  PubMed  Google Scholar 

  55. Dunn JR, Reed JE, du Plessis DG, Shaw EJ, Reeves P, Gee AL, Warnke P, Walker C (2006) Expression of ADAMTS-8, a secreted protease with antiangiogenic properties, is downregulated in brain tumours. Brit J Cancer 94:1186–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Du W, Wang S, Zhou Q, Li X, Chu J, Chang Z, Tao Q, Ng EK, Fang J, Sung JJ, Yu J (2013) ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer. Oncogene 32:3319–3328

    Article  CAS  PubMed  Google Scholar 

  57. Viloria CG, Obaya AJ, Moncada-Pazos A, Llamazares M, Astudillo A, Capella G, Cal S, Lopez-Otin C (2009) Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. Cancer Res 69:4926–4934

    Article  CAS  PubMed  Google Scholar 

  58. Porter S, Span PN, Sweep FC, Tjan-Heijnen VC, Pennington CJ, Pedersen TX, Johnsen M, Lund LR, Romer J, Edwards DR (2006) ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. Int J Cancer 118:1241–1247

    Article  CAS  PubMed  Google Scholar 

  59. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  CAS  Google Scholar 

  60. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Z, Zhang W, Shao Y, Zhang C, Wu Q, Yang H, Wan X, Zhang J, Guan M, Wan J, Yu B (2010) High-resolution melting analysis of ADAMTS18 methylation levels in gastric, colorectal and pancreatic cancers. Med Oncol 27:998–1004

    Article  PubMed  CAS  Google Scholar 

  62. Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    Article  CAS  PubMed  Google Scholar 

  63. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  CAS  PubMed  Google Scholar 

  64. Liu R, Gu J, Jiang P, Zheng Y, Liu X, Jiang X, Huang E, Xiong S, Xu F, Liu G, Ge D, Chu Y (2015) DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res 21:854–863

    Article  CAS  PubMed  Google Scholar 

  65. Felli N, Felicetti F, Lustri AM, Errico MC, Bottero L, Cannistraci A, De Feo A, Petrini M, Pedini F, Biffoni M, Alvino E, Negrini M, Ferracin M, Mattia G, Care A (2013) miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS ONE 8:e56824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito K, Okamoto I, Araki N, Kawano Y, Nakao M, Fujiyama S, Tomita K, Mimori T, Saya H (1999) Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of beta-catenin from cell-cell contacts. Oncogene 18:7080–7090

    Article  CAS  PubMed  Google Scholar 

  67. Maretzky T, Reiss K, Ludwig A, Buchholz J, Scholz F, Proksch E, de Strooper B, Hartmann D, Saftig P (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci USA 102:9182–9187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96:5522–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lubke T, Lena Illert A, von Figura K, Saftig P (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    Article  CAS  PubMed  Google Scholar 

  70. Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S (1999) Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283:91–94

    Article  CAS  PubMed  Google Scholar 

  71. Taylor KL, Henderson AM, Hughes CC (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 64:372–383

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Q, Thomas SM, Lui VW, Xi S, Siegfried JM, Fan H, Smithgall TE, Mills GB, Grandis JR (2006) Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Proc Natl Acad Sci USA 103:6901–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. el Akool S, Gauer S, Osman B, Doller A, Schulz S, Geiger H, Pfeilschifter J, Eberhardt W (2012) Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 83:286–295

    Article  CAS  Google Scholar 

  74. Mitsui Y, Mochizuki S, Kodama T, Shimoda M, Ohtsuka T, Shiomi T, Chijiiwa M, Ikeda T, Kitajima M, Okada Y (2006) ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res 66:9913–9920

    Article  CAS  PubMed  Google Scholar 

  75. Kuno K, Bannai K, Hakozaki M, Matsushima K, Hirose K (2004) The carboxyl-terminal half region of ADAMTS-1 suppresses both tumorigenicity and experimental tumor metastatic potential. Biochem Biophys Res Commun 319:1327–1333

    Article  CAS  PubMed  Google Scholar 

  76. Hamada S, Satoh K, Fujibuchi W, Hirota M, Kanno A, Unno J, Masamune A, Kikuta K, Kume K, Shimosegawa T (2012) MiR-126 acts as a tumor suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res 10:3–10

    Article  CAS  PubMed  Google Scholar 

  77. Chang L, Gong F, Cui Y (2015) RNAi-mediated A disintegrin and metalloproteinase 9 gene silencing inhibits the tumor growth of non-small lung cancer in vitro and in vivo. Mol Med Rep 12:1197–1204

    CAS  PubMed  Google Scholar 

  78. Zhang W, Liu S, Liu K, Ji B, Wang Y, Liu Y (2014) Knockout of ADAM10 enhances sorafenib antitumor activity of hepatocellular carcinoma in vitro and in vivo. Oncol Rep 32:1913–1922

    CAS  PubMed  Google Scholar 

  79. Bouchet S, Tang R, Fava F, Legrand O, Bauvois B (2014) Targeting CD13 (aminopeptidase-N) in turn downregulates ADAM17 by internalization in acute myeloid leukaemia cells. Oncotarget 5:8211–8222

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu YJ, Xu Y, Yu Q (2006) Full-length ADAMTS-1 and the ADAMTS-1 fragments display pro- and antimetastatic activity, respectively. Oncogene 25:2452–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Obika M, Ogawa H, Takahashi K, Li J, Hatipoglu OF, Cilek MZ, Miyoshi T, Inagaki J, Ohtsuki T, Kusachi S, Ninomiya Y, Hirohata S (2012) Tumor growth inhibitory effect of ADAMTS1 is accompanied by the inhibition of tumor angiogenesis. Cancer Sci 103:1889–1897

    Article  CAS  PubMed  Google Scholar 

  82. Herren B, Raines EW, Ross R (1997) Expression of a disintegrin-like protein in cultured human vascular cells and in vivo. FASEB J 11:173–180

    CAS  PubMed  Google Scholar 

  83. Horiuchi K, Weskamp G, Lum L, Hammes HP, Cai H, Brodie TA, Ludwig T, Chiusaroli R, Baron R, Preissner KT, Manova K, Blobel CP (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol 23:5614–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Trochon-Joseph V, Martel-Renoir D, Mir LM, Thomaidis A, Opolon P, Connault E, Li H, Grenet C, Fauvel-Lafeve F, Soria J, Legrand C, Soria C, Perricaudet M, Lu H (2004) Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res 64:2062–2069

    Article  CAS  PubMed  Google Scholar 

  85. Hou Y, Chu M, Cai Y, Lei J, Chen Y, Zhu R, Gong X, Ma X, Jin J (2015) Antitumor and anti-angiogenic activity of the recombinant human disintegrin domain of A disintegrin and metalloproteinase 15. Mol Med Rep 12:2360–2366

    CAS  PubMed  Google Scholar 

  86. Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M, Iruela-Arispe ML (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274:23349–23357

    Article  CAS  PubMed  Google Scholar 

  87. Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD (1999) Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100:1423–1431

    Article  CAS  PubMed  Google Scholar 

  88. Lawler J (2000) The functions of thrombospondin-1 and-2. Curr Opin Cell Biiol 12:634–640

    Article  CAS  Google Scholar 

  89. Luque A, Carpizo DR, Iruela-Arispe ML (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 278:23656–23665

    Article  CAS  PubMed  Google Scholar 

  90. Dubail J, Kesteloot F, Deroanne C, Motte P, Lambert V, Rakic JM, Lapiere C, Nusgens B, Colige A (2010) ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity. Cell Mol Life Sci 67:4213–4232

    Article  CAS  PubMed  Google Scholar 

  91. Kumar S, Sharghi-Namini S, Rao N, Ge R (2012) ADAMTS5 functions as an anti-angiogenic and anti-tumorigenic protein independent of its proteoglycanase activity. Am J Pathol 181:1056–1068

    Article  CAS  PubMed  Google Scholar 

  92. Koo BH, Coe DM, Dixon LJ, Somerville RP, Nelson CM, Wang LW, Young ME, Lindner DJ, Apte SS (2010) ADAMTS9 is a cell-autonomously acting, anti-angiogenic metalloprotease expressed by microvascular endothelial cells. Am J Pathol 176:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kelwick R, Wagstaff L, Decock J, Roghi C, Cooley LS, Robinson SD, Arnold H, Gavrilovic J, Jaworski DM, Yamamoto K, Nagase H, Seubert B, Kruger A, Edwards DR (2015) Metalloproteinase-dependent and -independent processes contribute to inhibition of breast cancer cell migration, angiogenesis and liver metastasis by a disintegrin and metalloproteinase with thrombospondin motifs-15. Int J Cancer 136:E14–E26

    Article  CAS  PubMed  Google Scholar 

  94. Iseri OD, Kars MD, Arpaci F, Gunduz U (2010) Gene expression analysis of drug-resistant MCF-7 cells: implications for relation to extracellular matrix proteins. Cancer Chemother Pharmacol 65:447–455

    Article  CAS  PubMed  Google Scholar 

  95. Xu K, Liang X, Shen K, Sun L, Cui D, Zhao Y, Tian J, Ni L, Liu J (2012) MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17. Exp Cell Res 318:2168–2177

    Article  CAS  PubMed  Google Scholar 

  96. Wang XJ, Feng CW, Li M (2013) ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3K/Akt pathway. Mol Cell Biochem 380:57–66

    Article  CAS  PubMed  Google Scholar 

  97. Wang R, Ye X, Bhattacharya R, Boulbes DR, Fan F, Xia L, Ellis LM (2016) A Disintegrin and Metalloproteinase Domain 17 regulates colorectal cancer stem cells and chemosensitivity via Notch1 signaling. Stem Cells Transl Med 5:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu L, Liu N, Han Y, Xie C, Li Q, Wang E (2014) ADAM10 regulates proliferation, invasion, and chemoresistance of bladder cancer cells. Tumour Biol 35:9263–9268

    Article  CAS  PubMed  Google Scholar 

  99. Fridrichova I, Smolkova B, Kajabova V, Zmetakova I, Krivulcik T, Mego M, Cierna Z, Karaba M, Benca J, Pindak D, Bohac M, Repiska V, Danihel L (2015) CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. J Lab Clin Med 165:717–730

    CAS  Google Scholar 

  100. Chen J, Zhang C, Xu X, Zhu X, Dai D (2015) Downregulation of A disintegrin and metallopeptidase with thrombospondin motif type 1 by DNA hypermethylation in human gastric cancer. Mol Med Rep 12:2487–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Peng L, Yang Z, Tan C, Ren G, Chen J (2013) Epigenetic inactivation of ADAMTS9 via promoter methylation in multiple myeloma. Mol Med Rep 7:1055–1061

    CAS  PubMed  Google Scholar 

  102. Choi GC, Li J, Wang Y, Li L, Zhong L, Ma B, Su X, Ying J, Xiang T, Rha SY, Yu J, Sung JJ, Tsao SW, Chan AT, Tao Q (2014) The metalloprotease ADAMTS8 displays antitumor properties through antagonizing EGFR-MEK-ERK signaling and is silenced in carcinomas by CpG methylation. Mol Cancer Res 12:228–238

    Article  CAS  PubMed  Google Scholar 

  103. Zhang C, Shao Y, Zhang W, Wu Q, Yang H, Zhong Q, Zhang J, Guan M, Yu B, Wan J (2010) High-resolution melting analysis of ADAMTS9 methylation levels in gastric, colorectal, and pancreatic cancers. Cancer Genet Cytogenet 196:38–44

    Article  CAS  PubMed  Google Scholar 

  104. Moncada-Pazos A, Obaya AJ, Fraga MF, Viloria CG, Capella G, Gausachs M, Esteller M, Lopez-Otin C, Cal S (2009) The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer. J Cell Sci 122:2906–2913

    Article  CAS  PubMed  Google Scholar 

  105. Alonso S, Gonzalez B, Ruiz-Larroya T, Duran Dominguez M, Kato T, Matsunaga A, Suzuki K, Strongin AY, Gimenez-Bonafe P, Perucho M (2015) Epigenetic inactivation of the extracellular matrix metallopeptidase ADAMTS19 gene and the metastatic spread in colorectal cancer. Clin Epigenet 7:124

    Article  CAS  Google Scholar 

  106. Lu Y, Chopp M, Zheng X, Katakowski M, Buller B, Jiang F (2013) MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells. Oncol Rep 29:67–72

    PubMed  Google Scholar 

  107. Jia AY, Castillo-Martin M, Bonal DM, Sanchez-Carbayo M, Silva JM, Cordon-Cardo C (2014) MicroRNA-126 inhibits invasion in bladder cancer via regulation of ADAM9. Brit J Cancer 110:2945–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35–40

    Article  CAS  PubMed  Google Scholar 

  109. Nyren-Erickson EK, Jones JM, Srivastava DK, Mallik S (2013) A disintegrin and metalloproteinase-12 (ADAM12): function, roles in disease progression, and clinical implications. Biochim Biophys Acta 1830:4445–4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fridman JS, Caulder E, Hansbury M, Liu X, Yang G, Wang Q, Lo Y, Zhou BB, Pan M, Thomas SM, Grandis JR, Zhuo J, Yao W, Newton RC, Friedman SM, Scherle PA, Vaddi K (2007) Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin Cancer Res 13:1892–1902

    Article  CAS  PubMed  Google Scholar 

  111. Giricz O, Calvo V, Peterson EA, Abouzeid CM, Kenny PA (2013) TACE-dependent TGFalpha shedding drives triple-negative breast cancer cell invasion. Int J Cancer 133:2587–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tape CJ, Willems SH, Dombernowsky SL, Stanley PL, Fogarasi M, Ouwehand W, McCafferty J, Murphy G (2011) Cross-domain inhibition of TACE ectodomain. Proc Natl Acad Sci USA 108:5578–5583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Richards FM, Tape CJ, Jodrell DI, Murphy G (2012) Anti-tumour effects of a specific anti-ADAM17 antibody in an ovarian cancer model in vivo. PloSOne 7:e40597

    Article  CAS  Google Scholar 

  114. Caiazza F, McGowan PM, Mullooly M, Murray A, Synnott N, O’Donovan N, Flanagan L, Tape CJ, Murphy G, Crown J, Duffy MJ (2015) Targeting ADAM-17 with an inhibitory monoclonal antibody has antitumour effects in triple-negative breast cancer cells. Brit J Cancer 112:1895–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen LL, Fan GQ, Zhang ZY, Zhang BY, Yan ZL, Li HJ, Luo JP, Chen C, Yao Y, Xu KL, Li ZY (2015) Effect of ADAM10 Inhibitor GI254023X on proliferation and apoptosis of multiple myeloma H929 cells and its possible mechanisms. J Exp Hematol 23:1628–1632

    CAS  Google Scholar 

  116. Ma S, Xu J, Wang X, Wu QY, Cao J, Li ZY, Zeng LY, Chen C, Xu KL (2015) Effect of ADAM10 Inhibitor GI254023X on proliferation and apoptosis of acute T-lymphoblastic leukemia Jurkat cells in vitro and its possible mechanisms. J Exp Hematol 23:950–955

    CAS  Google Scholar 

  117. Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E, Lo Y, Baribaud F, Mikami I, Reguart N, Yang G, Li Y, Yao W, Vaddi K, Gazdar AF, Friedman SM, Jablons DM, Newton RC, Fridman JS, Minna JD, Scherle PA (2006) Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Witters L, Scherle P, Friedman S, Fridman J, Caulder E, Newton R, Lipton A (2008) Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor. Cancer Res 68:7083–7089

    Article  CAS  PubMed  Google Scholar 

  119. Wiernik A, Foley B, Zhang B, Verneris MR, Warlick E, Gleason MK, Ross JA, Luo X, Weisdorf DJ, Walcheck B, Vallera DA, Miller JS (2013) Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin Cancer Res 19:3844–3855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kamarajan P, Shin JM, Qian X, Matte B, Zhu JY, Kapila YL (2013) ADAM17-mediated CD44 cleavage promotes orasphere formation or stemness and tumorigenesis in HNSCC. Cancer Med 2:793–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nishimura H, Kim E, Nakanishi T, Baba T (2004) Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J Biol Chem 279:34957–34962

    Article  CAS  PubMed  Google Scholar 

  122. Wysocki R, Clemens S, Augustyniak D, Golik P, Maciaszczyk E, Tamas MJ, Dziadkowiec D (2003) Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p. Biochem Biophys Res Commun 304:293–300

    Article  CAS  PubMed  Google Scholar 

  123. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356:248–252

    Article  CAS  PubMed  Google Scholar 

  124. Gupta SK, Alves K, Palladino LO, Mark GE, Hollis GF (1996) Molecular cloning of the human fertilin beta subunit. Biochem Biophys Res Commun 224:318–326

    Article  CAS  PubMed  Google Scholar 

  125. Puente XS, Gutierrez-Fernandez A, Ordonez GR, Hillier LW, Lopez-Otin C (2005) Comparative genomic analysis of human and chimpanzee proteases. Genomics 86:638–647

    Article  CAS  PubMed  Google Scholar 

  126. Bates EE, Fridman WH, Mueller CG (2002) The ADAMDEC1 (decysin) gene structure: evolution by duplication in a metalloprotease gene cluster on chromosome 8p12. Immunogenetics 54:96–105

    Article  CAS  PubMed  Google Scholar 

  127. Oh J, Woo JM, Choi E, Kim T, Cho BN, Park ZY, Kim YC, Kim DH, Cho C (2005) Molecular, biochemical, and cellular characterization of epididymal ADAMs, ADAM7 and ADAM28. Biochem Biophys Res Commun 331:1374–1383

    Article  CAS  PubMed  Google Scholar 

  128. Wildeboer D, Naus S, Amy Sang QX, Bartsch JW, Pagenstecher A (2006) Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol Exp Neurol 65:516–527

    Article  CAS  PubMed  Google Scholar 

  129. Shintani Y, Higashiyama S, Ohta M, Hirabayashi H, Yamamoto S, Yoshimasu T, Matsuda H, Matsuura N (2004) Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res 64:4190–4196

    Article  CAS  PubMed  Google Scholar 

  130. Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P (2000) Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275:15490–15497

    Article  CAS  PubMed  Google Scholar 

  131. Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P (2001) Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knauper V, Docherty AJ, Murphy G (2000) The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett 473:275–279

    Article  CAS  PubMed  Google Scholar 

  133. Emi M, Katagiri T, Harada Y, Saito H, Inazawa J, Ito I, Kasumi F, Nakamura Y (1993) A novel metalloprotease/disintegrin-like gene at 17q21.3 is somatically rearranged in two primary breast cancers. Nature Genet 5:151–157

    Article  CAS  PubMed  Google Scholar 

  134. Kveiborg M, Frohlich C, Albrechtsen R, Tischler V, Dietrich N, Holck P, Kronqvist P, Rank F, Mercurio AM, Wewer UM (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754–4761

    Article  CAS  PubMed  Google Scholar 

  135. Kuefer R, Day KC, Kleer CG, Sabel MS, Hofer MD, Varambally S, Zorn CS, Chinnaiyan AM, Rubin MA, Day ML (2006) ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia 8:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Karkkainen I, Karhu R, Huovila AP (2000) Assignment of the ADAM15 gene to human chromosome band 1q21.3 by in situ hybridization. Cytogenet Cell Genet 88:206–207

    Article  CAS  PubMed  Google Scholar 

  137. Wei S, Kashiwagi M, Kota S, Xie Z, Nagase H, Brew K (2005) Reactive site mutations in tissue inhibitor of metalloproteinase-3 disrupt inhibition of matrix metalloproteinases but not tumor necrosis factor-alpha-converting enzyme. J Biol Chem 280:32877–32882

    Article  CAS  PubMed  Google Scholar 

  138. Frayne J, Hurd EA, Hall L (2002) Human tMDC III: a sperm protein with a potential role in oocyte recognition. Mol Human Reprod 8:817–822

    Article  CAS  Google Scholar 

  139. Hooft van Huijsduijnen R (1998) ADAM 20 and 21; two novel human testis-specific membrane metalloproteases with similarity to fertilin-alpha. Gene 206:273–282

    Article  CAS  PubMed  Google Scholar 

  140. Sagane K, Ohya Y, Hasegawa Y, Tanaka I (1998) Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem J 334:93–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tyan YC, Yang MH, Chen SC, Jong SB, Chen WC, Yang YH, Chung TW, Liao PC (2011) Urinary protein profiling by liquid chromatography/tandem mass spectrometry: ADAM28 is overexpressed in bladder transitional cell carcinoma. Rapid Commun Mass Spectr 25:2851–2862

    Article  CAS  Google Scholar 

  142. Ohtsuka T, Shiomi T, Shimoda M, Kodama T, Amour A, Murphy G, Ohuchi E, Kobayashi K, Okada Y (2006) ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int J Cancer 118:263–273

    Article  CAS  PubMed  Google Scholar 

  143. Wang F, Xu R, Zhu P, Hu J, Ying B, Zhao S, Li C (2001) Preliminarily functional analysis of a cloned novel human gene ADAM29. Life Sci 44:392–399

    Article  CAS  Google Scholar 

  144. Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, Qin W, Hou X, Wang C, Bao Y, Xiang K, Jia W (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS ONE 4:e7643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Choi I, Woo JM, Hong S, Jung YK, Kim DH, Cho C (2003) Identification and characterization of ADAM32 with testis-predominant gene expression. Gene 304:151–162

    Article  CAS  PubMed  Google Scholar 

  146. Yoshinaka T, Nishii K, Yamada K, Sawada H, Nishiwaki E, Smith K, Yoshino K, Ishiguro H, Higashiyama S (2002) Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene 282:227–236

    Article  CAS  PubMed  Google Scholar 

  147. Xiao S, Li Y, Li T, Chen M, Xu Y, Wen Y, Zhou C (2014) Evidence for decreased expression of ADAMTS-1 associated with impaired oocyte quality in PCOS patients. J Clin Endocrinol Metab 99:E1015–E1021

    Article  CAS  PubMed  Google Scholar 

  148. Freitas VM, do Amaral JB, Silva TA, Santos ES, Mangone FR, Pinheiro Jde J, Jaeger RG, Nagai MA, Machado-Santelli GM (2013) Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion. Mol Cancer 12:2

    Google Scholar 

  149. Colige A, Sieron AL, Li SW, Schwarze U, Petty E, Wertelecki W, Wilcox W, Krakow D, Cohn DH, Reardon W, Byers PH, Lapiere CM, Prockop DJ, Nusgens BV (1999) Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Hum Genet 65:308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppanen VM, Holopainen T, Kivela R, Ortega S, Karpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129:1962–1971

    Article  CAS  PubMed  Google Scholar 

  151. Kelwick R, Desanlis I, Wheeler GN, Edwards DR (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 16:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Gao G, Westling J, Thompson VP, Howell TD, Gottschall PE, Sandy JD (2002) Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation. J Biol Chem 277:11034–11041

    Article  CAS  PubMed  Google Scholar 

  153. Foulcer SJ, Nelson CM, Quintero MV, Kuberan B, Larkin J, Dours-Zimmermann MT, Zimmermann DR, Apte SS (2014) Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5. J Biol Chem 289:27859–27873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Verma P, Dalal K (2011) ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem 112:3507–3514

    Article  CAS  PubMed  Google Scholar 

  155. Kintakas C, McCulloch DR (2011) Emerging roles for ADAMTS5 during development and disease. Matrix Biol 30:311–317

    Article  CAS  PubMed  Google Scholar 

  156. Wu W, Zhou Y, Li Y, Li J, Ke Y, Wang Y, Zheng J (2015) Association between plasma ADAMTS-7 levels and ventricular remodeling in patients with acute myocardial infarction. Eur J Med Res 20:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Pu X, Xiao Q, Kiechl S, Chan K, Ng FL, Gor S, Poston RN, Fang C, Patel A, Senver EC, Shaw-Hawkins S, Willeit J, Liu C, Zhu J, Tucker AT, Xu Q, Caulfield MJ, Ye S (2013) ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet 92:366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lo PH, Lung HL, Cheung AK, Apte SS, Chan KW, Kwong FM, Ko JM, Cheng Y, Law S, Srivastava G, Zabarovsky ER, Tsao SW, Tang JC, Stanbridge EJ, Lung ML (2010) Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. Cancer Res 70:5567–5576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR, Apte SS (2011) ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem 286:17156–17167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cal S, Arguelles JM, Fernandez PL, Lopez-Otin C (2001) Identification, characterization, and intracellular processing of ADAM-TS12, a novel human disintegrin with a complex structural organization involving multiple thrombospondin-1 repeats. J Biol Chem 276:17932–17940

    Article  CAS  PubMed  Google Scholar 

  161. Llamazares M, Obaya AJ, Moncada-Pazos A, Heljasvaara R, Espada J, Lopez-Otin C, Cal S (2007) The ADAMTS12 metalloproteinase exhibits anti-tumorigenic properties through modulation of the Ras-dependent ERK signalling pathway. J Cell Sci 120:3544–3552

    Article  CAS  PubMed  Google Scholar 

  162. Furlan M, Lammle B (2001) Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome: the role of von Willebrand factor-cleaving protease. Best Pract Res Clin Haematol 14:437–454

    Article  CAS  PubMed  Google Scholar 

  163. Poonpet T, Honsawek S, Tammachote N, Kanitnate S, Tammachote R (2013) ADAMTS14 gene polymorphism associated with knee osteoarthritis in Thai women. Genet Mol Res 12:5301–5309

    Article  CAS  PubMed  Google Scholar 

  164. Joe B, Saad Y, Dhindaw S, Lee NH, Frank BC, Achinike OH, Luu TV, Gopalakrishnan K, Toland EJ, Farms P, Yerga-Woolwine S, Manickavasagam E, Rapp JP, Garrett MR, Coe D, Apte SS, Rankinen T, Perusse L, Ehret GB, Ganesh SK, Cooper RS, O’Connor A, Rice T, Weder AB, Chakravarti A, Rao DC, Bouchard C (2009) Positional identification of variants of Adamts16 linked to inherited hypertension. Hum Mol Genet 18:2825–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Morales J, Al-Sharif L, Khalil DS, Shinwari JM, Bavi P, Al-Mahrouqi RA, Al-Rajhi A, Alkuraya FS, Meyer BF, Al Tassan N (2009) Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet 85:558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xu B, Zhang L, Luo C, Qi Y, Cui Y, Ying JM, Zhang Q, Jin J (2015) Hypermethylation of the 16q23.1 tumor suppressor gene ADAMTS18 in clear cell renal cell carcinoma. Int J Mol Sci 16:1051–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Peluso I, Conte I, Testa F, Dharmalingam G, Pizzo M, Collin RW, Meola N, Barbato S, Mutarelli M, Ziviello C, Barbarulo AM, Nigro V, Melone MA, European Retinal Disease C, Simonelli F, Banfi S (2013) The ADAMTS18 gene is responsible for autosomal recessive early onset severe retinal dystrophy. Orphanet J Rare Dis 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  168. Knauff EA, Franke L, van Es MA, van den Berg LH, van der Schouw YT, Laven JS, Lambalk CB, Hoek A, Goverde AJ, Christin-Maitre S, Hsueh AJ, Wijmenga C, Fauser BC, Dutch POFC (2009) Genome-wide association study in premature ovarian failure patients suggests ADAMTS19 as a possible candidate gene. Hum Reprod 24:2372–2378

    Article  CAS  PubMed  Google Scholar 

  169. Llamazares M, Cal S, Quesada V, Lopez-Otin C (2003) Identification and characterization of ADAMTS-20 defines a novel subfamily of metalloproteinases-disintegrins with multiple thrombospondin-1 repeats and a unique GON domain. J Biol Chem 278:13382–13389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddavaram Nagini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mishra, R., Nagini, S. (2017). ADAM and ADAMTS Family of Metalloproteinases: Role in Cancer Progression and Acquisition of Hallmarks. In: Chakraborti, S., Chakraborti, T., Dhalla, N. (eds) Proteases in Human Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-3162-5_15

Download citation

Publish with us

Policies and ethics