Skip to main content

3D Bioprinting for Tissue Engineering

  • Chapter
  • First Online:
Clinical Regenerative Medicine in Urology

Abstract

Three-dimensional (3D) printing, also referred to as additive manufacturing (AM), is being used widely in diverse areas, including manufacturing, food, art, and architecture. Recently, regenerative medicine has adopted the technology to produce computer-designed cellular structures with cells, biomaterials, and signals for artificial tissue/organ regeneration. In this context, it is referred to as 3D bioprinting. To date, promising results have been reported, with the successful regeneration of artificial vessels, bones, and ear tissues. Moreover, bioprinting technology is a useful tool in biomedical applications, such as bio-chips, biosensors, and drug delivery systems. This chapter includes two main sections. The first briefly describes three bioprinting techniques: jetting-, extrusion-, and laser-based bioprinting. The techniques are compared in terms of working principles, components, advantages, disadvantages, and applicable bio-inks. The second section describes bioprinting’s application to tissue and biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMSC:

Bone marrow stem cells

CTZ:

Cetirizine HCl

DAT:

Decellularized adipose tissue

DPD:

Diphenylhydramine HCl

ECM:

Endothelial cell medium

FM:

Fibroblast medium

GelMA:

Gelatin methacrylate

GS:

Gentamicin sulfate

HA:

Hyaluronic acid

hASCs:

Human adipose tissue-derived mesenchymal stem cells

hCMPCs:

Human cardiac-derived cardiomyocyte progenitor cells

hESCs:

Human embryonic stem cells

HFF-1:

Neonatal human foreskin fibroblasts

hiPSCs:

Human induced pluripotent stem cells

HUVECs:

Human umbilical vein endothelial cells

HUVSMC:

Human umbilical vein smooth muscle cells

IBU:

Ibuprofen

ihMSCs:

Immortalized human mesenchymal stem cells

MSCs:

Mesenchymal stromal cells

MTX:

Methotrexate

MWNTs:

Multi walled carbon nanotubes

n-HA:

nano-Hydroxyapatite

NHDFs:

Normal human dermal fibroblasts

NHLFs:

Normal human lung fibroblasts

PCL:

Polycaprolactone

PDLLA:

Poly(d,l-lactic acid or d,l-lactide)

PDMS:

Polydimethylsiloxane

PLGA:

Poly(lactic-co-glycolic acid)

PLLA:

Poly-l-lactide

PU:

Polyurethane

PVA:

Polyvinyl alcohol

SCs:

Schwann cells

SF-PGA:

Silk fibroin-poly glutamic acid

SF-PLL:

Silk fibroin-poly-l-lysine

SMCM:

Smooth muscle cell medium

SMCs:

Smooth muscle cells

References

  1. Hart A, Smith JM, Skeans MA, Gustafson SK, Stewart DE, Cherikh WS, Wainright JL, Boyle G, Snyder JJ, Kasiske BL, Israni AK. OPTN/SRTR Annual Data Report 2014: Kidney. Am J Transplant. 2016;16(Suppl 2):11–46.

    Google Scholar 

  2. Nerem RM, Seliktar D. Vascular tissue engineering. Annu Rev Biomed Eng. 2001;3:225–43.

    Article  CAS  PubMed  Google Scholar 

  3. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):921–6.

    Article  CAS  PubMed  Google Scholar 

  4. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  PubMed  Google Scholar 

  5. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5:7974.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fuchiwaki Y, Tanaka M, Ooie T. Inexpensive and reliable monitoring of the microdeposition of biomolecules. Anal Lett. 2016;2719:921–8.

    Google Scholar 

  7. Scoutaris N, Snowden M, Douroumis D. Taste masked thin films printed by jet dispensing. Int J Pharm. 2015;494(2):619–22.

    Article  CAS  PubMed  Google Scholar 

  8. Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets. Lab Chip. 2007;7(9):1139–45.

    Article  CAS  PubMed  Google Scholar 

  9. Kador KE, Grogan SP, Dorthé EW, Venugopalan P, Malek MF, Goldberg JL. Control of retinal ganglion cell positioning and neurite growth: combining 3D printing with radial. Tissue Eng Part A. 2016;22:286–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34(1):130–9.

    Article  PubMed  Google Scholar 

  11. Binder KW. In situ bioprinting of the skin. ProQuest Dissertations Publishing. 2011;3458142.

    Google Scholar 

  12. Tan EYS, Yeong WY. Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique. Int J Bioprinting. 2015;1(1):49–56.

    Google Scholar 

  13. Yang SS, Choi WH, Song BR, Jin H, Lee SJ, Lee SH. Fabrication of an osteochondral graft with using a solid freeform fabrication system. Tissue Eng Regen Med. 2015;12(4):239–48.

    Article  CAS  Google Scholar 

  14. Luo Y, Zhai D, Huan Z, Zhu H, Xia L, Chang J. Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2015;7(43):24377–83.

    Article  CAS  PubMed  Google Scholar 

  15. Latza V, Guerette PA, Ding D, Amini S, Kumar A, Schmidt I. Multi-scale thermal stability of a hard thermoplastic protein-based material. Nat Commun. 2015;6:8313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Highley CB, Rodell CB, Burdick JA. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater. 2015;27(34):5075–9.

    Article  CAS  PubMed  Google Scholar 

  17. Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int. 2015;2015:1–7.

    Article  Google Scholar 

  18. Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7(4):045012.

    Article  PubMed  Google Scholar 

  20. Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K. Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10(9):1–15.

    Article  Google Scholar 

  21. Kucukgul C, Ozler SB, Inci I, Karakas E, Irmak S, Gozuacik D. 3D bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol Bioeng. 2015;112(4):811–21.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Jiang XN, Sun C. Micro-stereolithography of polymeric and ceramic microstructures. Sensors Actuators A Phys. 1999;77(2):149–56.

    Article  CAS  Google Scholar 

  23. Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Express. 2007;15(6):3426–36.

    Article  CAS  PubMed  Google Scholar 

  24. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent. 2016;11:760–7.

    Article  Google Scholar 

  25. Lan PX, Lee JW, Seol YJ, Cho DW. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med. 2009;20(1):271–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lee JW, Kang KS, Lee SH, Kim JY, Lee BK, Cho DW. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials. 2011;32(3):744–52.

    Article  CAS  PubMed  Google Scholar 

  27. Jansen J, Melchels FPW, Grijpma DW, Feijen J. Fumaric acid monoethyl ester-functionalized poly (D,L-lactide )/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering Scaffolds by stereolithography. Biomacromolecules. 2009;10(2):214–20.

    Article  CAS  PubMed  Google Scholar 

  28. Shanjani Y, Pan CC, Elomaa L, Yang Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication. 2015;7(4):045008.

    Article  CAS  PubMed  Google Scholar 

  29. Soman P, Kelber JA, Lee JW, Wright TN, Vecchio KS, Klemke RL. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness. Biomaterials. 2012;33(29):7064–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hribar KC, Meggs K, Liu J, Zhu W, Qu X, Chen S. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Sci Rep. 2015;5(October):17203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86(6):3124–30.

    Article  CAS  PubMed  Google Scholar 

  32. Au AK, Lee W, Folch A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip. 2014;14(7):1294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larson C, Shepher R. 3D bioprinting technologies for cellular engineering. In: Singh A, Gaharwar AK, editors. Microscale technologies for cell engineering. Cham: Springer; 2015.

    Google Scholar 

  34. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods. 2010;16(5):847–54.

    Article  CAS  PubMed  Google Scholar 

  35. Pagès E, Rémy M, Kériquel V, Correa MM, Guillotin B, Guillemot F. Creation of highly defined mesenchymal stem cell patterns in three dimensions by laser-assisted bioprinting. J Nanotechnol Eng Med. 2015;6(2):021005.

    Article  Google Scholar 

  36. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250–6.

    Article  CAS  PubMed  Google Scholar 

  37. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One. 2013;8(3):e57741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dinca V, Ranella A, Farsari M, Kafetzopoulos D, Dinescu M, Popescu A. Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer. Biomed Microdevices. 2008;10(5):719–25.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng GJ, Pirzada D, Cai M, Mohanty P, Bandyopadhyay A. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser. Mater Sci Eng C. 2005;25(4):541–7.

    Article  Google Scholar 

  40. Catros S, Fricain J-C, Guillotin B, Pippenger B, Bareille R, Remy M. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication. 2011;3:025001.

    Article  PubMed  Google Scholar 

  41. Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication. 2015;7(4):45011.

    Article  Google Scholar 

  42. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima D. Direct human cartilage repair using 3D bioprinting technology. Tissue Eng. 2012;18(11–12):1304–12.

    Article  CAS  Google Scholar 

  43. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10(9):1566–76.

    Article  CAS  PubMed  Google Scholar 

  44. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30.

    Article  CAS  PubMed  Google Scholar 

  45. Mapili G, Lu Y, Chen S, Roy K. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J Biomed Mater Res - Part B Appl Biomater. 2005;75(2):414–24.

    Article  PubMed  Google Scholar 

  46. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101(A(5)):1255–64.

    Article  PubMed  Google Scholar 

  47. Wang Z, Abdulla R, Parker B, Samanipour R. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication. 2015;7(4):1–29.

    Article  Google Scholar 

  48. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93–9.

    Article  PubMed  Google Scholar 

  49. Liu Tsang V. Chen a a, Cho LM, Jadin KD, Sah RL and DeLong S, fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 2007;21(3):790–801.

    Article  PubMed  Google Scholar 

  50. Weisman JA, Nicholson JC, Tappa K, Jammalamadaka U, Wilson CG, Mills D. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomedicine. 2015;10:357–70.

    PubMed  PubMed Central  Google Scholar 

  51. Hsieh FY, Lin HH, Hsu SH. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials. 2015;71:48–57.

    Article  CAS  PubMed  Google Scholar 

  52. Bajaj P, Marchwiany D, Duarte C, Bashir R. Patterned three-dimensional encapsulation of embryonic stem cells using Dielectrophoresis and Stereolithography. Adv Healthc Mater. 2013;2(3):450–8.

    Article  CAS  PubMed  Google Scholar 

  53. Catros S, Guillotin B, Bačáková M, Fricain JC, Guillemot F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl Surf Sci. 2011;257(12):5142–7.

    Article  CAS  Google Scholar 

  54. Jakab K, Norotte C, Damon B, Marga F, Neagu A, Besch-Williford CL. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. 2007;14(3):110306233438005.

    Article  Google Scholar 

  55. Irvine SA, Agrawal A, Lee BH, Chua HY, Low KY, Lau BC. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices. 2015;17(1):1–8.

    Article  CAS  Google Scholar 

  56. Duarte Campos DF, Blaeser A, Weber M, Jäkel J, Neuss S, Jahnen-Dechent W. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication. 2013;5(1):015003.

    Article  PubMed  Google Scholar 

  57. Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2013;5(1):015001.

    Article  PubMed  Google Scholar 

  58. Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6173–81.

    Article  CAS  PubMed  Google Scholar 

  59. Phamduy TB, Sweat RS, Azimi MS, Burow ME, Murfee WL, Chrisey DB. Printing cancer cells into intact microvascular networks: a model for investigating cancer cell dynamics during angiogenesis. Integr Biol (Camb). 2015;7:1068–78.

    Article  CAS  Google Scholar 

  60. Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules. 2011;12(5):1831–8.

    Article  CAS  PubMed  Google Scholar 

  61. Ronca A, Ambrosio L, Grijpma DW. Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013;9(4):5989–96.

    Article  CAS  PubMed  Google Scholar 

  62. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(7):768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sooppan R, Paulsen SJ, Han J, Ta AH, Dinh P, Gaffey AC. In vivo anastomosis and perfusion of a three-dimensionally-printed construct containing microchannel networks. Tissue Eng Part C Methods. 2016;22(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  64. Dolati F, Yu Y, Zhang Y, De Jesus AM, Sander EA, Ozbolat IT. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology. 2014;25(14):145101.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gao Q, He Y, Fu J, Liu A, Ma L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials. 2015;61:203–15.

    Article  CAS  PubMed  Google Scholar 

  66. Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G. Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng. 2014;7(3):460–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Roh H-S, Jung S-C, Kook M-S, Kim B-H. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering. Appl Surf Sci. 2016;388:321–30.

    Article  CAS  Google Scholar 

  68. Van Rie J, Declercq H, Van Hoorick J, Dierick M, Van Hoorebeke L, Cornelissen R. Cryogel-PCL combination scaffolds for bone tissue repair. J Mater Sci Mater Med. 2015;26(3):124.

    Article  Google Scholar 

  69. Izadifar Z, Chang T, Kulyk WM, Chen D, Eames BF. Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng Part C Methods. 2016;22(3):173–88.

    Article  CAS  PubMed  Google Scholar 

  70. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–9.

    Article  CAS  PubMed  Google Scholar 

  71. Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7(4):044102.

    Article  PubMed  Google Scholar 

  72. Gaetani R, Doevendans PA, Metz CHG, Alblas J, Messina E, Giacomello A. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33(6):1782–90.

    Article  CAS  PubMed  Google Scholar 

  73. Marchioli G, van Gurp L, van Krieken PP, Stamatialis D, Engelse M, van Blitterswijk CA. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7(2):025009.

    Article  CAS  PubMed  Google Scholar 

  74. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015;62:164–75.

    Article  CAS  PubMed  Google Scholar 

  75. Huang S, Yao B, Xie J, Fu X. 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater. 2016;32:170–7.

    Article  CAS  PubMed  Google Scholar 

  76. Chang R, Emami K, Wu H, Sun W. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication. 2010;2(4):045004.

    Article  PubMed  Google Scholar 

  77. Tourlomousis F, Chang RC. Numerical investigation of dynamic microorgan devices as drug screening platforms. Part I: macroscale modeling approach & validation. Biotechnol Bioeng. 2016;113(3):612–22.

    Article  CAS  PubMed  Google Scholar 

  78. Snyder J, Rin Son A, Hamid Q, Sun W. Fabrication of microfluidic manifold by precision extrusion deposition and replica molding for cell-laden device. J Manuf Sci Eng. 2015;138(4):041007.

    Article  Google Scholar 

  79. Drachuk I, Suntivich R, Calabrese R, Harbaugh S, Kelley-Loughnane N, Kaplan DL. Printed dual cell arrays for multiplexed sensing. ACS Biomater Sci Eng. 2015;1:287–94.

    Article  CAS  Google Scholar 

  80. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Control Release. 2015;217:308–14.

    Article  CAS  PubMed  Google Scholar 

  81. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.

    Article  CAS  PubMed  Google Scholar 

  82. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489–96.

    Article  CAS  PubMed  Google Scholar 

  83. Visser J, Peters B, Burger TJ, Boomstra J, Dhert WJA, Melchels FPW. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5(3):035007.

    Article  PubMed  Google Scholar 

  84. Sawkins MJ, Mistry P, Brown BN, Shakesheff KM, Bonassar LJ, Yang J. Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication. 2015;7(3):035004.

    Article  CAS  PubMed  Google Scholar 

  85. Ng WL, Yeong WY, Naing MW. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprinting. 2016;2 doi:10.18063/IJB.2016.01.009.

  86. Merceron TK, Burt M, Seol Y-J, Kang H-W, Lee SJ, Yoo JJ. A 3D bioprinted complex structure for engineering the muscle–tendon unit. Biofabrication. 2015;7(3):035003.

    Article  PubMed  Google Scholar 

  87. Owens CM, Marga F, Forgacs G, Heesch CM. Biofabrication and testing of a fully cellular nerve graft. Biofabrication. 2013;5(4):045007.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ling K. Bioprinting-based high-throughput fabrication of three-dimensional MCF-7 human breast cancer cellular spheroids. Engineering. 2015;1(2):269–74.

    Google Scholar 

  89. Duocastella M, Fernandez-Pradas JM, Morenza JL, Zafra D, Serra P. Novel laser printing technique for miniaturized biosensors preparation. Sensors Actuators B Chem. 2010;145(1):596–600.

    Article  CAS  Google Scholar 

  90. Lam CXF, Mo XM, Teoh SH, Hutmacher DW. Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C. 2002;20(1–2):49–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Wook Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Noh, S., Myung, N., Park, M., Kim, S., Zhang, SU., Kang, HW. (2018). 3D Bioprinting for Tissue Engineering. In: Kim, B. (eds) Clinical Regenerative Medicine in Urology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2723-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2723-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2722-2

  • Online ISBN: 978-981-10-2723-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics