Skip to main content

Salvia miltiorrhiza: A Medicinal Herb from Metabolites to Pathway Engineering

  • Chapter
  • First Online:
Medicinal Plants - Recent Advances in Research and Development

Abstract

The dried, red-colored roots of Salvia miltiorrhiza (Lamiaceae) also called “danshen” in colloquial language in China have been used in traditional Chinese medicine for thousands of years to treat hypertension and other cardiovascular ailments. The main constituents of danshen are hydrophilic phenolic acids and lipophilic tanshinones. The various uses of danshen in traditional as well as modern medicines have motivated an intensive research on compounds in S. miltiorrhiza. In recent years, more than 110 compounds have been isolated from S. miltiorrhiza and their structure was identified. Tanshinones and their derivatives have been demonstrated to possess properties of slowing down or curing various ailments related to cardiovascular, cerebrovascular, respiratory, liver, nervous system, cancer, Alzheimer’s, and Parkinson’s diseases. With the increasing demand of this herb, an unrestricted collection to supply raw materials and the extraction of its constituents have severely threatened the natural habitats of S miltiorrhiza. This has prompted the researchers to develop alternative strategies for metabolite production. Several in vitro methodologies have been established to generate callus, cell suspension culture, hairy roots, and plant regeneration. Different regulators and elicitors for plant growth have been employed to enhance levels of different constituents. The advent of sequencing technologies, whole genome, and expression data has helped to provide insights and identification of pathway genes involved in the biosynthesis. This book chapter gives a brief description of in vitro methodologies, use of different elicitors, gene functions, genetic modifications, expression profiling for a better understanding, and enhancement of the constituents in S. miltiorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

4CL:

4-Coumaroyl:CoA ligase

ABA:

Abscisic acid

AOPP:

L-a-aminooxy-beta-phenylpropionic acid

ATM:

Activation tagging mutagenesis

ATMT:

A. tumefaciens-mediated transformation

BA:

N6-benzyladenine

BABA:

β-Aminobutyric acid

C4H:

Cinnamic acid 4-hydroxylase

cDNA:

Complimentary DNA

COG:

Clusters of orthologous groups

CPS:

Copalyl diphosphate synthase

DMAPP:

Dimethylallyl diphosphate

DNA:

Deoxyribonucleic acid

DW:

Distilled water

DXS:

1-Deoxy-D-xylulose-5-phosphate synthase

FPP:

Farnesyl diphosphate

FPPS:

Farnesyl diphosphate synthase

GA3 :

Gibberellic acid

GC:

Gas chromatography

GC-MS:

Gas chromatography-mass spectrometry

g-DNA:

Genomic deoxyribonucleic acid

GGPP:

Geranylgeranyl diphosphate

GGPPS:

Geranylgeranyl diphosphate synthase

GPP:

Geranyl diphosphate

GPPS:

Geranyl diphosphate synthase

HDR:

1-Hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase

HMGR:

3-Hydroxy-3-methylglutaryl CoA reductase

HPLC:

High-performance liquid chromatography

HPPD:

4-Hydroxyphenylpyruvate dioxygenase

HPPR:

4-Hydroxyphenylpyruvate reductase

IDSs:

Isoprenyl diphosphate synthases

IPP:

Isopentenyl diphosphate

KS:

Kaurene synthase

LAB:

Lithospermic acid B

MeJA:

Methyl jasmonate

MEP:

2-C-Methyl-D-erythritol 4-phosphate

MS:

Murashige and Skoog

MVA:

Mevalonate

NAA:

1-Naphthaleneacetic acid

NR:

NCBI nonredundant

PAL:

Phenylalanine ammonia-lyase

PGRs:

Plant growth regulators

RA:

Rosmarinic acid

RACE:

Rapid amplification of cDNA ends

RAS:

Rosmarinic acid synthase

RDRs:

RNA-dependent RNA polymerases

ri:

Root inducing

RNA:

Ribonucleic acid

RNAi:

RNA interference

SA:

Salicylic acid

SEM:

Scanning electron microscope

TAT:

Tyrosine aminotransferase

T-DNA:

Transfer DNA

TDZ:

Thidiazuron

ti:

Tumor inducing

TLC:

Thin-layer chromatography

TPS:

Terpene synthases

UV-B:

Ultraviolet-B radiation

WPM:

Woody plant medium

YE:

Yeast extract

References

  • Ahn SY, Kim SK, Lee SH, Ahn SY, Kang SW, Chung JH, Kim SD, Lee BC (2010) Renoprotective effect of tanshinone IIA, an active component of Salvia miltiorrhiza, on rats with chronic kidney disease. Phytother Res 24(12):1886–1892. doi:10.1002/ptr.3347

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. doi:10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  • Bi W, Tian M, Row KH (2011) Extraction and concentration of tanshinones in Salvia miltiorrhiza Bunge by task-specific non-ionic surfactant assistance. Food Chem 126(4):1985–1990. doi:10.1016/j.foodchem.2010.12.059

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen F (2000) Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep 19(7):710–717. doi:10.1007/s002999900166

    Article  CAS  Google Scholar 

  • Chen H, Yuan JP, Chen F, Zhang YL, Song JY (1997) Tanshinone production in Ti-transformed Salvia miltiorrhiza cell suspension cultures. J Biotechnol 58(3):147–156, doi:S0168165697001442

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Chen F, Zhang YL, Song JY (1999) Production of lithospermic acid B and rosmarinic acid in hairy root cultures of Salvia miltiorrhiza. J Ind Microbiol Biotechnol 122(3):133–138. doi:10.1038/sj.jim.2900624

    Article  Google Scholar 

  • Chen W, Luo Y, Liu L, Zhou H, Xu B, Han X, Shen T, Liu Z, Lu Y, Huang S (2010) Cryptotanshinone inhibits cancer cell proliferation by suppressing mammalian target of rapamycin-mediated cyclin D1 expression and Rb phosphorylation. Cancer Prev Res (Phila) 3(8):1015–1025, doi:1940-6207.CAPR-10-0020

    Article  CAS  Google Scholar 

  • Cheng TO (2007) Cardiovascular effects of danshen. Int J Cardiol 121:9–22. doi:10.1016/j.ijcard.2007.01.004

    Article  PubMed  Google Scholar 

  • Cheng Q, Su P, Hu Y, He Y, Gao W, Huang L (2014) RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36(2):363–369. doi:10.1007/s10529-013-1358-4

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Huang L, Tang X, Zhao J (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38(4):2471–2478. doi:10.1007/s11033-010-0383-9

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Duan L, Jin B, Qian J, Xue Z, Shen G, Snyder JH, Song J, Chen S, Huang L, Peters RJ, Qi X (2015) Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza. Plant Physiol 169(3):1607–1618. doi:pp.15.00695

    Google Scholar 

  • Dai ZK, Qin JK, Huang JE, Luo Y, Xu Q, Zhao HL (2012) Tanshinone IIA activates calcium-dependent apoptosis signaling pathway in human hepatoma cells. J Nat Med 66(1):192–201. doi:10.1007/s11418-011-0576-0

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspensions cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  CAS  PubMed  Google Scholar 

  • Gao SL, Zhu DN, Cai ZH, Xu DR (1996) Autotetraploid plants from colchicine-treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tissue Org 47:73–77. doi:10.1007/BF02318968

    Article  CAS  Google Scholar 

  • Gautheret R (1939) Sur la possibilité de réaliser la culture indéfinie des tissues de tubercules de carotte. C R Soc Biol Paris 208:118–120

    Google Scholar 

  • Ge X, Wu J (2005a) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168(2):487–491. doi:10.1016/j.plantsci.2004.09.012

    Article  CAS  Google Scholar 

  • Ge X, Wu J (2005b) Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza by hairy roots by â-aminobutyric acid. Appl Microbiol Biotechnol 68(2):183–188. doi:10.1007/s00253-004-1873-2

    Article  CAS  PubMed  Google Scholar 

  • Goren R, Altman A, Giladi I (1979) Role of ethylene in abscisic acid-induced callus formation in Citrus Bud cultures. Plant Physiol 63(2):280–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Liu RB, Liaw SY, Chan HS, Tsay HS (2011) Enhanced tanshinone production in hairy roots of “Salvia miltiorrhiza Bunge” under the influence of plant growth regulators in liquid culture. Bot Stud 52(4):435–443

    CAS  Google Scholar 

  • Hao G, Shi R, Tao R, Fang Q, Jiang X, Ji H, Feng L, Huang L (2013) Cloning, molecular characterization and functional analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene for diterpenoid tanshinone biosynthesis in Salvia miltiorrhiza Bge. f. alba. Plant Physiol Biochem 70:21–32, doi:S0981-9428(13)00175-7

    Article  CAS  PubMed  Google Scholar 

  • Ho HS, Vishwakarma RK, Chen ECF, Tsay HS (2013) Activation tagging in Salvia miltiorrhiza can cause increased leaf size and accumulation of tanshinone I and IIA in its roots. Bot Stud 54(1):1–8

    Article  Google Scholar 

  • Hu Y, Zhang Z, Hu Z, Wu Y, Shen X, Zhang G, Zhou X (1992) Callus culture and bioactive ingredients of Salvia miltiorrhiza. Plant Physiol Commun 28(6):424–425

    Google Scholar 

  • Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24(5):693–701. doi:10.1046/j.1365-313x.2000.00915.x

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Liu D, Hu Z (2000) Effects of phytohormones on growth and content of depsides in Salvia miltiorrhiza suspension cells. Zhong Yao Cai 23(1):1–4

    CAS  PubMed  Google Scholar 

  • Huang B, Yi B, Duan Y, Sun L, Yu X, Guo J, Chen W (2008) Characterization and expression profiling of tyrosine aminotransferase gene from Salvia miltiorrhiza (Dan-shen) in rosmarinic acid biosynthesis pathway. Mol Biol Rep 35(4):601–612. doi:10.1007/s11033-007-9130-2

    Article  CAS  PubMed  Google Scholar 

  • Hung YC, Wang PW, Pan TL, Bazylak G, Leu YL (2009) Proteomic screening of antioxidant effects exhibited by radix Salvia miltiorrhiza aqueous extract in cultured rat aortic smooth muscle cells under homocysteine treatment. J Ethnopharmacol 124(3):463–474, doi:S0378-8741(09)00309-2

    Article  CAS  PubMed  Google Scholar 

  • Isacchi B, Fabbri V, Galeotti N, Bergonzi MC, Karioti A, Ghelardini C, Vannucchi MG, Bilia AR (2011) Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain. Eur J Pharm Sci 44(4):552–558, doi:S0928-0987(11)00338-1

    Article  CAS  PubMed  Google Scholar 

  • Jiao M, Cao R, Chen H, Hao W, Dong J (2012) Effects of salicylic acid on the synthesis of rosmarinic acid and related enzymes in the suspension cultures of Salvia miltiorrhiza. Shengwu Gongcheng Xuebao/Chinese. J Biotechnol 28(3):320–328

    CAS  Google Scholar 

  • Jin XQ, Chen ZW, Tan RH, Zhao SJ, Hu ZB (2012) Isolation and functional analysis of 4-coumarate: coenzyme A ligase gene promoters from Salvia miltiorrhiza. Biol Plant 56(2):261–268

    Article  CAS  Google Scholar 

  • Kai G, Liao P, Zhang T, Zhou W, Wang J, Xu H, Liu Y, Zhang L (2010) Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza. Biotechnol Bioproc Eng 15(2):236–245. doi:10.1007/s12257-009-0123-y

    Article  CAS  Google Scholar 

  • Kai G, Xu H, Zhou C, Liao P, Xiao J, Luo X, You L, Zhang L (2011) Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13(3):319–327. doi:10.1016/j.ymben.2011.02.003, doi:S1096-7176(11)00015-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kang DG, Oh H, Sohn EJ, Hur TY, Lee KC, Kim KJ, Kim TY, Lee HS (2004) Lithospermic acid B isolated from Salvia miltiorrhiza ameliorates ischemia/reperfusion-induced renal injury in rats. Life Sci 75(15):1801–1816. doi:10.1016/j.lfs.2004.02.034

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Jeong SJ, Kwon TR, Yun SM, Jung JH, Kim M, Lee HJ, Lee MH, Ko SG, Chen CY, Kim SH (2011) Cryptotanshinone enhances TNF-a-induced apoptosis in chronic myeloid leukemia KBM-5 cells. Apoptosis 16(7):696–706. doi:10.1007/s10495-011-0605-1

    Article  CAS  PubMed  Google Scholar 

  • Kinney AJ (1998) Manipulating flux through plant metabolic pathways. Curr Opin Plant Biol 1(2):173–178, doi:S1369-5266(98)80021-6

    Article  CAS  PubMed  Google Scholar 

  • Krajewska-Patan A, Dreger M, Gorska-Paukszta M, Moecisz A, Mielcarek S, Baraniak M, Buchwald W, Marecik R, Grajek W, Mrozikiewicz PM (2007) Salvia miltiorrhiza Bunge in vitro cultivation. Herb Pol 53(4):88–96

    CAS  Google Scholar 

  • Lee CY, Agrawal DC, Wang CS, Yu SM, Chen JJ, Tsay HS (2008) T-DNA activation tagging as a tool to isolate Salvia miltiorrhiza transgenic lines for higher yields of tanshinones. Planta Med 74(7):780–786. doi:10.1055/s-2008-1074527

    Article  CAS  PubMed  Google Scholar 

  • Lee SE, Jeong SI, Yang H, Jeong SH, Jang YP, Park CS, Kim J, Park YS (2012) Extract of Salvia miltiorrhiza (danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW264.7 macrophages. J Ethnopharmacol 139(2):541–548. doi:10.1016/j.jep.2011.11.046

    Article  PubMed  Google Scholar 

  • Lessard P (1996) Metabolic engineering: the concept coalesces. Nat Biotechnol 14(13):1654–1655. doi:10.1038/nbt1296-1654

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang ZZ (2009) Chemical composition, antimicrobial and antioxidant activities of the essential oil in leaves of Salvia miltiorrhiza Bunge. J Essent Oil Res 21(5):476–480. doi:10.1080/10412905.2009.9700222

    Article  CAS  Google Scholar 

  • Li TJ, Dong JE, Liang ZS, Shu ZM, Wan GW (2008) Distributional difference of fat-soluble compounds in the roots, stems, and leaves of four Salvia plants. Fen Zi Xi Bao Sheng Wu Xue Bao 41(1):44–52

    CAS  PubMed  Google Scholar 

  • Li J, Xu M, Fan Q, Xie X, Zhang Y, Mu D, Zhao P, Zhang B, Cao F, Wang Y, Jin F, Li Z (2011) Tanshinone IIA ameliorates seawater exposure-induced lung injury by inhibiting aquaporins (AQP) 1 and AQP5 expression in lung. Respir Physiol Neurobiol 176(1–2):39–49, doi:S1569-9048(11)00006-1

    Article  CAS  PubMed  Google Scholar 

  • Liu AH, Guo H, Ye M, Lin YH, Sun JH, Xu M, Guo DA (2007) Detection, characterization and identification of phenolic acids in danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J Chromatogr A 1161(1–2):170–182. doi:10.1016/j.chroma.2007.05.081, doi:S0021-9673(07)00986-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Liu HB, Xu J, Peng Y, Zhou JJ, Xiao PG (2010) Targets of danshen’s active components for activating blood circulation activities. Acta Phys -Chim Sin 26(1):199–205. doi:10.3866/PKU.WHXB20091222

    Google Scholar 

  • Luo X, Li K, Kai G, Chen S (2013) Biosynthesis of tanshinones and metabolic regulation in Danshen (Salvia miltiorrhiza). Asian J Chem 25(18):10028–10032. doi:10.14233/ajchem.2013.15295

    Google Scholar 

  • Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63(7):2809–2823. doi:10.1093/jxb/err466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Rong QX, Guo J, Huang LQ (2015) The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza. Molecules 20(9):16235–16254, doi:molecules200916235

    Article  CAS  PubMed  Google Scholar 

  • Mansoor S, Amin I, Hussain M, Zafar Y, Briddon RW (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci 11(11):559–565, doi:S1360-1385(06)00255-X

    Article  CAS  PubMed  Google Scholar 

  • Mao H, Zhang H, Wang H, Wang Y, Zhao F, Hu L, Yanagihara N, Gao X (2009) Dual effects of a lipophilic extract of Salvia miltiorrhiza (danshen) on catecholamine secretion in cultured bovine adrenal medullary cells. J Ethnopharmacol 125(1):59–67, doi:S0378-8741(09)00376-6

    Article  CAS  PubMed  Google Scholar 

  • Mei Z, Yan P, Situ B, Mou Y, Liu P (2012) Cryptotanshinione inhibits beta-amyloid aggregation and protects damage from beta-amyloid in SH-SY5Y cells. Neurochem Res 37(3):622–628. doi:10.1007/s11064-011-0652-6

    Article  CAS  PubMed  Google Scholar 

  • Miyasaka H, Nasu M, Yamamoto T, Yoneda K (1985) Production of ferruginol by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry 24(9):1931–1933. doi:10.1016/S0031-9422(00)83094-0

    Article  CAS  Google Scholar 

  • Miyasaka H, Nasu M, Yamamoto T, Shiomi Y, Ohno H, Endo Y, Yoneda K (1987) Effect of nutritional factors on cryptotanshinone and ferruginol production by cell suspension cultures of Salvia miltiorrhiza. Phytochemistry 26(5):1421–1424. doi:10.1016/S0031-9422(00)81826-9

    Article  CAS  Google Scholar 

  • Miyasaka H, Nasu M, Yoneda K (1989) Salvia miltiorrhiza: in vitro production of cryptotanshinone and feruginol. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry medicinal and aromatic plants, IIth edn. Springer Verlag, Berlin, pp 417–430

    Google Scholar 

  • Morimoto S, Goto Y, Shoyama Y (1994) Production of lithospermic acid B and rosmarinic acid in callus tissue and regenerated plantlets of Salvia miltiorrhiza. J Nat Prod 57(6):817–823. doi:10.1021/np50108a020

    Article  CAS  Google Scholar 

  • Morse D, Choi AM (2002) Heme oxygenase-1: the “emerging molecule” has arrived. Am J Respir Cell Mol Biol 27(1):8–16. doi:10.1165/ajrcmb.27.1.4862

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Planta 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nakanishi T, Miyasaka H, Nasu M, Hashimoto H, Yoneda K (1983) Production of cryptotanshinone and ferruginol in cultured cells of Salvia miltiorrhiza. Phytochemistry 22:721–722. doi:10.1016/S0031-9422(00)86969-1

    Article  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19(5):651–652. doi:10.1093/bioinformatics/btg034

    Article  CAS  PubMed  Google Scholar 

  • Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68(10):859–868. doi:10.1055/s-2002-34924

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Shen YF, Xie YK, Chen JC, Shi HQ, Yu ZP, Song QT, Zhou MT, Zhang QY (2009) Inhibitory effects of tanshinone II-A on invasion and metastasis of human colon carcinoma cells. Acta Pharmacol Sin 30(11):1537–1542, doi:aps2009139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao F, Lu S (2014) Identification, molecular cloning and expression analysis of five RNA-dependent RNA polymerase genes in Salvia miltiorrhiza. PLoS ONE 9(4), e95117. doi:10.1371/journal.pone.0095117

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J, Wang Z (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124(1):183–192. doi:10.1007/s10265-010-0350-5

    Article  CAS  PubMed  Google Scholar 

  • Standley P, Williams L (1973) Flora of Guatemala. Fieldiana Bot 24:237–317

    Google Scholar 

  • Su CY, Ming QL, Rahman K, Han T, Qin LP (2015) Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 13(3):163–182, doi:S1875-5364(15)30002-9

    PubMed  Google Scholar 

  • Tan EC, Bahrami S, Kozlov AV, Kurvers HA, Ter-Laak HJ, Nohl H, Redl H, Goris RJ (2009) The oxidative response in the chronic constriction injury model of neuropathic pain. J Surg Res 152(1):84–88, doi:S0022-4804(08)00239-4

    Article  CAS  PubMed  Google Scholar 

  • Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, Duan M, Zhou Z, Wang SQ (2008) Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol 40(3):409–422, doi:S1357-2725(07)00261-0

    Article  CAS  PubMed  Google Scholar 

  • Tian ML, Yan HY, Row KH (2009) Solid-phase extraction of tanshinones from Salvia miltiorrhiza Bunge using ionic liquid-modified silica sorbents. J Chromatogr B 877:738–742. doi:10.1016/j.jchromb.2009.02.012

    Article  CAS  Google Scholar 

  • Toth J, Mrlianova M, Tekelova D, Korenova M (2003) Rosmarinic acid- an important phenolic active compound of Lemon balm (Melissa officinalis L.). Acta Fac Pharm Univ Comenianae 50(139):146

    Google Scholar 

  • Veliky IA, Martin SM (1970) A fermenter for plant cell suspension cultures. Can J Microbiol 16:223–226

    Article  CAS  PubMed  Google Scholar 

  • Waldemar B (1996) Micropropagation and phenolic acids production of Salvia miltiorrhiza Buzge. In: Z. B (ed) Eucarpia series. Zuchtungsforschung, pp 327–329

    Google Scholar 

  • Wan XL, Wang YE, Row KH (2009) Separation of tanshinone I, tanshinone IIA, and cryptotanshinone from Salvia miltiorrhiza Bunge by normal phase HPLC. J Liq Chromatogr R T 32(4):544–552. doi:10.1080/10826070802671507

    Article  CAS  Google Scholar 

  • Wang BQ (2010) Salvia miltiorrhiza: chemical and pharmaceutical review of a medicinal plant. J Med Plants Res 4(25):2813–2820, ISSN 1996-0875 ©2010

    CAS  Google Scholar 

  • Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88(2):437–449. doi:10.1007/s00253-010-2797-7

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Luo Q, Cheng H (1998) Production of allochtonic formations in callus cells of Salvia miltiorrhiza Bge. Zhongguo Zhong Yao Za Zhi 23(10):592–594

    CAS  PubMed  Google Scholar 

  • Wenping H, Yuan Z, Jie S, Lijun Z, Zhezhi W (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98(4):272–279, doi:S0888-7543(11)00080-2

    Article  PubMed  Google Scholar 

  • Wong KK, Ho MT, Lin HQ, Lau KF, Rudd JA, Chung RC, Fung KP, Shaw PC, Wan DC (2010) Cryptotanshinone, an acetylcholinesterase inhibitor from Salvia miltiorrhiza, ameliorates scopolamine-induced amnesia in Morris water maze task. Planta Med 76(3):228–234. doi:10.1055/s-0029-1186084

    Article  CAS  PubMed  Google Scholar 

  • Wu CT, Mulabagal V, Nalawade SM, Chen CL, Yang TF, Tsay HS (2003) Isolation and quantitative analysis of cryptotanshinone, an active quinoid diterpene formed in callus of Salvia miltiorrhiza BUNGE. Biol Pharm Bull 26(6):845–848. doi:10.1248/bpb.26.845

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W (2011) The c4h, tat, hppr and hppd genes prompted engineering of the rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS ONE 6(12), e29713. doi:10.1371/journal.pone.0029713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing BC, Yang DF, Guo W, Liang ZS, Yan XJ, Zhu YH, Liu Y (2015) Ag+ as a more effective elicitor for the production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots. Molecules 20(1):309–324. doi:10.3390/molecules20010309

    Article  Google Scholar 

  • Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170(4):853–858. doi:10.1016/j.plantsci.2005.12.004

    Article  CAS  Google Scholar 

  • Yang Y, Ge PJ, Jiang L, Li FL, Zhu QY (2011) Modulation of growth and angiogenic potential of oral squamous carcinoma cells in vitro using salvianolic acid B. BMC Complement Altern Med 11(1):54–61. doi:10.1186/1472-6882-11-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D, Yin J, Yang Y, Chen S, Gao X (2014) Renoprotection of danshen injection on streptozotocin-induced diabetic rats, associated with tubular function and structure. J Ethnol Pharmacol 151(1):667–674, doi:S0378-8741(13)00819-2

    Google Scholar 

  • Yuan JM, Tao LL, Xu JT (1990) Immobilization of callus tissue cells of Salvia miltiorrhiza and the characteristics of their products. Chin J Biotechnol 6(3):199–205

    CAS  PubMed  Google Scholar 

  • Zhang H, Yu C, Jia JY, Leung SW, Siow YL, Man RY, Zhu DY (2002) Contents of four active components in different commercial crude drugs and preparations of danshen (Salvia miltiorrhiza). Acta Pharmacol Sin 23(12):1163–1168, ISSN 16 71-4 083

    CAS  PubMed  Google Scholar 

  • Zhang C, Yan Q, Cheuk W, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by Ag+ elicitation and nutrient feeding. Planta Med 70(2):147–151. doi:10.1055/s-2004-815492

    Article  CAS  PubMed  Google Scholar 

  • Zhang HN, An CN, Zhang HN, Pu XP (2010a) Protocatechuic acid inhibits neurotoxicity induced by MPTP in vivo. Neurosci Lett 474(2):99–103, doi:S0304-3940(10)00289-2

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li X, Wang Z (2010b) Antioxidant activities of leaf extract of Salvia miltiorrhiza Bunge and related phenolic constituents. Food Chem Toxicol 48(10):2656–2662. doi:10.1016/j.fct.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  • Zhao SJ, Hu ZB, Liu D, Leung FCC (2006) Two divergent members of 4-coumarate: coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study. J Integr Plant Biol 48(11):1355–1364. doi:10.1111/j.1744-7909.2006.00302.x

    Article  CAS  Google Scholar 

  • Zhi BH, Alfermann AW (1993) Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 32(3):699–703. doi:10.1016/S0031-9422(00)95156-2

    Article  Google Scholar 

  • Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45(12):1345–1359. doi:10.1177/0091270005282630

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Li W, Xu L, Chen L (2011) In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid ß-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol 31(3):443–452. doi:10.1016/j.etap.2011.02.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledged a research grant (NSC96-2313-B324-001 and NSC98-2811-B324-001) from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sushim Kumar Gupta or Hsin-Sheng Tsay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Gupta, S.K., Sharma, P., Agrawal, D.C., Tsay, HS. (2016). Salvia miltiorrhiza: A Medicinal Herb from Metabolites to Pathway Engineering. In: Tsay, HS., Shyur, LF., Agrawal, D., Wu, YC., Wang, SY. (eds) Medicinal Plants - Recent Advances in Research and Development. Springer, Singapore. https://doi.org/10.1007/978-981-10-1085-9_8

Download citation

Publish with us

Policies and ethics