Skip to main content

Aquaporins in the Eye

  • Chapter
  • First Online:
Aquaporins

Abstract

The major part of the eye consists of water . Continuous movement of water and ions between the ocular compartments and to the systemic circulation is pivotal for many physiological functions in the eye. The movement of water facilitates removal of the many metabolic products of corneal-, ciliary body-, lens- and retinal metabolism, while maintaining transparency in the optical compartments. Transport across the corneal epithelium and endothelium maintains the corneal transparency. Also, aqueous humour is continuously secreted by the epithelia of the ciliary body and maintains the intraocular pressure. In the retina, water is transported into the vitreous body and across the retinal pigment epithelium to regulate the extracellular environment and the hydration of the retina. Aquaporins (AQPs ) take part in the water transport throughout the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AQP :

aquaporin

IOP:

intraocular pressure

kDa:

kilodalton

Kir4.1:

inward rectifying potassium channel

MIP:

Major intrinsic protein

mRNA:

messenger ribonucleic acid

RGC:

retinal ganglion cell

RPE:

retinal pigment epithelium

RT-PCR:

reverse transcriptase-polymerase chain reaction

TM:

trabecular meshwork

References

  1. Hamann S (2002) Molecular mechanisms of water transport in the eye. Int Rev Cytol 215:395–431

    Article  CAS  PubMed  Google Scholar 

  2. Verkman AS, Ruiz-Ederra J, Levin MH (2008) Functions of aquaporins in the eye. Prog Retin Eye Res 27(4):420–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gabelt B, Kaufman PL (2003) Aqueous humor hydrodynamics. In: Kaufman P, ALm A (eds) Adler’s physiology of the eye. Mosby, St. Louis, pp 236–289

    Google Scholar 

  4. Goodyear MJ, Crewther SG, Junghans BM (2009) A role for aquaporin-4 in fluid regulation in the inner retina. Vis Neurosci 26(2):159–165

    Article  PubMed  Google Scholar 

  5. Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P et al (1998) Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 274(5 Pt 1):C1332–C1345

    CAS  PubMed  Google Scholar 

  6. Thiagarajah JR, Verkman AS (2002) Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem 277(21):19139–19144

    Article  CAS  PubMed  Google Scholar 

  7. Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S (2003) Transparency, swelling and scarring in the corneal stroma. Eye (Lond) 17(8):927–936

    Article  CAS  Google Scholar 

  8. Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95(1):2–7

    Article  CAS  PubMed  Google Scholar 

  9. Wen Q, Diecke FP, Iserovich P, Kuang K, Sparrow J, Fischbarg J (2001) Immunocytochemical localization of aquaporin-1 in bovine corneal endothelial cells and keratocytes. Exp Biol Med (Maywood) 226(5):463–467

    CAS  Google Scholar 

  10. Levin MH, Verkman AS (2006) Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci 47(10):4365–4372

    Article  PubMed  Google Scholar 

  11. Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med (Berl) 86(2):221–231

    Article  Google Scholar 

  12. Ruiz-Ederra J, Verkman AS (2009) Aquaporin-1-facilitated keratocyte migration in cell culture and in vivo corneal wound healing models. Exp Eye Res 89(2):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stamer WD, Peppel K, O’Donnell ME, Roberts BC, Wu F, Epstein DL (2001) Expression of aquaporin-1 in human trabecular meshwork cells: role in resting cell volume. Invest Ophthalmol Vis Sci 42(8):1803–1811

    CAS  PubMed  Google Scholar 

  14. Baetz NW, Hoffman EA, Yool AJ, Stamer WD (2009) Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Exp Eye Res 89(1):95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamaguchi Y, Watanabe T, Hirakata A, Hida T (2006) Localization and ontogeny of aquaporin-1 and -4 expression in iris and ciliary epithelial cells in rats. Cell Tissue Res 325(1):101–109

    Article  CAS  PubMed  Google Scholar 

  16. Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+-K+-2Cl cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588(Pt 21):4089–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chepelinsky AB (2009) Structural function of MIP/aquaporin 0 in the eye lens; genetic defects lead to congenital inherited cataracts. Handb Exp Pharmacol 190:265–297

    Article  CAS  Google Scholar 

  18. Varadaraj K, Kumari S, Shiels A, Mathias RT (2005) Regulation of aquaporin water permeability in the lens. Invest Ophthalmol Vis Sci 46(4):1393–1402

    Article  PubMed  Google Scholar 

  19. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN et al (2006) Muller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  CAS  PubMed  Google Scholar 

  20. Zeuthen T (2010) Water-transporting proteins. J Membr Biol 234(2):57–73

    Article  CAS  PubMed  Google Scholar 

  21. Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J et al (2009) Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int 54(3–4):143–160

    Article  CAS  PubMed  Google Scholar 

  22. Hamann S, Kiilgaard JF, la Cour M, Prause JU, Zeuthen T (2003) Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 76(4):493–504

    Article  CAS  PubMed  Google Scholar 

  23. Zayit-Soudry S, Moroz I, Loewenstein A (2007) Retinal pigment epithelial detachment. Surv Ophthalmol 52(3):227–243

    Article  PubMed  Google Scholar 

  24. Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44(6):2803–2808

    Article  PubMed  Google Scholar 

  25. Dibas A, Yang MH, Bobich J, Yorio T (2007) Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line. Pharm Res 55(5):378–384

    Article  CAS  Google Scholar 

  26. Naka M, Kanamori A, Negi A, Nakamura M (2010) Reduced expression of aquaporin-9 in rat optic nerve head and retina following elevated intraocular pressure. Invest Ophthalmol Vis Sci 51(9):4618–4626

    Article  PubMed  Google Scholar 

  27. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22(4):367–378

    Article  CAS  PubMed  Google Scholar 

  28. Yang M, Gao F, Liu H, Yu WH, He GQ, Zhuo F et al (2011) Immunolocalization of aquaporins in rat brain. Anat Histol Embryol 40(4):299–306

    Article  PubMed  Google Scholar 

  29. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A (2012) The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31(2):152–181 Epub 2011/12/14

    Article  CAS  PubMed  Google Scholar 

  30. Tran TL, Bek T, Holm L, la Cour M, Nielsen S, Prause JU, Rojek A, Hamann S, Heegaard S (2013 Sep) Aquaporins 6–12 in the human eye. Acta Ophthalmol Scand 91(6):557–563

    Article  CAS  Google Scholar 

  31. Kenney MC, Atilano SR, Zorapapel N, Holguin B, Gaster RN, Ljubimov AV (2004) Altered expression of aquaporins in bullous keratopathy and Fuchs’ dystrophy corneas. J Histochem Cytochem 52(10):1341–1350 Epub 2004/09/24

    Article  CAS  PubMed  Google Scholar 

  32. Zhang D, Vetrivel L, Verkman AS (2002) Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. JGen Physiol 119(6):561–569

    CAS  Google Scholar 

  33. Mizokami J, Kanamori A, Negi A, Nakamura M (2011) A preliminary study of reduced expression of aquaporin-9 in the optic nerve of primate and human eyes with glaucoma. Curr Eye Res 36(11):1064–1067

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda M, Naka M, Mizokami J, Negi A, Nakamura M (2011) Diabetes induces expression of aquaporin-0 in the retinal nerve fibers of spontaneously diabetic Torii rats. Exp Eye Res 92(3):195–201

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuy Linh Tran M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tran, T.L., Hamann, S., Heegaard, S. (2017). Aquaporins in the Eye. In: Yang, B. (eds) Aquaporins. Advances in Experimental Medicine and Biology, vol 969. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1057-0_12

Download citation

Publish with us

Policies and ethics