Skip to main content
Log in

Water-Transporting Proteins

  • Topical Review
  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K+/Cl and the Na+/K+/2Cl cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na+-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escheria coli. Science 301:610–615

    CAS  PubMed  Google Scholar 

  • Adragna NC, Di Fulvio M, Lauf PK (2004) Regulation of K-Cl cotransport: from function to genes. J Membr Biol 201:109–137

    CAS  PubMed  Google Scholar 

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542.1:3–16

    Google Scholar 

  • Agre P, Nielsen S, Ottersen OP (2004) Towards a molecular understanding of water homeostasis in the brain. Neuroscience 12:849–850

    Google Scholar 

  • Alpern RJ, Howlin KJ, Preisig PA (1985) Active and passive components of chloride transport in the rat proximal convoluted tubule. J Clin Invest 76:1360–1366

    CAS  PubMed  Google Scholar 

  • Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103:269–274

    CAS  PubMed  Google Scholar 

  • Bomsztyk K, Wright FS (1986) Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol 250:F680–F689

    CAS  PubMed  Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    CAS  PubMed  Google Scholar 

  • Boucher RC (1999) Molecular insights into the physiology of the “thin film” of airway surface liquid. J Physiol 516:631–638

    CAS  PubMed  Google Scholar 

  • Charron FM, Blanchard MG, Lapointe J-Y (2006) Intracellular hypertonicity is responcible for water flux associated with Na+/glucose cotransport. Biophys J 90:3546–3554

    CAS  PubMed  Google Scholar 

  • Curran PF, Macintosh JR (1962) A model system for biological water transport. Nature 193:47–348

    Google Scholar 

  • Diamond JM (1962) The mechanism of solute transport by the gallbladder. J Physiol 161:474–502

    CAS  PubMed  Google Scholar 

  • Diamond JM (1964) Transport of salt and water in rabbit and guinea pig gall bladder. J Gen Physiol 48:1–14

    CAS  PubMed  Google Scholar 

  • Duquette P-P, Bisonnette P, Lapointe J-Y (2001) Local osmotic gradients drive the water flux associated with Na+/glucose cotransport. Proc Natl Acad Sci USA 98:3796–3801

    CAS  PubMed  Google Scholar 

  • Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321:810–814

    CAS  PubMed  Google Scholar 

  • Fischbarg J, Kuang K, Vera JC, Arant S, Silverstein SC, Loike J, Rosen OM (1990) Glucose transporters serve as water channels. Proc Natl Acad Sci USA 87:3244–3247

    CAS  PubMed  Google Scholar 

  • Fischbarg J, Diecke FPJ, Iserovich P, Rubashkin A (2006) The role of tight junctions in paracellular fluid transportacross corneal endothelium. Electro-osmosis as a driving force. J Membr Biol 210:117–130

    CAS  PubMed  Google Scholar 

  • Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenologic description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pfluegers Arch 343:189–220

    Google Scholar 

  • Gagnon MP, Bissonnette P, Deslandes LM, Wallendorff B, Lapointe JY (2004) Glucose accumulation can account for the initial water flux triggered by Na+/glucose cotransport. Biophys J 86:125–133

    CAS  PubMed  Google Scholar 

  • Gamba G (2005) Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 85:423–493

    CAS  PubMed  Google Scholar 

  • Grandchamp A, Boulpaep EL (1974) Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J Clin Invest 54:69–82

    CAS  PubMed  Google Scholar 

  • Green R, Giebisch G (1984) Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am J Physiol 246:F167–F174

    CAS  PubMed  Google Scholar 

  • Green R, Giebisch G (1989) Osmotic forces driving water reabsorption in the proximal tubule of the rat kidney. Am J Physiol 257:F669–F675

    CAS  PubMed  Google Scholar 

  • Green R, Giebisch G, Unwin R, Weinstein AM (1991) Coupled water transport by rat proximal tubule. Am J Physiol 261:F1046–F1054

    CAS  PubMed  Google Scholar 

  • Haas M, Forbush III B (2000) The Na-K-Cl cotransporter of secretory epithelia. Annu Rev Physiol 62:515–534

    CAS  PubMed  Google Scholar 

  • Hakim A, Lester RG, Lifson N (1963) Absorption by an in vitro preparation of dog intestinal mucosa. J Appl Physiol 18:409–413

    CAS  PubMed  Google Scholar 

  • Hamann S (2002) Molecular mechanisms of water transport in the eye. Int Rev Cytol 215:395–431

    CAS  PubMed  Google Scholar 

  • Hamann S, Zeuthen T, La Cour M, Nagelhus EA, Ottersen OP, Agre P, Nielsen S (1998) Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am J Physiol 274:C1332–C1345

    CAS  PubMed  Google Scholar 

  • Hamann S, Kiilgaard JF, La Cour M, Prause JU, Zeuthen T (2003) Cotransport of H+, lactate and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 76:1–12

    Google Scholar 

  • Hamann S, Herrera-Perez JJ, Bundgaard M, varez-Leefmans FJ, Zeuthen T (2005) Water permeability of Na+-K+-2Cl cotransporters in mammalian epithelial cells. J Physiol 568:123–135

    CAS  PubMed  Google Scholar 

  • Heisey SR, Held D, Pappenheimer JR (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203:775–781

    CAS  PubMed  Google Scholar 

  • Helliwell PA, Kellett GL (2002) The active and passive components of glucose absorption in rat jejunum under low and high perfusion stress. J Physiol 544:579–589

    CAS  PubMed  Google Scholar 

  • Hill AE (1975) Solute-solvent coupling in epithelia: a critical examination of the standing-gradient osmotic flow theory. Proc R Soc Lond B 190:99–114

    CAS  PubMed  Google Scholar 

  • Hill AE (2008) Fluid transport: a guide for the perplexed. J Membr Biol 223:1–11

    CAS  PubMed  Google Scholar 

  • Hill AE, Shachar-Hill B, Shachar-Hill Y (2004) What are aquaporins for? J Membr Biol 197:1–32

    CAS  PubMed  Google Scholar 

  • Hirai T, Heymann JAW, Shi D, Sarker R, Maloney PC, Subramaniam S (2002) Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol 9:597–600

    CAS  PubMed  Google Scholar 

  • House CR (1974) Water transport in cells and tissues. Edward Arnold, London

    Google Scholar 

  • Huang Y, Lemieux MJ, Song J, Auer M, Wang D-N (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620

    CAS  PubMed  Google Scholar 

  • Huang CG, Lamitima T, Agre P, Strange K (2007) Functional analysis of the aquaporin gene family in Caenorhabditis elegans. Am J Physiol 292:C1867–C1873

    CAS  Google Scholar 

  • Humphreys MH (1976) Inhibition of NaCl absorption from perfused rat ileum by furosemide. Am J Physiol 230:1517–1523

    CAS  PubMed  Google Scholar 

  • Ikonomov O, Simon MX, Frömter E (1985) Electrophysiological studies on lateral intercellular spaces of Necturus gallbladder epithelium. Pfluegers Arch 403:301–307

    CAS  Google Scholar 

  • Imai Y, Nishikawa H, Yoshizaki K, Watari H (1973) Evidence for the osmotic flow across dog submaxillary gland epithelia as a cause of salivary secretion. Jap J Physiol 23:635–644

    CAS  Google Scholar 

  • Kellett GL (2001) The facilitated component of intestinal glucose absorbtion. J Physiol 531:585–595

    CAS  PubMed  Google Scholar 

  • Kellett GL, Helliwell PA (2000) The passive component of intestinal glucose absorption is mediated by the glucose-inducedrecruitment of GLUT2 to the brush-border membrane. Biochem J 350:155–162

    CAS  PubMed  Google Scholar 

  • Kellett GL, Brot-Laroche E, Mace OJ, Leturque A (2008) Sugar absorbtion in the intestine: the role of GLUT2. Annu Rev Nutr 28:8.1–8.20

    Google Scholar 

  • King LS, Agre P (1996) Pathophysiology of the aquaporin water channel. Annu Rev Physiol 58:619–648

    CAS  PubMed  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:687–698

    CAS  PubMed  Google Scholar 

  • Kornblatt JA (1998) The water channel of cytochrome c oxidase: inferences from inhibitor studies. Biophys J 75:3127–3134

    CAS  PubMed  Google Scholar 

  • Kornblatt JA, Kornblatt MJ (2002) Water as it applies to the function of enzymes. Int Rev Cytol 215:49–73

    CAS  PubMed  Google Scholar 

  • Kwon TH, Nielsen J, Moller HB, Fenton RA, Nielsen S, Frokiaer J (2009) Aquaporins in the kidney. Handb Exp Pharmacol 190:95–132

    CAS  PubMed  Google Scholar 

  • Lapointe JY (2007) Response to Zeuthen and Zeuthen’s comment to the editor: enough local hypertonicity is enough. Biophys J 93:1417–1419

    CAS  Google Scholar 

  • Leung DW, Loo DF, Hirayama BA, Zeuthen T, Wright EM (2000) Urea transport by cotransporters. J Physiol 528:251–257

    CAS  PubMed  Google Scholar 

  • Loike J, Hickman S, Kuang K, Xu M, Cao L, Vera JC, Silverstein SC, Fischbarg J (1996) Sodium-glucose cotransporters display sodium- and phlorizin-dependent water permeability. Am J Physiol 271:C1774–C1779

    CAS  PubMed  Google Scholar 

  • Loo DDF, Zeuthen T, Chandy G, Wright EM (1996) Cotransport of water by the Na+/glucose cotransporter. Proc Natl Acad Sci USA 93:13367–13370

    CAS  PubMed  Google Scholar 

  • Loo DF, Hirayama BA, Meinild A-K, Chandy G, Zeuthen T, Wright E (1999) Passive water and ion transport by cotransporters. J Physiol 518.1:195–202

    Google Scholar 

  • Loo DDF, Wright EM, Zeuthen T (2002) Water pumps. J Physiol 542:53–60

    CAS  PubMed  Google Scholar 

  • Ludwig C (1861) Lehrbuch der Physiologie des Menschen, 2nd edn. C.F. Wintersche Verlagshandlung, Leipzig

    Google Scholar 

  • Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517:317–326

    CAS  PubMed  Google Scholar 

  • Ma TH, Yang BX, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1998) Severely impaired urinary concentration ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296–4299

    CAS  PubMed  Google Scholar 

  • Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (1999) Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J Biol Chem 274:20071–20074

    CAS  PubMed  Google Scholar 

  • MacAulay N, Zeuthen T (2009) Water transport between CNS compartments: contributions of aquaporins and cotransporters. J Neurosci (in press)

  • MacAulay N, Gether U, Klærke DA, Zeuthen T (2001) Water transport by the Na+-coupled glutamate cotransporter. J Physiol 530:367–378

    CAS  PubMed  Google Scholar 

  • MacAulay N, Gether U, Klaerke DA, Zeuthen T (2002a) Passive water and urea permeability of a human Na+-glutamate cotransporter expressed in Xenopus oocytes. J Physiol 530:367–378

    Google Scholar 

  • MacAulay N, Zeuthen T, Gether U (2002b) Conformational basis for the Li+-induced leak current in the rat gamma-aminobutyric acid (GABA) transporter-1. J Physiol 544:447–458

    CAS  PubMed  Google Scholar 

  • MacAulay N, Hamann S, Zeuthen T (2004) Water transport in the brain: role of cotransporters. Neurosci 129:1031–1044

    CAS  Google Scholar 

  • MacAulay N, Hamann S, Zeuthen T (2009) Chloride transporters as water pumps. In: Alvarez-Leefmans FJ, Delpire E (eds) Physiology and pathology of chloride transporters and channels in the nervous system: from molecules to diseases. Elsevier, New York

  • MacKenzie JF, Cochran KM, Russell RI (1975) The effect of frusemide on water and electrolyte absorption from the human jejunum. Clin Sci Mol Med 49:519–521

    CAS  PubMed  Google Scholar 

  • Madara JL, Pappenheimer JR (1987) Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J Membr Biol 100:149–164

    CAS  PubMed  Google Scholar 

  • Matthews JB (2002) Molecular regulation of Na+-K+-2Cl cotransporter (NKCC1) and epithelial chloride secretion. World J Surg 26:826–830

    PubMed  Google Scholar 

  • Mauro A (1957) Nature of solvent transfer in osmosis. Science 126:252–253

    CAS  PubMed  Google Scholar 

  • Meinild A-K, Klaerke DA, Loo DDF, Wright EM, Zeuthen T (1998) The human Na+/glucose cotransporter is a molecular water pump. J Physiol 508:15–21

    CAS  PubMed  Google Scholar 

  • Meinild A-K, Loo DFF, Pajor A, Zeuthen T, Wright EM (2000) Water transport by the renal Na+/dicarboxylate cotransporter. Am J Physiol 278:F777–F783

    CAS  Google Scholar 

  • Mercado A, Song L, Vázquez N, Mount DB, Gamba G (2000) Functional comparison of the K+-Cl cotransporters KCC1 and KCC4. J Biol Chem 275:30326–30334

    CAS  PubMed  Google Scholar 

  • Murakami M, Murdiastuti K, Hosoi K, Hill AE (2006) AQP and the control of fluid transport in a salivary gland. J Membr Biol 210:91–103

    CAS  PubMed  Google Scholar 

  • Naftalin RJ (2008) Osmotic water transport with glucose in GLUT2 and SGLT. Biophys J 94:3912–3923

    CAS  PubMed  Google Scholar 

  • Nakahari T, Steward MC, Yoshida H, Imai Y (1997) Osmotic flow transients during acetylcholine stimulation in the perfused rat submandibular gland. Exp Physiol 82:55–70

    CAS  PubMed  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distriburion of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    CAS  PubMed  Google Scholar 

  • Olesen C, Picard M, Winther A-ML, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1039

    CAS  PubMed  Google Scholar 

  • Pappenheimer JR (1998) Scaling of dimensions of small intestines in non-ruminant eutherian mammals and its significance for absorptive mechanisms. Comp Biochem Physiol 121:45–58

    CAS  Google Scholar 

  • Pappenheimer JR (2001) Intestinal absorption of hexoses and amino acids: from apical cytosol to villus capillaries. J Membr Biol 184:233–239

    CAS  PubMed  Google Scholar 

  • Pappenheimer JR, Reis KZ (1987) Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol 100:123–136

    CAS  PubMed  Google Scholar 

  • Parsegian VA (2002) Protein–water interactions. Int Rev Cytol 215:1–31

    CAS  PubMed  Google Scholar 

  • Parsons DS, Wingate DL (1961) The effect of osmotic gradients on fluid transfer across rat intestine in vitro. Biochim Biophys Acta 46:170–183

    CAS  PubMed  Google Scholar 

  • Persson B-E, Spring KR (1982) Gallbladder epithelial cell hydraulic water permeability and volume regulation. J Gen Physiol 79:481–505

    CAS  PubMed  Google Scholar 

  • Preston GM, Smith BL, Zeidel ML, Moulds JJ, Agre P (1994) Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265:1585–1587

    CAS  PubMed  Google Scholar 

  • Raina S, Preston GM, Guggino WB, Agre P (1995) Molecular cloning and characterization of an aquaporin cDNA from sallivary lacrimal, and respiratory tissues. J Biol Chem 270:1908–1912

    CAS  PubMed  Google Scholar 

  • Ramírez-Lorca R, Vizuete ML, Venero JL, Revuelta M, Cano J, Ilundáin AA, Echevarría M (1999) Localization of aquaporin-3 mRNA and protein along the gastrointestinal tract of Wistar rats. Pflug Arch 438:94–100

    Google Scholar 

  • Rand RP (2002) The lipid–water interface: revelations by osmotic stress. Int Rev Cytol 215:33–48

    CAS  PubMed  Google Scholar 

  • Reid EW (1892) Report on experiments upon “absorbtion without osmosis”. BMJ 1:323–326

    Google Scholar 

  • Reuss L (1985) Changes in cell volume measured with an electrophysiologic technique. Proc Natl Acad Sci USA 82:6014–6018

    CAS  PubMed  Google Scholar 

  • Reuss L (2006) Mechanisms of water transport across cell membranes and epithelia. In: Alpern RJ, Hebert SC (eds) The kidney, physiology and pathophysiology. Elsevier, Amsterdam

    Google Scholar 

  • Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    CAS  PubMed  Google Scholar 

  • Sackin H, Boulpeap EL (1981) Isolated perfused salamander proximal tubule: methods, electrophysiology, and transport. Am J Physiol 241:F39–F52

    CAS  PubMed  Google Scholar 

  • Schnermann J, Chou C-L, Ma T, Traynor T, Knepper MA, Verkman AS (1998) Defective proximal tubular fluid reabsorbtion in transgenic aquaporin-1 null mice. Proc Natl Acad Sci USA 95:9660–9664

    CAS  PubMed  Google Scholar 

  • Shachar-Hill B, Hill AE (2002) Paracellular fluid transport by epithelia. Int Rev Cytol 215:319–350

    CAS  PubMed  Google Scholar 

  • Silva P, Stoff J, Field M, Fine L, Forrest JN, Epstein FH (1977) Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am J Physiol 233:F298–F306

    CAS  PubMed  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791

    CAS  PubMed  Google Scholar 

  • Vallon V, Verkman AS, Schnermann J (2000) Luminal hypotonicity in proximal tubules of aquaporin-1-knockout mice. Am J Physiol 278:F1030–F1033

    CAS  Google Scholar 

  • Verkman AS (2008) Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert Rev Mol Med 10:e13

    CAS  PubMed  Google Scholar 

  • Verkman AS (2009) Knock-out models reveal new aquaporin functions. Handb Exp Pharmacol 190:359–381

    CAS  PubMed  Google Scholar 

  • Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol 278:F13–F28

    CAS  Google Scholar 

  • Weinstein AM, Windhager EE (1985) Sodium transport along the proximal tubule. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology. Sinauer Associates, Sunderland, MA, pp 1033–1062

    Google Scholar 

  • Whittembury G, Hill BS (1982) Fluid reabsorption by Necturus proximal tubule perfused with solutions of normal and reduced osmolarity. Proc R Soc 215:411–431

    CAS  Google Scholar 

  • Windhager EE, Whittembury G, Oken DE, Schatzmann HJ, Solomon AK (1959) Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol 197:313–318

    CAS  PubMed  Google Scholar 

  • Wu B, Steinbronn C, Alsterfjord M, Zeuthen T, Beitz E (2009) Concerted action of two cation filters in the aquaporin water channel. EMBO J 28:2188–2194

    CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl -dependent neurotransmitter transporters. Nature 437:215–223

    CAS  PubMed  Google Scholar 

  • Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporin 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J Biol Chem 272:14146–16140

    Google Scholar 

  • Yang B, Verkman AS (1998) Urea transporter UT3 functions as an efficient water channel. J Biol Chem 273:9369–9372

    CAS  PubMed  Google Scholar 

  • Yang B, Verkman AS (2002) Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. J Biol Biochem 277:36782–36786

    CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    CAS  PubMed  Google Scholar 

  • Zampighi GA, Kreman M, Boorer KJ, Loo DDF, Bezanilla F, Chandy G, Hall JE, Wright EM (1995) A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J Membr Biol 148:65–78

    CAS  PubMed  Google Scholar 

  • Zeidel ML, Albalak A, Grossman E, Carruthers A (1992a) Role of glucose carrier in human erythrocyte water permeability. Biochemistry 31:589–596

    CAS  PubMed  Google Scholar 

  • Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992b) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1981) Isotonic transport and intracellular osmolarity in the Necturus gallbladder epithelium. In: Ussing HH, Bindslev N, Lassen NA, Sten-Knudsen O (eds) Water transport across epithelia. Munksgaard, Copenhagen, pp 313–331

    Google Scholar 

  • Zeuthen T (1982) Relations between intracellular ion activities and extracellular osmolarity in necturus gallbladder epithelium. J Membr Biol 66:109–121

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1983) Ion activities in the lateral intercellular spaces of gallbladder epithelium transporting at low external osmolarities. J Membr Biol 76:113–122

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1991a) Water permeability of ventricular cell membrane in choroid plexus epithelium from Necturus maculosus. J Physiol 444:133–151

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1991b) Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J Physiol 444:153–173

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1994) Cotransport of K+, Cl and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J Physiol 478:203–219

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1995) Molecular mechanisms for passive and active transport of water. Int Rev Cytol 160:99–161

    CAS  PubMed  Google Scholar 

  • Zeuthen T (1996) Molecular mechanisms of water transport. Springer, Berlin

    Google Scholar 

  • Zeuthen T (2002) General models for water transport across leaky epithelia. Int Rev Cytol 215:285–317

    CAS  PubMed  Google Scholar 

  • Zeuthen T (2008) Molecular water pumps—or how water can move uphill across epithelia. Physiol News 68:3–5

    Google Scholar 

  • Zeuthen T, MacAulay N (2002a) Cotransporters as molecular water pumps. Int Rev Cytol 215:259–284

    CAS  PubMed  Google Scholar 

  • Zeuthen T, MacAulay N (2002b) Passive water transport in biological pores. Int Rev Cytol 215:203–230

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Stein WD (1994) Co-transport of salt and water in membrane proteins: Membrane proteins as osmotic engines. J Membr Biol 137:179–195

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Zeuthen E (2007) The mechanism of water transport in Na+-coupled glucose transporters expressed in Xenopus oocytes. Biophys J 93:1413–1416

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Hamann S, La Cour M (1996) Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. J Physiol 497:3–17

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Meinild A-K, Klaerke DA, Loo DDF, Wright EM, Belhage B, Litman T (1997) Water transport by the Na+/glucose cotransporter under isotonic conditions. Biol Cell 89:307–312

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Meinild A-K, Loo DDF, Wright EM, Klaerke DA (2001) Isotonic transport by the Na+-glucose cotransporter SGLT1. J Physiol 531:631–644

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Zeuthen E, Klaerke DA (2002) Mobility of ions, sugar, and water in the cytoplasm of Xenopus oocytes expressing Na+-coupled sugar transporters (SGLT1). J Physiol 542:71–87

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Belhage B, Zeuthen E (2006) Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substratesize studied at high resolution. J Physiol 570:485–499

    CAS  PubMed  Google Scholar 

  • Zeuthen T, Zeuthen E, MacAulay N (2007) Water transport by GLUT2 expressed in Xenopus laevis oocytes. J Physiol 579:345–361

    CAS  PubMed  Google Scholar 

  • Zhang D, Vetrivel L, Verkman AS (2002) Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. J Gen Physiol 119:561–569

    CAS  PubMed  Google Scholar 

  • Zifarelli G, Pusch M (2009) Conversion of the 2Cl/1H+ antiporter ClC-5 in a NO3 /H+ antiporter by a single point mutation. EMBO J 28:175–182

    CAS  PubMed  Google Scholar 

  • Zimmerberg J, Parsegian VA (1986) Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel. Nature 323:36

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of the Nordic Center of Excellence in Water Imbalance-Related Disorders, The Danish Medical Research Council, The Lundbeck Foundation, The Novo Nordic Foundation and Merck-Sharpe-Dome is gratefully acknowledged. Svend Cristoffersen is thanked for the artwork, and Dr. Nanna MacAulay for critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Zeuthen.

Appendix

Appendix

Thermodynamics of Water Cotransport

The rate of water cotransport across a membrane can be described by

$$ {\text{J}}_{{{\text{H}}_{ 2} {\text{O}}}} = {\text{B}}\left( {\mu_{\text{i}} - \mu_{\text{o}} } \right) $$
(1)

For the KCC, μ equals R·T· (ln [K] + ln [Cl] + n · ln [Cw]) taken on the inside (i) and the outside (o) of the membrane; [K], [Cl] and [Cw] are the concentrations of K+, Cl. The number of water molecules coupled to the transport of one K+ and one Cl ion (n) equals 500 for the KCC; in Table 1 this parameter is called “CR.” R is the gas constant, T the absolute temperature and B a constant that can be determined experimentally. At equilibrium, the rate of water cotransport is zero and the Gibbs criterion for equilibrium of water, μi = μo, can be written

$$ \left[ {{\text{K}}_{\text{i}} } \right]\left[ {{\text{Cl}}_{\text{i}} } \right]\left[ {{\text{C}}_{{{\text{w}},{\text{i}}}} } \right]^{\text{n}} = \left[ {{\text{K}}_{\text{o}} } \right]\left[ {{\text{Cl}}_{\text{o}} } \right]\left[ {{\text{C}}_{{{\text{w}},{\text{o}}}} } \right]^{\text{n}} $$
(2)

Since [Cw] is proportional to exp (−osmi/nw), where osm is the osmolarity and nw is the molarity of water, 55 M, Eq. 2 can be written as

$$ \left[ {{\text{K}}_{\text{i}} } \right]\left[ {{\text{Cl}}_{\text{i}} } \right]{ \exp }\left( { - {\text{n\,osm}}_{\text{i}} /{\text{n}}_{\text{w}} } \right) = \left[ {{\text{K}}_{\text{o}} } \right]\left[ {{\text{Cl}}_{\text{o}} } \right]{ \exp }\left( { - {\text{n osm}}_{\text{o}} /{\text{n}}_{\text{w}} } \right) $$
(3)

This equation can be used to predict how high adverse osmotic gradients are required to stop transport under physiological conditions. For amphibians, [Ki] and [Cli] are typically 100 and 40 mM and [Ko] and [Clo] are 2 and 120. For n = 500, an osmotic difference, osmi − osmo, of 310 mOsm is required. For mammals, where [Ko] and [Clo] are 5 and 120 mM, an osmotic difference of 200 mOsm would be required to stop transport. These values are in good agreement with experiments in epithelia (see text).

The water flux mediated by the KCC \( \left( {{\text{J}}_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{KCC}} } \right) \) given in Eq. 1 can be written as

$$ {\text{J}}_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{KCC}} = {\text{B}}\cdot{\text{R}}\cdot{\text{T}}\cdot \left[ {{ \ln }\left( {{\text{K}}_{\text{i}} /{\text{K}}_{\text{o}} } \right) + { \ln }\left( {{\text{Cl}}_{\text{i}} /{\text{Cl}}_{\text{o}} } \right) + {\text{n}}/{\text{n}}_{\text{w}} \left( {{\text{osm}}_{\text{i}} - {\text{osm}}_{\text{o}} } \right)} \right] $$
(4)

The validity of this equation is supported by data from the choroid plexus epithelium from Necturus maculosus. Here, \( {\text{J}}_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{KCC}} \) was a linear function of the external osmolarity (osmo) when this was increased from its normal value of 200 mOsm to values up to 400 mOsm by addition of mannitol (Zeuthen 1994); the proportionality factor B · R · T was 6 × 10−6 cm s−1 in this range. Given this value, it can be estimated that the KCC in the exit membrane could be responsible for a major component of the transepithelial water transport. In amphibians under steady-state conditions, K+ and Cl concentrations are typically 80 and 40 mM intracellular and 2 and 110 mM extracellular, with intra- and extracellular osmolarities around 200 mOsm. With these values \( {\text{J}}_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{KCC}} \) calculates as 18 nl cm−2 s−1. \( {\text{J}}_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{KCC}} \) has previously been estimated by a less exact approach to 3.5 nl cm−2 s−1 (Zeuthen 1995); this is smaller than the estimate obtained from Eq. 1 but still a good approximation to the measured values (see text).

For the NKCC1, μ in Eq. 1 equals R · T · \( \left( {{ \ln }\left[ {\text{Na}} \right] + { \ln }\left[ {\text{K}} \right] +2\cdot{ \ln }\left[ {\text{Cl}} \right] + {\text{n}} \cdot { \ln }\left[ {{\text{C}}_{\text{w}} } \right]} \right) \). At equilibrium, the Gibbs equation becomes

$$ \left[ {{\text{Na}}_{\text{i}} } \right]\left[ {{\text{K}}_{\text{i}} } \right]\left[ {{\text{Cl}}_{\text{i}} } \right]^{ 2} \left[ {{\text{C}}_{{{\text{w}},{\text{i}}}} } \right]^{\text{n}} = \left[ {{\text{Na}}_{\text{o}} } \right]\left[ {{\text{K}}_{\text{o}} } \right]\left[ {{\text{Cl}}_{\text{o}} } \right]^{ 2} \left[ {{\text{C}}_{{{\text{w}},{\text{o}}}} } \right]^{\text{n}} $$
(5)

With Cw proportional to exp (−n · osm/nw):

$$ \left[ {{\text{Na}}_{\text{i}} } \right]\left[ {{\text{K}}_{\text{i}} } \right]\left[ {{\text{Cl}}_{\text{i}} } \right]^{ 2} { \exp }\left( { - {\text{n osm}}_{\text{i}} /{\text{n}}_{\text{w}} } \right) = \left[ {{\text{Na}}_{\text{o}} } \right]\left[ {{\text{K}}_{\text{o}} } \right]\left[ {{\text{Cl}}_{\text{o}} } \right]^{ 2} { \exp }\left( { - {\text{n osm}}_{\text{o}} /{\text{n}}_{\text{w}} } \right) $$
(6)

The coupling ratio (n) for the NKCC1 can be determined by comparing two different situations which give the same rate of water transport. In the pigmented epithelium of the ciliary body of the eye, hyperosmolar addition of NaCl to the outside solution did not alter the transport rate for water by the NKCC1 (Hamann et al. 2005); when 37.5 mM of NaCl was added to the outside solution, the osmotic effect of the extra NaCl, i.e., 75 mOsm, was exactly matched by the increased chemical driving force originating from the extra 37.5 mM of Na+ and 37.5 mM of Cl. If the rates of water transport in the NKCC1 are the same in the two situations, the chemical potential given by the outside solution μo must also be the same. If these are called o,1 and o,2, it follows from Eq. 1 that μo,1 = μo,2, or

$$ \left[ {{\text{Na}}_{{{\text{o}}, 1}} } \right]\left[ {{\text{K}}_{{{\text{o}}, 1}} } \right]\left[ {{\text{Cl}}_{{{\text{o}}, 1}} } \right]^{ 2} { \exp }\left( { - {\text{n osm}}_{{{\text{o}}, 1}} /{\text{n}}_{\text{w}} } \right) = \left[ {{\text{Na}}_{{{\text{o}}, 2}} } \right]\left[ {{\text{K}}_{{{\text{o}}, 2}} } \right]\left[ {{\text{Cl}}_{{{\text{o}}, 2}} } \right]^{ 2} { \exp }\left( { - {\text{n osm}}_{{{\text{o}}, 2}} /{\text{n}}_{\text{w}} } \right)] $$
(7)

Given values of [Nao,1], [Ko,1], [Clo,1], osmo,l of 120, 2, 120 mM and 290 mOsm and values of [Nao,2], [Ko,2], [Clo,2], osmo,2 of 157.5, 2, 157.5 mM and 365 mOsm, n calculates as 590. Eq. 7 can now be used to predict how high adverse osmotic gradients are required to stop transport under physiological conditions. For mammals [Nai], [Ki] and [Cli] are typically 10, 100 and 60 mM and [Nao], [Ko] and [Clo] are 150, 5 and 120. For n = 590, an osmotic difference, osmi − osmo, of 100 mOsm is required.

For the SGLT1 the Gibbs equation takes the following forms (Meinild et al. 1998):

$$ \left[ {{\text{Na}}_{\text{i}} } \right]^{ 2} \left[ {{\text{G}}_{\text{i}} } \right]\left[ {{\text{C}}_{{{\text{w}},{\text{i}}}} } \right]^{\text{n}} { \exp }\left[ { 2 {\text{F}}\Uppsi_{\text{i}} /{\text{RT}}} \right] = \left[ {{\text{Na}}_{\text{o}} } \right]^{ 2} \left[ {{\text{G}}_{\text{o}} } \right]\left[ {{\text{C}}_{{{\text{w}},{\text{o}}}} } \right]^{\text{n}} { \exp }\left[ { 2 {\text{F}}\Uppsi_{\text{o}} /{\text{RT}}} \right] $$
(8)
$$ {\text{RTln}}\left[ {{\text{Na}}_{\text{o}} /{\text{Na}}_{\text{i}} } \right]^{ 2} + {\text{RTln }}\left[ {{\text{G}}_{\text{o}} /{\text{G}}_{\text{i}} } \right] + {\text{RTln }}\left[ {{\text{C}}_{{{\text{w}},{\text{o}}}} /{\text{C}}_{{{\text{w}},{\text{i}}}} } \right]^{\text{n}} = 2 {\text{F}}\left[ {\Uppsi_{\text{i}} -\Uppsi_{\text{o}} } \right] $$
(9)

Na is the Na+ concentration, G the glucose concentration and Ψ the electrical potential (other symbols as above). In a physiological situation, where the Na+ concentration is 10 times higher on the outside than on the inside, the glucose concentrations the same, and the membrane potential is –50 mV; it can be calculated that the inward flux of water would proceed in face of an adverse osmotic gradient of up to about 1,700 mOsm.

At constant Na+ and glucose concentrations, the relation between changes in external water concentration, proportional to exp(−osm/nw), and the reversal potential (Ψi – Ψo) becomes

$$ \Updelta \left( {\Uppsi_{\text{i}} -\Uppsi_{\text{o}} } \right) = -{\text{n}}/{\text{n}}_{\text{w}} {\text{ RT}}/ 2 {\text{F }}\Updelta {\text{osm}}_{\text{o}} $$
(10)

This relation has been used for a determination of the coupling ratio (n) for the rabbit SGLT1 (Zeuthen and MacAulay 2002a). Here, a shift in the outside osmolarity of 100 mOsm resulted in a shift in the reversal potential of about 5 mV, equivalent to an n of 247. This compares well with estimates of n obtained under non-steady-state conditions (Table 1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeuthen, T. Water-Transporting Proteins. J Membrane Biol 234, 57–73 (2010). https://doi.org/10.1007/s00232-009-9216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9216-y

Keywords

Navigation