Skip to main content

Bacteriophages of Yersinia pestis

  • Chapter
  • First Online:
Yersinia pestis: Retrospective and Perspective

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 918))

Abstract

Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, Sozhamannan S, Sulakvelidze A, Rajanna C. A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage. 2012;2(3):168–77.

    Google Scholar 

  2. Garcia E, Elliott JM, Ramanculov E, Chain PS, Chu MC, Molineux IJ. The genome sequence of Yersinia pestis bacteriophage phiA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol. 2003;185(17):5248–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Summers WC. Bacteriophage therapy. Annu Rev Microbiol. 2001;55:437–51.

    Article  CAS  PubMed  Google Scholar 

  4. Anisimov AP, Amoako KK. Treatment of plague: promising alternatives to antibiotics. J Med Microbiol. 2006;55(Pt 11):1461–75.

    Article  CAS  PubMed  Google Scholar 

  5. Flu PC. Sur la nature du bacte’riophage. C R Soc Biol. 1927;96:1148–9.

    Google Scholar 

  6. Garcia E, Chain P, Elliott JM, Bobrov AG, Motin VL, Kirillina O, Lao V, Calendar R, Filippov AA. Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage. Virology. 2008;372(1):85–96.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao X, Wu W, Qi Z, Cui Y, Yan Y, Guo Z, Wang Z, Wang H, Deng H, Xue Y, et al. The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi. J Gen Virol. 2011;92(Pt 1):216–21.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao X, Cui Y, Yan Y, Du Z, Tan Y, Yang H, Bi Y, Zhang P, Zhou L, Zhou D, et al. Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi. J Virol. 2013;87(22):12260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Molnar DM, Lawton WD. Pasteurella bacteriophage sex specific in Escherichia coli. J Virol. 1969;4(6):896–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hertman I. Bacteriophage common to Pasteurella pestis and Escherichia coli. J Bacteriol. 1964;88:1002–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith DA, Burrows TW. Phage and bacteriocin investigations with Pasteurella pestis and other bacteria. Nature. 1962;193:397–8.

    Article  CAS  PubMed  Google Scholar 

  12. Larina VS, Anisimov PI, Adamov AK. A novel strain of plague bacteriophage for identification of Pasteurella pestis. Probl Particularly Danger Infect. 1970;11:132–6.

    Google Scholar 

  13. Larina VS. Lysogenic clones of wild-type plague bacteria and characteristics of the phages produced by them. Zh Mikrobiol Epidemiol Immunobiol. 1976;1976(1):119–22.

    Google Scholar 

  14. Novosel’tsev NN, Marchenkov VI. Y. pestis phage of a new serovar. Zh Mikrobiol Epidemiol Immunobiol. 1990;1990(11):9–12.

    Google Scholar 

  15. Novosel’tsev NN, Marchenkov VI, Arutiunov Iu l. Phages of the IV serovar of Yersinia pestis. Zh Mikrobiol Epidemiol Immunobiol. 1994;6:9–10.

    PubMed  Google Scholar 

  16. Pokrovskaya MP. Bacteriophage and its practical applications for treatment and prophylaxis of summer children’s diarrhea. Dysentery Surg Infect. 1940;1940:55–6.

    Google Scholar 

  17. Gunnison JB, Larson A, Lazarus AS. Rapid differentiation between Pasteurella pestis and Pasteurella pseudotuberculosis by action of bacteriophage. J Infect Dis. 1951;88(3):254–5.

    Article  CAS  PubMed  Google Scholar 

  18. Plague manual–epidemiology, distribution, surveillance and control. Releve epidemiologique hebdomadaire/Section d’hygiene du Secretariat de la Societe des Nations = Weekly epidemiological record/Health Section of the Secretariat of the League of Nations. 1999;74(51–52):447.

    Google Scholar 

  19. Schofield DA, Molineux IJ, Westwater C. ‘Bioluminescent’ reporter phage for the detection of category a bacterial pathogens. J Visual Exp. 2011;53:e2740.

    Google Scholar 

  20. Girard G. General characteristics of pseudolysogenic mutants of Pasteurella pestis selected by phages; epidemiological significance. Comptes rendus des seances de la Societe de biologie et de ses filiales. 1957;151(6):1068–71.

    CAS  PubMed  Google Scholar 

  21. Gunnison JB, Lazarus AS. Alteration of Pasteurella pestis bacteriophage following successive transfer on Pasteurella pseudotuberculosis and on shigellae. Proc Soc Exp Biol Med. 1948;69(2):294–6.

    Article  CAS  PubMed  Google Scholar 

  22. Cavanaugh DC, Quan SF. Rapid identification of Pasteurella pestis using specific bacteriophage lyophilized on strips of filter paper; a preliminary report. Am J Clin Pathol. 1953;23(6):619–20.

    CAS  PubMed  Google Scholar 

  23. Harrison DN, Cavanaugh DC, Rust Jr JH, Marshall Jr JD. Characteristics of a bacteriophage-infected strain of Pasteurella pestis isolated from a human case of plague. Infect Immun. 1971;4(1):85–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Duberstein R, Oeschger MP. Growth of bacteriophage H on male and female strains of Escherichia coli. J Virol. 1973;11(3):460–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Brunovskis I, Hyman RW, Summers WC. Pasteurella pestis bacteriophage H and Escherichia coli bacteriophage phi II are nearly identical. J Virol. 1973;11(2):306–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shashaev MA. Biological properties of plague bacteriophages. Zh Mikrobiol Epidemiol Immunobiol. 1964;41:32–5.

    CAS  PubMed  Google Scholar 

  27. Shashaev MA, Shapiro IL, Shatalova AL. Duration of the presence of plague and pseudotuberculosis bacteriophages from the organism of Rhombomys opimus. Zh Mikrobiol Epidemiol Immunobiol. 1965;42(3):97–101.

    CAS  PubMed  Google Scholar 

  28. Arutiunov Iu I. New modification of the increase of bacteriophage titer reaction (in plague). Laboratornoe delo. 1969;3.

    Google Scholar 

  29. Novoseltsev NN. Moderate phage of the agent of plague. Zh Mikrobiol Epidemiol Immunobiol. 1974;1974(8):45–9.

    Google Scholar 

  30. Novosel’tsev NN, Marchenkov VI, Sorokin VM, Kravtsov AN, Degtiarev BM. Relation between the Yersinia phage and bacteriophages isolated from the environment. Molekuliarnaia genetika, mikrobiologiia i virusologiia. 1990;1990(8):18–21.

    Google Scholar 

  31. Novosel’tsev NN, Arutiunov Iu I, Tokarev SA, Kirdeev VK. Electron microscopic study of Pasteurella phages. Zh Mikrobiol Epidemiol Immunobiol. 1971;48(3):16–9.

    PubMed  Google Scholar 

  32. Novosel’tsev NN, Marchenkov VI, Kravchenko AN, Valentsev VE, Tinker LA. The lytic activity of Yersinia pestis phage P 3d serovar. Zh Mikrobiol Epidemiol Immunobiol. 1990;1990(12):15–8.

    Google Scholar 

  33. Dorozhko OV, Zhuravlev I, Rotshil’d EV, Kondrashin Iu I. Lysogeny by phages specific to Yersinia pestis in bacteria of the microbiocenoses of wild plague-carrying rodents. Zh Mikrobiol Epidemiol Immunobiol. 1980;1980(8):38–46.

    Google Scholar 

  34. Kunikowska D, Glosnicka R. The action of the Yersinia pestis phage on the plague envelope antigen and the human erythrocytes. Bull Inst Marit Trop Med Gdynia. 1985;36(1-4):103–15.

    CAS  PubMed  Google Scholar 

  35. Pak G, Satybaldiev NA, Bakanurskaia TL, Aniskina GA, Soorbekov OS. Properties of strains of the causative agent of plague resistant to the diagnostic phage L-413 “c”. Zh Mikrobiol Epidemiol Immunobiol. 1985;1985(8):33–6.

    Google Scholar 

  36. Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM. Methods for the isolation of viruses from environmental samples. Methods Mol Biol. 2009;501:3–14.

    Article  CAS  PubMed  Google Scholar 

  37. Castro-Mejia JL, Muhammed MK, Kot W, Neve H, Franz CM, Hansen LH, Vogensen FK, Nielsen DS. Optimizing protocols for extraction of bacteriophages prior to metagenomic analyses of phage communities in the human gut. Microbiome. 2015;3:64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boulanger P. Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. Methods Mol Biol. 2009;502:227–38.

    Article  CAS  PubMed  Google Scholar 

  39. Gerba CP. Applied and theoretical aspects of virus adsorption to surfaces. Adv Appl Microbiol. 1984;30:133–68.

    Article  CAS  PubMed  Google Scholar 

  40. Raya RR, H’Bert EM. Isolation of phage via induction of lysogens. Methods Mol Biol. 2009;501:23–32.

    Article  CAS  PubMed  Google Scholar 

  41. Derbise A, Chenal-Francisque V, Pouillot F, Fayolle C, Prevost MC, Medigue C, Hinnebusch BJ, Carniel E. A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol. 2007;63(4):1145–57.

    Article  CAS  PubMed  Google Scholar 

  42. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol. 2009;501:69–76.

    Article  CAS  PubMed  Google Scholar 

  43. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by the direct plating plaque assay. Methods Mol Biol. 2009;501:77–80.

    Article  CAS  PubMed  Google Scholar 

  44. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol Biol. 2009;501:81–5.

    Article  CAS  PubMed  Google Scholar 

  45. Brussaard CP. Enumeration of bacteriophages using flow cytometry. Methods Mol Biol. 2009;501:97–111.

    Article  CAS  PubMed  Google Scholar 

  46. Ackermann HW. Basic phage electron microscopy. Methods Mol Biol. 2009;501:113–26.

    Article  CAS  PubMed  Google Scholar 

  47. Ackermann HW. Phage classification and characterization. Methods Mol Biol. 2009;501:127–40.

    Article  CAS  PubMed  Google Scholar 

  48. Kutter E. Phage host range and efficiency of plating. Methods Mol Biol. 2009;501:141–9.

    Article  CAS  PubMed  Google Scholar 

  49. Schwudke D, Ergin A, Michael K, Volkmar S, Appel B, Knabner D, Konietzny A, Strauch E. Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J Bacteriol. 2008;190(1):332–42.

    Article  CAS  PubMed  Google Scholar 

  50. Comeau AM, Arbiol C, Krisch HM. Composite conserved promoter-terminator motifs (PeSLs) that mediate modular shuffling in the diverse T4-like myoviruses. Genome Biol Evol. 2014;6(7):1611–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Filippov AA, Sergueev KV, Nikolich MP. Can phage effectively treat multidrug-resistant plague? Bacteriophage. 2012;2(3):186–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Demerec M, Fano U. Bacteriophage-resistant mutants in Escherichia coli. Genetics. 1945;30(2):119–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One. 2011;6(9):e25486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kruger DH, Schroeder C. Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol Rev. 1981;45(1):9–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sao-Jose C, Baptista C, Santos MA. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol. 2004;186(24):8337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sorensen MC, van Alphen LB, Fodor C, Crowley SM, Christensen BB, Szymanski CM, Brondsted L. Phase variable expression of capsular polysaccharide modifications allows campylobacter jejuni to avoid bacteriophage infection in chickens. Front Cell Infect Microbiol. 2012;2:11.

    Article  PubMed Central  Google Scholar 

  57. Shin H, Lee JH, Kim H, Choi Y, Heu S, Ryu S. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS One. 2012;7(8):e43392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Skurnik M. Yersinia surface structures and bacteriophages. Adv Exp Med Biol. 2012;954:293–301.

    Article  CAS  PubMed  Google Scholar 

  59. Dentovskaya SV, Anisimov AP, Kondakova AN, Lindner B, Bystrova OV, Svetoch TE, Shaikhutdinova RZ, Ivanov SA, Bakhteeva IV, Titareva GM, et al. Functional characterization and biological significance of Yersinia pestis lipopolysaccharide biosynthesis genes. Biochemistry (Mosc). 2011;76(7):808–22.

    Article  CAS  Google Scholar 

  60. Kiljunen S, Datta N, Dentovskaya SV, Anisimov AP, Knirel YA, Bengoechea JA, Holst O, Skurnik M. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage phiA1122. J Bacteriol. 2011;193(18):4963–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chouikha I, Charrier L, Filali S, Derbise A, Carniel E. Insights into the infective properties of YpfPhi, the Yersinia pestis filamentous phage. Virology. 2010;407(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  62. Derbise A, Carniel E. YpfPhi: a filamentous phage acquired by Yersinia pestis. Front Microbiol. 2014;5:701.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland P, Regala W, Georgescu A, Vergez L, Land M, Motin V. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A. 2004;101(38):13826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Craigie J. The significance and applications of bacteriophage in bacteriological and virus research. Bacteriol Rev. 1946;10(3-4):73–88.

    PubMed Central  Google Scholar 

  65. Nunes MP, Suassuna I. Bacteriophage specificity in the identification of Yersinia pestis as compared with other enterobacteria. Revista brasileira de pesquisas medicas e biologicas. 1978;11(6):359–63.

    CAS  PubMed  Google Scholar 

  66. Schofield DA, Molineux IJ, Westwater C. Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol. 2009;47(12):3887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schofield DA, Molineux IJ, Westwater C. Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage. J Microbiol Methods. 2012;90(2):80–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One. 2010;5(6):e11337.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gill JJ, Summer EJ, Russell WK, Cologna SM, Carlile TM, Fuller AC, Kitsopoulos K, Mebane LM, Parkinson BN, Sullivan D, et al. Genomes and characterization of phages Bcep22 and BcepIL02, founders of a novel phage type in Burkholderia cenocepacia. J Bacteriol. 2011;193(19):5300–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Martinevskii IL, Shashaev MA, Tarakanov NF, Shapovalov AT. on the fate of plague bacteriophage in the body of healthy and plague-infected rhombomys opimus and possible pathways of transmission under experimental conditions. Zh Mikrobiol Epidemiol Immunobiol. 1963;40:31–4.

    CAS  PubMed  Google Scholar 

  71. Sergueev KV, Nikolich MP, Filippov AA. Field and clinical applications of advanced bacteriophage-based detection of Yersinia pestis. Adv Exp Med Biol. 2012;954:135–41.

    Article  CAS  PubMed  Google Scholar 

  72. Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophage therapy of experimental bubonic plague in mice. Adv Exp Med Biol. 2012;954:337–48.

    Article  CAS  PubMed  Google Scholar 

  73. Galimand M, Carniel E, Courvalin P. Resistance of Yersinia pestis to antimicrobial agents. Antimicrob Agents Chemother. 2006;50(10):3233–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Welch TJ, Fricke WF, McDermott PF, White DG, Rosso ML, Rasko DA, Mammel MK, Eppinger M, Rosovitz MJ, Wagner D, et al. Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS ONE. 2007;2(3):e309.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lukacik P, Barnard TJ, Buchanan SK. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Biochem Soc Trans. 2012;40(6):1503–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 2002;418(6900):884–9.

    Article  CAS  PubMed  Google Scholar 

  77. Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science. 2001;294(5549):2170–2.

    Article  CAS  PubMed  Google Scholar 

  78. Bearden SW, Fetherston JD, Perry RD. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun. 1997;65(5):1659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rakin A, Saken E, Harmsen D, Heesemann J. The pesticin receptor of Yersinia enterocolitica: a novel virulence factor with dual function. Mol Microbiol. 1994;13(2):253–63.

    Article  CAS  PubMed  Google Scholar 

  80. Pilsl H, Killmann H, Hantke K, Braun V. Periplasmic location of the pesticin immunity protein suggests inactivation of pesticin in the periplasm. J Bacteriol. 1996;178(8):2431–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Patzer SI, Albrecht R, Braun V, Zeth K. Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J Biol Chem. 2012;287(28):23381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anderson Jr GW, Heath DG, Bolt CR, Welkos SL, Friedlander AM. Short- and long-term efficacy of single-dose subunit vaccines against Yersinia pestis in mice. AmJTrop Med Hyg. 1998;58(6):793–9.

    CAS  Google Scholar 

  83. Heath DG, Anderson Jr GW, Mauro JM, Welkos SL, Andrews GP, Adamovicz J, Friedlander AM. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine. 1998;16(11-12):1131–7.

    Article  CAS  PubMed  Google Scholar 

  84. Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO, Hantgan RR, Thomas MJ, Wood J, Bell B. Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol. 2009;16(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  85. Goodin JL, Nellis DF, Powell BS, Vyas VV, Enama JT, Wang LC, Clark PK, Giardina SL, Adamovicz JJ, Michiel DF. Purification and protective efficacy of monomeric and modified Yersinia pestis capsular F1-V antigen fusion proteins for vaccination against plague. Protein Expr Purif. 2007;53(1):63–79.

    Article  CAS  PubMed  Google Scholar 

  86. Goodin JL, Powell BS, Enama JT, Raab RW, McKown RL, Coffman GL, Andrews GP. Purification and characterization of a recombinant Yersinia pestis V-F1 “Reversed” fusion protein for use as a new subunit vaccine against plague. Protein Expr Purif. 2011;76(1):136–44.

    Article  CAS  PubMed  Google Scholar 

  87. Powell BS, Andrews GP, Enama JT, Jendrek S, Bolt C, Worsham P, Pullen JK, Ribot W, Hines H, Smith L, et al. Design and testing for a nontagged F1-V fusion protein as vaccine antigen against bubonic and pneumonic plague. Biotechnol Prog. 2005;21(5):1490–510.

    Article  CAS  PubMed  Google Scholar 

  88. Parent MA, Berggren KN, Kummer LW, Wilhelm LB, Szaba FM, Mullarky IK, Smiley ST. Cell-mediated protection against pulmonary Yersinia pestis infection. Infect Immun. 2005;73(11):7304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smiley ST. Current challenges in the development of vaccines for pneumonic plague. Expert Rev Vaccines. 2008;7(2):209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tao P, Mahalingam M, Kirtley ML, van Lier CJ, Sha J, Yeager LA, Chopra AK, Rao VB. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines. PLoS Pathog. 2013;9(7):e1003495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tao P, Mahalingam M, Marasa BS, Zhang Z, Chopra AK, Rao VB. In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc Natl Acad Sci U S A. 2013;110(15):5846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vale PF, Little TJ. CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci/Roy Soc. 2010;277(1691):2097–103.

    Article  CAS  Google Scholar 

  93. Koskela KA, Mattinen L, Kalin-Manttari L, Vergnaud G, Gorge O, Nikkari S, Skurnik M. Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation. Environ Microbiol. 2015.

    Google Scholar 

  94. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151(Pt 3):653–63.

    Article  CAS  PubMed  Google Scholar 

  95. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317–27.

    Article  CAS  PubMed  Google Scholar 

  96. Filippov AA, Sergueev KV, He Y, Nikolich MP. Bacteriophages capable of lysing Yersinia pestis and Yersinia pseudotuberculosis: efficiency of plating tests and identification of receptors in escherichia coli K-12. Adv Exp Med Biol. 2012;954:123–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangna Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhao, X., Skurnik, M. (2016). Bacteriophages of Yersinia pestis . In: Yang, R., Anisimov, A. (eds) Yersinia pestis: Retrospective and Perspective. Advances in Experimental Medicine and Biology, vol 918. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0890-4_13

Download citation

Publish with us

Policies and ethics