Skip to main content

The Discovery of Heat Shock Response System and Major Groups of Heat Shock Proteins

  • Chapter
  • First Online:
Heat Shock Proteins and Whole Body Adaptation to Extreme Environments

Abstract

Drastic changes in the genes expression pattern in response to heat stress were originally demonstrated in Drosophila busckii and D. melanogaster (Ritossa 1962, 1963). Initially, it was shown that in the both species a few new large puffs in the salivary gland chromosomes were formed immediately after heat shock treatment. Specifically, in D. melanogaster the puffs were observed at several chromosomal loci in all large autosomes (33B, 63В, 64В, 67В, 70A, 87A, 87B, 93D and 95C) (Ritossa 1963). These changes in chromosome morphology can be easily seen under a light microscope due to giant size of polythene chromosomes in the larval salivary glands of Drosophila (Fig. 1.1). Only one decade later the main groups of proteins corresponding to the individual heat-induced puffs were identified and called “heat shock proteins” (Hsps) (Ashburner and Bonnert 1979; Lewis et al. 1975; Lewis and Pelham 1985; Tissières et al. 1974).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashburner M, Bonnert J (1979) The induction of gene activity in drosophila by heat shock. Cell 17:241–254

    Article  PubMed  CAS  Google Scholar 

  • Ayme A, Tissieres A (1985) Locus 67B of Drosophila melanogaster contains seven, not four, closely related heat shock genes. EMBO J 4:2949–2954

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bettencourt BR, Feder ME (2001) Hsp70 duplication in the Drosophila melanogaster species group: how and when did two become five? Mol Biol Evol 18:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  PubMed  CAS  Google Scholar 

  • Brackley KI, Grantham J (2009) Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones 14:23–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brocchieri L, Conway de Macario E, Macario AJ (2008) hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Brandizzi F (2013) IRE1: ER stress sensor and cell fate executor. Trends Cell Biol 23:547–555

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciechanover A, Stanhill A (2014) The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim Biophys Acta 1843:86–96

    Article  PubMed  CAS  Google Scholar 

  • Easton DP, Kaneko Y, Subjeck JR (2000) The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones. 5:276–290

    Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response, evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    Article  PubMed  CAS  Google Scholar 

  • Fornace AJ, Alamo I, Hollander MC, Lamoreaux E (1989) Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res 17:1215–1230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guzhova I, Margulis B (2006) Hsp70 chaperone as a survival factor in cell pathology. Int Rev Cytol 254:101–149

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14:1697–1709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hightower LE (1991) Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66:191–197

    Article  PubMed  CAS  Google Scholar 

  • Hill JE, Hemmingsen SM (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 6:190–200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holmgren R, Livak K, Morimoto RI, Frend R, Meselson M (1979) Studies of cloned sequences from four Drosophila heat shock loci. Cell 18:1359–1370

    Article  PubMed  CAS  Google Scholar 

  • Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A 82:6455–6459

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274

    Article  PubMed  CAS  Google Scholar 

  • Kellett M, McKechnie SW (2005) A cluster of diagnostic Hsp68 amino acid sites that are identified in Drosophila from the melanogaster species group are concentrated around beta-sheet residues involved with substrate binding. Genome 48:226–233

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC (2012) Long non-coding RNAs coordinate cellular responses to stress. Wiley Interdiscip Rev RNA 3:779–796

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia SC, Prasanth KV (2002) Tissue- and development-specific induction and turnover of hsp70 transcripts from loci 87A and 87C after heat shock and during recovery in Drosophila melanogaster. J Exp Biol 205:345–358

    PubMed  CAS  Google Scholar 

  • Lee-Yoon D, Easton D, Murawski M, Burd R, Subjeck JR (1995) Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J Biol Chem 270:15725–15733

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HR (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 kd heat shock protein. EMBO J 4:3137–3143

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lewis M, Helmsing PJ, Ashburner M (1975) Parallel changes in puffing activity and patterns of protein synthesis in salivary glands of Drosophila. Proc Natl Acad Sci U S A 72:3604–3608

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Lis JT (2007) Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450:198–202

    Article  PubMed  CAS  Google Scholar 

  • Lozovskaya ER, Evgen’ev MB (1984) Heat shock in and regulation of genome activity. Mol Biol 20:142–185

    Google Scholar 

  • Lund PA (1995) The roles of molecular chaperones in vivo. Essays Biochem 29:113–123

    PubMed  CAS  Google Scholar 

  • Mallik M, Lakhotia SC (2011) Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrω gene in Drosophila. J Biosci 36:265–280

    Article  PubMed  CAS  Google Scholar 

  • Margulis BA, Guzhova IV (2000) Stress proteins in eukaryotic cells. Tsitologiia 42:323–342

    PubMed  CAS  Google Scholar 

  • Marin R, Tanguay RM (1996) Stage-specific localization of the small heat shock protein Hsp27 during oogenesis in Drosophila melanogaster. Chromosoma 105:142–149

    Article  PubMed  CAS  Google Scholar 

  • Maside X, Bartolome C, Charlesworth B (2002) S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster. Curr Biol 12:1686–1691

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP (2010) Gymnastics of molecular chaperones. Mol Cell 39:321–331

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Inaguma Y, Kato K, Tanguay RM (2000) The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J Biol Chem 275:31204–31210

    Article  PubMed  CAS  Google Scholar 

  • Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pardue ML, Scott MP, Storti RV, Lengyel JA (1980) The heat shock response: a model system for the study of gene regulation in Drosophila. Basic Life Sci 16:41–55

    PubMed  CAS  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Ritossa F (1963) New puffs induced by temperature shock, DNP and salicylate in salivary chromosomes of D. melanogaster. Drosophila Info Serv 37:122–123

    Google Scholar 

  • Rubin DM, Mehta AD, Zhu J, Shoham S, Chen X et al (1993) Genomic structure and sequence analysis of Drosophila melanogaster HSC70 genes. Gene 128:155–163

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Lakhotia SC (2005) The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet 84:265–281

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Ashburner M, Tissieres A (1982) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sorensen JG, Kristensen TN, Loeschke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037

    Article  Google Scholar 

  • Sorger PK, Pelham HR (1987) The glucose-regulated protein grp94 is related to heat shock protein hsp90. J Mol Biol 194:341–344

    Article  PubMed  CAS  Google Scholar 

  • Tissières A, Mitchell HK, Tracy U (1974) Protein synthesis in salivary glands of Drosophila melanogaster. Relation to chromosome puffs. J Mol Biol 84:389–398

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evgen’ev, M.B., Garbuz, D.G., Zatsepina, O.G. (2014). The Discovery of Heat Shock Response System and Major Groups of Heat Shock Proteins. In: Heat Shock Proteins and Whole Body Adaptation to Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9235-6_1

Download citation

Publish with us

Policies and ethics