Skip to main content
Log in

TheHsp60C gene in the 25F cytogenetic region inDrosophila melanogaster is essential for tracheal development and fertility

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones inDrosophila melanogaster, theHsp60A gene (at the 10A polytene region) is expressed in all cell types of the organism and is essential from early embryonic stages, while theHsp60B gene (at 21D region) is expressed only in testis, being essential for sperm individualization. In the present study, we characterized theHsp60C gene (at 25F region), which shows high sequence homology with the other threeHsp60 genes ofD. melanogaster. In situ hybridization of Hsp60C-specific riboprobe shows that expression of this gene begins in late embryonic stages (stage 14 onwards), particularly in the developing tracheal system and salivary glands; during larval and adult stages, it is widely expressed in many cell types but much more strongly in tracheae and in developing and differentiating germ cells. A P-insertion mutant (Hsp60C 1) allele with the P transposon inserted at -251 position of theHsp60C gene promoter was generated. This early larval recessive lethal mutation significantly reduces levels ofHsp60C transcripts in developing tracheae and this is associated with a variety of defects in the tracheal system, including lack of liquid clearance. About 10% of the homozygotes survive as weak, shortlived and completely sterile adults. Testes of the surviving mutant males are significantly smaller, with fewer spermatocytes, most of which do not develop beyond the round spermatid stage.In situ and Northern hybridizations show significantly reduced levels of theHsp60C transcripts inHsp60C 1 homozygous adult males. The absence of early meiotic stages in theHsp60C 1 homozygous testes contrasts with the effect of testis-specificHsp60B (21D) gene, whose mutation affects individualization of sperm bundles later in spermiogenesis. In view of the specific effects in tracheal development and in early stages of spermatogenesis, it is likely that, besides its functions as a chaperone, Hsp60C may have signalling functions and may also be involved in cation transport across the developing tracheal epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M. D., Celniker S. E., Holt R. A.,et al. 2000 The Genome Sequence ofDrosophila melanogaster.Science. 287, 2185–2179.

    Article  PubMed  Google Scholar 

  • Adryan B., Decker H-J. H., Papas T. S. and Hsu T. 2000 Tracheal development and the von Hippel-Lindau tumour suppressor homolog inDrosophila.Oncogene 19, 2803–2811.

    Article  PubMed  CAS  Google Scholar 

  • Andrews J., Bouffard G. G., Cheadle C., Lu J., Becker K. G. and Oliver B. 2000 Gene discovery using computational and microarray analysis of transcription in theDrosophila melanogaster testis.Genome. Res. 10, 2030–2043.

    Article  PubMed  CAS  Google Scholar 

  • Asquith K. L., Baleato R. M., McLaughlin E. A., Nixon B. and Aitken R. J. 2004 Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition.J. Cell Sci. 117, 3645–3657.

    Article  PubMed  CAS  Google Scholar 

  • Barker P. M., Nguyen M. S., Gatzy T., Grubb B., Norman H., Hummier E., Rossier B., Boucher R. C. and Koller B. 1998. Role of γENaC subunit in lung liquid clearance and electrolyte balance in newborn nice: insights into perinatal adaptation and pseudohypoaldosteronism.J. Clin. Invest. 102, 1634–1640.

    PubMed  CAS  Google Scholar 

  • Beitel G. J. and Krasnow M. 2003 Genetic control of epithelial tube size in theDrosophila tracheal system.Development. 127, 3271–3282.

    Google Scholar 

  • Betran E., Thornton K. and Long M. 2002 Retroposed new genes out of the X inDrosophila.Genome Res. 12, 1854–1859.

    Article  PubMed  CAS  Google Scholar 

  • Bier E., Vaessin H., Shepherd S., Lee K., McCall K.et al. 1989 Searching for pattern and mutation in theDrosophila genome with a P-lacZ vector.Genes. Dev. 3, 1273–1287.

    Article  PubMed  CAS  Google Scholar 

  • Boilard M., Reyes-Moreno C., Lachance C., Massicotte L., Bailey J. L., Sirard M. A. and Leclerc P. 2004 Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa.Biol. Reprod. 71, 1879–1889.

    Article  PubMed  CAS  Google Scholar 

  • Cabernard C., Neumann M. and Affolter M. 2004 Cellular and molecular mechanisms involved in branching morphogenesis ofDrosophila tracheal system.J. Appl. Physiol. 97, 2347–2353.

    Article  PubMed  CAS  Google Scholar 

  • Cheng M. Y., Hartl F. U. and Horwich A. L. 1990 The mitochondrial chaperonin hsp60 is required for its own assembly.Nature. 348, 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Cooley L., Kelly R. and Spradling A. 1988 Insertional mutagenesis of theDrosophila genome with single Pelement.Science. 239, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Fabrizio J. J., Him G., Lemmon S. K. and Bazinet C. 1998 Genetic dissection of sperm individualization inDrosophila melanogaster.Development. 125, 1833–1843.

    PubMed  CAS  Google Scholar 

  • Fuller M. 1993 Spermatogenesis. InThe Development of Drosophila melanogaster (ed. M. Bate and A. Martinez), pp 71–147. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. NY.

    Google Scholar 

  • Gloor G. and Engels W. 1992 Single fly DNA preparation for PCR.Dros. Inf. Serv. 71, 148.

    Google Scholar 

  • Hartenstein K., Sinha P., Mishra A., Schenkel H., Torok I. and Mechler B. M. 1997 The congestedlike trachea Gene ofDrosophila melanogaster encodes a member of the mitochondria carrier family required for gasfilling of tracheal system and expansion of the wing after eclosion.Genetics. 147, 1755–1768.

    PubMed  CAS  Google Scholar 

  • Haynes S. R., Raychaudhuri G. and Beyer A. L. 1990 The Drosophila Hrb98DE locus encodes four protein isoforms homologous to the A1 protein of mammalian heterogeneous nuclear ribonucleoprotein complexes.Mol. Cell. Biol. 10, 316–323.

    PubMed  CAS  Google Scholar 

  • Horwich A. L. and Wilson K. R. 1993 Protein folding in the cell functions of two families of molecular chaperones hsp60 and TF55-TCP1.Philos. Trans. R. Soc. London. Ser B 339, 313–325.

    Article  Google Scholar 

  • Ikawa S. and Weinberg R. A. 1992 An interaction between p21ras and heat shock protein hsp60, a chaperonin.Proc. Natl. Acad. Sci. USA. 89, 2012–2016.

    Article  PubMed  CAS  Google Scholar 

  • Jones M., Gupta R. S. and Englesberg E. 1994. Enhancement in amount of P1 (hsp60) in mutation of Chinese hamster ovary (CHO-K1) cells exhibiting increases in the A system of amino acid transport.Proc. Natl. Acad. Sci. USA. 91, 858–862.

    Article  PubMed  CAS  Google Scholar 

  • Kemphues K. J., Raff E. C., Raff R. A. and Kaufman T. C. 1980 Mutation in a testisspecific betatubulin inDrosophila: analysis of its effects on meiosis and map location of the gene.Cell. 21, 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Kozlova T., Perezgasga L., Reynaud E. and Zurita M. 1997 TheDrosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10AC and is differentially expressed during fly development.Dev. Genes. Evol. 207, 253–263.

    Article  CAS  Google Scholar 

  • Lakhotia S. C., 2001 Heat Shock Response-Regulation and Functions of Coding and noncoding genes inDrosophila.Proc. Ind. Natl. Acad. Sci. B 5, 247–264.

    Google Scholar 

  • Lakhotia S. C., Rajendra T. K. and Prasanth K. V. 2001 Developmental regulation and complex organization of the promoter of the noncodinghsrΩ) gene ofDrosophila melanogaster.J. Biosci. 26, 25–38

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C. and Singh A. K. 1989 A novel heat shock polypeptide in Malpighian tubule ofDrosophila melanogaster.J. Genet. 68, 129–268.

    Article  CAS  Google Scholar 

  • Lakhotia S. C. and Singh B. N. 1996 Synthesis of a ubiquitously present new Hsp60 family protein is enhanced by heat shock only in Malpighian tubule ofDrosophila.Experientia. 52, 751–756.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C. and Sharma A. 1995 RNA metabolismin situ at the 93D heat shock locus in polytene nuclei ofDrosophila melanogaster after various treatments.Chromosome Research. 3, 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia S. C. and Tapadia M. G. 1998 Genetic mapping of the amide response element/s of the hsreΩ locus ofDrosophila melanogaster.Chromosoma. 107, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Lewis M., Helmsing P. J. and Ashburner M. 1975 Parallel changes in puffing activity and patterns of protein synthesis in salivary glands ofDrosophila.Proc. Natl. Acad. Sci. USA. 72, 3604–3608.

    Article  PubMed  CAS  Google Scholar 

  • Lifschytz E. 1987 The developmental program of spermatogenesis inDrosophila: a genetic analysis.Int. Rev. Cytol. 109, 211–258.

    PubMed  CAS  Google Scholar 

  • Lindsley D. L. and Zimm G. G. 1992 The genome ofDrosophila melanogaster. Academic Press, San Diego.

    Google Scholar 

  • Liu L., Johnson W. A. and Welsh M. J. 2002Drosophila DEG/ EnaC pickpocket genes are expressed in the tracheal system, where they may be involved in liquid clearance.Proc. Natl. Acad. Sci. USA. 100, 2128–2133.

    Article  CAS  Google Scholar 

  • Maguire M., Coates A. R. M. and Henderson B. 2002 Chaperonin 60 unfolds its secrets of cellular communication.Cell Stress Chaperones. 7, 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Manning G. and Krasnow M. A. 1993 Development of theDrosophila tracheal system. In: TheDevelopment of Drosophila melanogaster, ed. Bate M. (Cold Spring Harbor Lab. Press: New York), Vol. 1. p. 609–685.

    Google Scholar 

  • Marchler-Bauer A. and Bryant S. H. 2004 CD-Search: protein domain annotation on the fly.Nucl. Acids. Res. 32, W327-W331.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R. L., Tissieres A. and Georgopoulous C. 1994. The Biology of Heat Shock Proteins and Molecular chaperones. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Morin X., Daneman R., Zavortink M. and Chia W. 2001 A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci inDrosophila.Proc. Natl. Acad. Sci. USA. 98, 15050–15055.

    Article  PubMed  CAS  Google Scholar 

  • O’Brodovich H. M. 1996 Immature epithelial Na+ channel expression is one of the pathogenetic mechanism leading to human neonatal respiratory distress syndrome.Proc. Assoc. Am. Phys. 108, 345–355.

    PubMed  CAS  Google Scholar 

  • Paul S. M., Ternet M., Salvaterra P. M. and Beitel G. J. 2003 The Na+/K+ ATPase is required for septate junction function and epithelial tubesize control in theDrosophila tracheal system.Development. 130, 4963–4974.

    Article  PubMed  CAS  Google Scholar 

  • Perezgasga L., Segovia L. and Zurita M. 1999 Molecular characterization of the 5’ control region and of two lethal alleles affecting the hsp60 gene inDrosophila melanogaster.FEBS. Lett. 456, 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Rubin G. M., Yandell M. D., Wortman J. R.et al. 2000 Comparative genomics of the eukaryotes.Science. 287, 2204–2215.

    Article  PubMed  CAS  Google Scholar 

  • Samakovlis C., Hacohen N., Manning G., Sutherland D. C., Guilleman K. and Krasnow M. A. 1996 Development of theDrosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events.Development. 122, 1395–1407.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E. F. and Maniatis T. 1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor labratory Press, NY.

    Google Scholar 

  • Santel A., Winhauer T., Blumer N. and Renkawitz-Pohl R. 1997 TheDrosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif.Mech. Dev. 64, 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Singh B. N. and Lakhotia S. C. 1995 The noninduction of heat shocked Malpighian tubules ofDrosophila larvae is not due to constitutive presence of hsp70 or hsc70.Curr. Sci. 69, 178–182.

    CAS  Google Scholar 

  • Soltys B. J. and Gupta R. S. 1997 Mitochondrialmatrix protein at unexpected locations: are they exported?Trends Biochem. Sci. 24, 174–177.

    Article  Google Scholar 

  • Soti C. and Csermely P. 2002 Chaperones come of age.Cell Stress Chaperones. 7, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava P. 2004 Studies on the constitutively expressed members of Hsp60 and Hsp70 gene families inDrosophila melanogaster. Ph.D thesis, Banaras Hindu University, Varanasi, India.

    Google Scholar 

  • Thummel C. S., Boulet A. M. and Lipshitz H. D. 1988 Vectors forDrosophila Pelementmediated trasformation and tissue culture transfection.Gene. 74, 445–456.

    Article  PubMed  CAS  Google Scholar 

  • Timakov B. and Zhang P. 2001 The hsp60B gene ofDrosophila melanogaster is essential for the spermatid individualization process.Cell Stress Chaperones. 6, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Tissieres A., Herschel K. M. and Tracy U. M. 1974 Protein synthesis in salivary glands ofDrosophila melanogaster: relation to chromosome puffs.J. Mol. Biol. 84, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Wells A. D., Rai S. K., Salvato M. S., Band H. and Malkovsky M. 1997 Restoration of MHC class I surface expression and endogenous antigen presentation by a molecular chaperone.Scand. J. Immunol. 45, 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson R. F., Stanley H. P. and Bowman J. T. 1974 Genetic control of spermatogenesis inDrosophila melanogaster: the effects of abnormal cytoplasmic microtubule populations in mutant ms(3)10R and its colcemid induced phenocopy.J. Ultrastruct. Res. 48, 242–258.

    Article  PubMed  CAS  Google Scholar 

  • Woodlock T. J., Chen X., Young D. A., Bethlendy G., Lichman M. A., Segel G. B. 1997 Association of Hsp60 like proteins with the Lsystem amino acid transporter.Arch. Biochem. Biophys. 338, 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Zelzer E. and Shilo B. Z. 2000 Cell fate choices inDrosophila tracheal morphogenesis.Bioessays. 22, 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L., Koivisto L., Heino J. and Uitto V. J. 2004a Bacterial heat shock protein may increase epithelial cell migration through activation of MAP kinase and inhibition of α6Β4 integrin expression.Biochem. Biophys. Res. Comm. 319, 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L., Pelech S. and Uitto V. J. 2004b Longterm effect of heat shock protein 60 from Actinobacillus actinomycetemcomitans on epithelial cell viability and mitogenactivated protein kinases.Infect. and Immun. 72, 38–45.

    Article  CAS  Google Scholar 

  • Zhimulev I. F., Pokholkova G. V., Bgatov A. B., Umbetova G. H., Solov’eva IV, Khudyakov Y. E. and Belyaeva E. S. 1987 Fine cytogenetical analysis of the band 10A1-2 and the adjoining regions in theDrosophila melanogaster.Biol. Zentbl. 106, 699–720.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Lakhotia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S., Lakhotia, S.C. TheHsp60C gene in the 25F cytogenetic region inDrosophila melanogaster is essential for tracheal development and fertility. J Genet 84, 265–281 (2005). https://doi.org/10.1007/BF02715797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02715797

Keywords

Navigation