Skip to main content

Performance Evaluation of the Valveless Micropump with Piezoelectric Actuator

  • Conference paper
  • First Online:
Transactions on Engineering Technologies

Abstract

To meet the rising need in biological and medical applications, the innovative micro-electro-mechanical systems (MEMS) technologies have realized an important progress of the micropump as one of the essential fluid handling devices to deliver and control precise amounts of fluids flowing along a specific direction. This paper aims to present the design, fabrication and test of a novel piezoelectrically actuated valveless micropump. The micropump consists of a piezoelectric actuator, a vibration plate, a stainless steel chamber plate with membrane and integrated diffuser/nozzle bulge-piece design, an acrylic plate as the top cover to form the channel with the channel plate and two glass tubes for delivery liquid. The chamber and the vibration plate were made of the stainless steel manufactured using the lithography and etching process based on MEMS fabrication technology. The experimental results demonstrate that the flow rate of micropump accurately controlled by regulating the operating frequency and voltage. The flow rate of 1.59 ml/min and back pressure of 8.82 kPa are obtained when the micropump is driven with alternating sine-wave voltage of 240 Vpp at 400 Hz. The micropump proposed in this study provides a valuable contribution to the ongoing development of microfluidic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Yamahata, C. Vandevyver, F. Lacharme, P. Izewska, H. Vogel, R. Freitag, M.A.M. Gijs, Pumping of mammalian cells with a nozzle-diffuser micropump. Lab Chip 5, 1083–1088 (2005)

    Article  Google Scholar 

  2. S.S. Wang, X.Y. Huang, C. Yang, Valveless micropump with acoustically featured pumping chamber. Microfluid. Nanofluid. 8, 549–555 (2010)

    Article  Google Scholar 

  3. H.K. Ma, H.C. Su, J.Y. Wu, Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber. Sens. Actuators, A 171, 297–305 (2011)

    Article  Google Scholar 

  4. L.S. Jang, W.H. Kan, Peristaltic piezoelectric micropump system for biomedical applications. Biomed. Microdevices 9, 619–626 (2007)

    Article  Google Scholar 

  5. C.Y. Lee, H.T. Chang, C.Y. Wen, A MEMS-based valveless impedance pump utilizing electromagnetic actuation. J. Micromech. Microeng. 18, 035044 (2008)

    Article  Google Scholar 

  6. Y.J. Yang, H.H. Liao, Development and characterization of thermopneumatic peristaltic micropumps. J. Micromech. Microeng. 19, 025003 (2009)

    Article  Google Scholar 

  7. N.T. Nguyen, X.Y. Huang, T.K. Chuan, MEMS-micropumps. J. Fluids. Eng. Trans. ASME 124, 384–392 (2002)

    Article  Google Scholar 

  8. D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004)

    Article  Google Scholar 

  9. B.D. Iverson, S.V. Garimella, Recent advances in microscale pumping technologies: a review and evaluation. Microfluid. Nanofluid. 5, 145–174 (2008)

    Article  Google Scholar 

  10. M. Nabavi, Steady and unsteady flow analysis in microdiffusers. Microfluid. Nanofluid. 7, 599–619 (2009)

    Article  Google Scholar 

  11. G. Fuhr, T. Schnelle, B. Wagner, Travelling wave-driven microfabricated electro-hydrodynamic pumps for liquids. J. Micromech. Microeng. 4, 217–226 (1994)

    Article  Google Scholar 

  12. J.C.T. Eijkel, C. Dalton, C.J. Hayden, J.P.H. Burt, A. Manz, A circular AC magnetohydrodynamic micropump for chromatographic applications. Sens. Actuators, A 92, 215–221 (2003)

    Article  Google Scholar 

  13. L. Chen, H. Wang, J. Ma, C. Wang, Y. Guan, Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sens. Actuators, B 104, 117–123 (2005)

    Article  Google Scholar 

  14. J. Xie, Y.N. Miao, J. Shih, Q. He, J. Liu, Y.C. Tai, T.D. Lee, An electrochemical pumping system for on-chip gradient generation. Anal. Chem. 76, 3756–3763 (2004)

    Article  Google Scholar 

  15. M.M. Teymoori, E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens. Actuators, A 117, 222–229 (2005)

    Article  Google Scholar 

  16. G.H. Feng, F.S. Kim, Micropump based on PZT unimorph and one-way parylene valves. J. Micromech. Microeng. 14, 429–435 (2004)

    Article  Google Scholar 

  17. P. Dario, N. Croce, M.C. Carrozza, G. Varallo, A fluid handling system for a chemical microanalyzer. J. Micromech. Microeng. 6, 95–98 (1996)

    Article  Google Scholar 

  18. W.K. Schomburg, J. Vollmer, B. Bustgens, J. Fahrenberg, H. Hein, W. Menz, Microfluidic components in LIGA technique. J. Micromech. Microeng. 4, 186–191 (1994)

    Article  Google Scholar 

  19. Y. Yang, Z. Zhou, X. Ye, X. Jiang, in Bimetallic Thermally Actuated Micropump, vol. 59. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, (1996), pp. 351–354

    Google Scholar 

  20. E. Makino, T. Mitsuya, T. Shibata, Fabrication of TiNi shape memory micropump. Sens. Actuators, A 88, 256–262 (2001)

    Article  Google Scholar 

  21. W.Y. Sim, H.J. Yoon, O.C. Jeong, S.S. Yang, A phase change type of micropump with aluminum flap valves. J. Micromech. Microeng. 13, 286–294 (2003)

    Article  Google Scholar 

  22. E. Stemme, G. Stemme, A valve-less diffuser/nozzle based fluid pump. Sens. Actuators, A 39, 159–167 (1993)

    Article  Google Scholar 

  23. C.H. Cheng, C.K. Chen, in WCE 2013: Characteristic Studies of the Piezoelectrically Actuated Valveless Micropump. Proceedings of the World Congress on Engineering 2013. Lecture Notes in Engineering and Computer Science (London, 3–5 July 2013), pp. 1785–1790

    Google Scholar 

  24. B. Fan, G. Song, F. Hussain, Simulation of a piezoelectrically actuated valveless micropump. Smart Mater. Struct. 14, 400–405 (2005)

    Article  Google Scholar 

  25. L.S. Jang, Y.C. Yu, Peristaltic micropump system with piezoelectric actuators. Microsyst. Technol. 14, 241–248 (2008)

    Article  Google Scholar 

  26. J. gawa, I. Kanno, H. Kotera, T. Suzuki, Development of liquid pumping devices using vibrating microchannel walls. Sens. Actuators, A 152, 211–218 (2009)

    Article  Google Scholar 

  27. F.K. Forster, R.L. Bardell, M.A. Afromowitz, N.R. Sharma, A. Blanchard, Design, fabrication and testing of a fixed-valve micropump. IMECE FED 234, 39–44 (1995)

    Google Scholar 

  28. C. Morris, F. Forster, Low-order modeling of resonance for fixed-valve micropumps based on first principles. J. Microelectromech. Syst. 12, 325–334 (2003)

    Article  Google Scholar 

  29. Y.Y. Tsui, S.L. Lu, Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sens. Actuators, A 148, 138–148 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This paper represents part of the results obtained under the support of the National Science Council, Taiwan, ROC (Contract No. NSC101-2221-E-212-002-).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiang-Ho Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cheng, CH. (2014). Performance Evaluation of the Valveless Micropump with Piezoelectric Actuator. In: Yang, GC., Ao, SI., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8832-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8832-8_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8831-1

  • Online ISBN: 978-94-017-8832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics