Skip to main content
Log in

Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A quartz-enhanced photoacoustic spectroscopy (QEPAS) based sensor for carbon monoxide detection at ppbv levels was developed with a 4.65 μm external-cavity quantum cascade laser operating both in continuous wave (cw) and pulsed modes. A 23-fold enhancement of the measured CO signal amplitude was obtained when water vapor, acting as a catalyst for vibrational energy transfer, was added to the targeted analyte mixture. In the cw mode, a noise-equivalent sensitivity (NES, 1σ) of 2 ppbv was achieved at a gas pressure of 100 Torr, for 1-s lock-in amplifier (LIA) time constant (TC), which corresponds to a normalized noise equivalent absorption coefficient (NNEA) of \(1.48\times 10^{-8}~\mathrm{cm}^{-1}\,\mathrm{W}/\sqrt{\mathrm{Hz}}\). In the pulsed mode, the determined NES and NNEA were 46 ppbv and \(1.07\times 10^{-8}~\mathrm{cm}^{-1}\,\mathrm{W}/\sqrt{\mathrm{Hz}}\), respectively, for a 3-ms LIA TC at atmospheric pressure with a laser scan rate of 18 cm-1/s and a 50 % duty cycle. An intercomparison between cw and pulsed QEPAS-based CO detection is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.A. Logan, M.J. Prather, S.C. Wofsy, M.B. McElroy, J. Geophys. Res. 86, 7210 (1981)

    Article  ADS  Google Scholar 

  2. M.A.K. Khalil, R.A. Rasmussen, Science 224, 54 (1984)

    Article  ADS  Google Scholar 

  3. United states environmental protection agency, EPA 600/P-99/001F (2000)

  4. T.H. Risby, F.K. Tittel, Opt. Eng. 49, 111123 (2010)

    Article  ADS  Google Scholar 

  5. K. Zayasu, K. Sekizawa, S. Okinaga, M. YamayA, T. Ohrui, H. Sasaki, Am. J. Respir. Crit. Care Med. 156, 1140 (1997)

    Google Scholar 

  6. P. Paredi, W. Biernacki, F. Invernizzi, S.A. Kharitonov, P.J. Barnes, Chest 116, 1007 (1999)

    Article  Google Scholar 

  7. H. Okuyama, M. Yonetani, Y. Uetani, H. Nakamura, Pediatr. Int. 43, 329 (2001)

    Article  Google Scholar 

  8. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  9. A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)

    Article  ADS  Google Scholar 

  10. L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Appl. Phys. B 100, 627 (2010)

    Article  ADS  Google Scholar 

  11. M. Troccoli, L. Diehl, D.P. Bour, S.W. Corzine, N. Yu, C.H. Wang, M.A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F.K. Tittel, F. Capasso, J. Lightwave Technol. 26, 3534 (2008)

    Article  ADS  Google Scholar 

  12. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Phys. Lett. 487, 1 (2010)

    Google Scholar 

  13. A.A. Kosterev, G. Wysocki, Y.A. Bakhirkin, S. So, R. Lewicki, F.K. Tittel, R.F. Curl, Appl. Phys. B 90, 165 (2008)

    Article  ADS  Google Scholar 

  14. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pfugl, L. Diehl, F. Capasso, C. Kumar , N. Patel, Proc. Natl. Acad. Sci. USA 107, 18799 (2010)

    Article  ADS  Google Scholar 

  15. M. Razeghi, Y. Bai, S. Slivken, S.R. Darvish, Opt. Eng. 49, 111103 (2010)

    Article  ADS  Google Scholar 

  16. A.A. Kosterev, P.R. Buerki, L. Dong, M. Reed, T. Day, F.K. Tittel, Appl. Phys. B 100, 173 (2010)

    Article  ADS  Google Scholar 

  17. L. Dong, V. Spagnolo, R. Lewicki, F.K. Tittel, Opt. Express 19, 24037 (2011)

    Article  ADS  Google Scholar 

  18. L.S. Rothman, A. Barbe, C.D. Brenner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.M. Flaudi, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quant. Spectrosc. Radiat. Transf. 82, 5 (2003)

    Article  ADS  Google Scholar 

  19. L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Proc. SPIE 7945, 50R-1 (2011)

    Google Scholar 

Download references

Acknowledgements

Daylight Solutions, Inc. and the Rice University Laser Science Group acknowledge the support of a Phase I NASA SBIR Grant No. NNX11CF34P. In addition, the Laser Science Group acknowledges the financial support from a National Science Foundation (NSF) Engineering Research Center subaward for Mid-infrared Technologies for Health and the Environment (MIRTHE) from Princeton University and Grant C-0586 from The Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Lewicki, R., Liu, K. et al. Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy. Appl. Phys. B 107, 275–283 (2012). https://doi.org/10.1007/s00340-012-4949-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4949-1

Keywords

Navigation