Skip to main content

Role of the Family of Ephs and Ephrins in Cell-Cell Communication in Cancer

  • Chapter
Intercellular Communication in Cancer
  • 667 Accesses

Abstract

Modes of intercellular communication that require direct cell membrane-to-membrane interactions do not always involve the formation of junctional structures such as gap or tight junctions. An important example of such communication, involves the large family of proteins called Eph receptors (Erythropoietin-producing human hepatocellular carcinoma) and their ligands called Ephrins. In this review, we will introduce these proteins, their structural and functional features as well as their increasingly recognized role in cancer. Rather than providing a comprehensive report of all available data for each of the proteins and their characteristics, we will focus on introducing some key concepts of this protein family such as the fact that both receptors and ligands are membrane-embedded, thus eliciting bidirectional signaling, their dual and antagonistic functions in biological processes, and also their ability to engage in cis and trans interactions. We will also provide literature data to illustrate the genesis and transduction of signaling through Ephs and Ephrins. Finally, an important part of this chapter will be dedicated to integrating the functions of Ephs and Ephrins within the global system of cell-cell communication. These and other concepts will be addressed in view of their importance in understanding cancer progression and shedding light on the therapeutic pertinence of targeting these proteins. The authors apologize for overlooking important data available, because choices had to be made and focus was on illustrative examples rather than global survey of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19

    Article  PubMed  CAS  Google Scholar 

  2. Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB (2004) Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci 7:501–509

    Article  PubMed  CAS  Google Scholar 

  3. Du J, Fu C, Sretavan DW (2007) Eph/ephrin signaling as a potential therapeutic target after central nervous system injury. Curr Pharm Des 13:2507–2518

    Article  PubMed  CAS  Google Scholar 

  4. Frisen J, Holmberg J, Barbacid M (1999) Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 18:5159–5165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Holder N, Klein R (1999) Eph receptors and ephrins: effectors of morphogenesis. Development 126:2033–2044

    PubMed  CAS  Google Scholar 

  6. O’Leary DD, Wilkinson DG (1999) Eph receptors and ephrins in neural development. Curr Opin Neurobiol 9:65–73

    Article  PubMed  Google Scholar 

  7. Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664

    Article  PubMed  CAS  Google Scholar 

  8. Flenniken AM, Gale NW, Yancopoulos GD, Wilkinson DG (1996) Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol 179:382–401

    Article  PubMed  CAS  Google Scholar 

  9. Friedman GC, O’Leary DD (1996) Eph receptor tyrosine kinases and their ligands in neural development. Curr Opin Neurobiol 6:127–133

    Article  PubMed  CAS  Google Scholar 

  10. Arvanitis D, Davy A (2008) Eph/ephrin signaling: networks. Genes Dev 22:416–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Merlos-Suarez A, Batlle E (2008) Eph-ephrin signalling in adult tissues and cancer. Curr Opin Cell Biol 20:194–200

    Article  PubMed  CAS  Google Scholar 

  12. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52

    Article  PubMed  CAS  Google Scholar 

  13. Hruska M, Dalva MB (2012) Ephrin regulation of synapse formation, function and plasticity. Mol Cell Neurosci 50:35–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen Y, Fu AK, Ip NY (2012) Eph receptors at synapses: implications in neurodegenerative diseases. Cell Signal 24:606–611

    Article  PubMed  CAS  Google Scholar 

  15. Matsuo K (2010) Eph and ephrin interactions in bone. Adv Exp Med Biol 658:95–103

    Article  PubMed  CAS  Google Scholar 

  16. Compagni A, Logan M, Klein R, Adams RH (2003) Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell 5:217–230

    Article  PubMed  CAS  Google Scholar 

  17. Davy A, Aubin J, Soriano P (2004) Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 18:572–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12:15–20

    Article  PubMed  CAS  Google Scholar 

  19. Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345

    Article  PubMed  CAS  Google Scholar 

  20. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    Article  PubMed  CAS  Google Scholar 

  21. Kandouz M (2012) The Eph/Ephrin family in cancer metastasis: communication at the service of invasion. Cancer Metastasis Rev 31:353–373

    Article  PubMed  CAS  Google Scholar 

  22. Tachibana M, Tonomoto Y, Hyakudomi R, Hyakudomi M, Hattori S, Ueda S, Kinugasa S, Yoshimura H (2007) Expression and prognostic significance of EFNB2 and EphB4 genes in patients with oesophageal squamous cell carcinoma. Dig Liver Dis 39:725–732

    Article  PubMed  CAS  Google Scholar 

  23. Mudali SV, Fu B, Lakkur SS, Luo M, Embuscado EE, Iacobuzio-Donahue CA (2006) Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis 23:357–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chukkapalli S, Amessou M, Dilly AK, Dekhil H, Zhao J, Liu Q, Bejna A, Thomas RD, Bandyopadhyay S, Bismar TA, Neill D, Azoulay L, Batist G, Kandouz M (2014) Role of the EphB2 receptor in autophagy, apoptosis and invasion in human breast cancer cells. Exp Cell Res 320:233–246

    Article  PubMed  CAS  Google Scholar 

  25. Yu J, Bulk E, Ji P, Hascher A, Koschmieder S, Berdel WE, Muller-Tidow C (2009) The kinase defective EPHB6 receptor tyrosine kinase activates MAP kinase signaling in lung adenocarcinoma. Int J Oncol 35:175–179

    Article  PubMed  CAS  Google Scholar 

  26. Oshima T, Akaike M, Yoshihara K, Shiozawa M, Yamamoto N, Sato T, Akihito N, Nagano Y, Fujii S, Kunisaki C, Wada N, Rino Y, Tanaka K, Masuda M, Imada T (2008) Overexpression of EphA4 gene and reduced expression of EphB2 gene correlates with liver metastasis in colorectal cancer. Int J Oncol 33:573–577

    PubMed  CAS  Google Scholar 

  27. Parri M, Buricchi F, Giannoni E, Grimaldi G, Mello T, Raugei G, Ramponi G, Chiarugi P (2007) EphrinA1 activates a Src/focal adhesion kinase-mediated motility response leading to rho-dependent actino/myosin contractility. J Biol Chem 282:19619–19628

    Article  PubMed  CAS  Google Scholar 

  28. Huang X, Wu D, Jin H, Stupack D, Wang JY (2008) Induction of cell retraction by the combined actions of Abl-CrkII and Rho-ROCK1 signaling. J Cell Biol 183:711–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nakada M, Anderson EM, Demuth T, Nakada S, Reavie LB, Drake KL, Hoelzinger DB, Berens ME (2010) The phosphorylation of ephrin-B2 ligand promotes glioma cell migration and invasion. Int J Cancer 126:1155–1165

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Yang NY, Pasquale EB, Owen LB, Ethell IM (2006) The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J Biol Chem 281:32574–32586

    Article  PubMed  CAS  Google Scholar 

  31. Noren NK, Foos G, Hauser CA, Pasquale EB (2006) The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 8:815–825

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Hughes S (2006) Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol 208:453–461

    Article  PubMed  CAS  Google Scholar 

  33. Aitsebaomo J, Portbury AL, Schisler JC, Patterson C (2008) Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res 103:929–939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414

    Article  PubMed  CAS  Google Scholar 

  36. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, McDonald DM, Yancopoulos GD (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230:151–160

    Article  PubMed  CAS  Google Scholar 

  37. Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G, Isner J, Folkman J, Gimbrone MA Jr, Anderson DJ (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230:139–150

    Article  PubMed  CAS  Google Scholar 

  38. Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB (2004) Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci U S A 101:5583–5588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124:161–173

    Article  PubMed  CAS  Google Scholar 

  40. Vogt T, Stolz W, Welsh J, Jung B, Kerbel RS, Kobayashi H, Landthaler M, McClelland M (1998) Overexpression of Lerk-5/Eplg5 messenger RNA: a novel marker for increased tumorigenicity and metastatic potential in human malignant melanomas. Clin Cancer Res 4:791–797

    PubMed  CAS  Google Scholar 

  41. Hainaud P, Contreres JO, Villemain A, Liu LX, Plouet J, Tobelem G, Dupuy E (2006) The role of the vascular endothelial growth factor-Delta-like 4 ligand/Notch4-ephrin B2 cascade in tumor vessel remodeling and endothelial cell functions. Cancer Res 66:8501–8510

    Article  PubMed  CAS  Google Scholar 

  42. Haldimann M, Custer D, Munarini N, Stirnimann C, Zurcher G, Rohrbach V, Djonov V, Ziemiecki A, Andres AC (2009) Deregulated ephrin-B2 expression in the mammary gland interferes with the development of both the glandular epithelium and vasculature and promotes metastasis formation. Int J Oncol 35:525–536

    PubMed  CAS  Google Scholar 

  43. Holmberg J, Genander M, Halford MM, Anneren C, Sondell M, Chumley MJ, Silvany RE, Henkemeyer M, Frisen J (2006) EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell 125:1151–1163

    Article  PubMed  CAS  Google Scholar 

  44. Merlos-Suarez A, Barriga FM, Jung P, Iglesias M, Cespedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Munoz P, Clevers H, Sancho E, Mangues R, Batlle E (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524

    Article  PubMed  CAS  Google Scholar 

  45. Kaenel P, Schwab C, Mulchi K, Wotzkow C, Andres AC (2011) Preponderance of cells with stem cell characteristics in metastasising mouse mammary tumours induced by deregulated EphB4 and ephrin-B2 expression. Int J Oncol 38:151–160

    PubMed  Google Scholar 

  46. Kaenel P, Antonijevic M, Richter S, Kuchler S, Sutter N, Wotzkow C, Strange R, Andres AC (2011) Deregulated ephrin-B2 signaling in mammary epithelial cells alters the stem cell compartment and interferes with the epithelial differentiation pathway. Int J Oncol 40(2):357–69

    PubMed  Google Scholar 

  47. Batson J, Astin JW, Nobes CD (2013) Regulation of contact inhibition of locomotion by Eph-ephrin signalling. J Microsc 251:232–241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mayor R, Carmona-Fontaine C (2010) Keeping in touch with contact inhibition of locomotion. Trends Cell Biol 20:319–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang B (2011) Cancer cells exploit the Eph-ephrin system to promote invasion and metastasis: tales of unwitting partners. Sci Signal 4, e28

    Google Scholar 

  50. Astin JW, Batson J, Kadir S, Charlet J, Persad RA, Gillatt D, Oxley JD, Nobes CD (2010) Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol 12:1194–1204

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka M, Kuriyama S, Aiba N (2012) Nm23-H1 regulates contact inhibition of locomotion, which is affected by ephrin-B1. J Cell Sci 125:4343–4353

    Article  PubMed  CAS  Google Scholar 

  52. Morrissey C, True LD, Roudier MP, Coleman IM, Hawley S, Nelson PS, Coleman R, Wang YC, Corey E, Lange PH, Higano CS, Vessella RL (2008) Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases. Clin Exp Metastasis 25:377–388

    Article  PubMed  CAS  Google Scholar 

  53. Azab F, Azab AK, Maiso P, Calimeri T, Flores LM, Liu Y, Quang P, Roccaro AM, Sacco A, Ngo HT, Zhang Y, Morgan B, Carrasco R, Ghobrial IM (2011) Eph-B2/ephrin-B2 interaction plays a major role in the adhesion and proliferation of Waldenstrom’s macroglobulinemia. Clin Cancer Res 18(1):91–104

    Article  PubMed  Google Scholar 

  54. Trinidad EM, Ballesteros M, Zuloaga J, Zapata A, Onso-Colmenar LM (2009) An impaired transendothelial migration potential of chronic lymphocytic leukemia (CLL) cells can be linked to ephrin-A4 expression. Blood 114:5081–5090

    Article  PubMed  CAS  Google Scholar 

  55. Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, Ng T, Drescher U (2006) Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci 9:322–330

    Article  PubMed  CAS  Google Scholar 

  56. Hornberger MR, Dutting D, Ciossek T, Yamada T, Handwerker C, Lang S, Weth F, Huf J, Wessel R, Logan C, Tanaka H, Drescher U (1999) Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22:731–742

    Article  PubMed  CAS  Google Scholar 

  57. Antion MD, Christie LA, Bond AM, Dalva MB, Contractor A (2010) Ephrin-B3 regulates glutamate receptor signaling at hippocampal synapses. Mol Cell Neurosci 45:378–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kao TJ, Kania A (2011) Ephrin-mediated cis-attenuation of Eph receptor signaling is essential for spinal motor axon guidance. Neuron 71:76–91

    Article  PubMed  CAS  Google Scholar 

  59. Falivelli G, Lisabeth EM, Rubio dT, Perez-Tenorio G, Tosato G, Salvucci O, Pasquale EB (2013) Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands. PLoS One 8:e81445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Marquardt T, Shirasaki R, Ghosh S, Andrews SE, Carter N, Hunter T, Pfaff SL (2005) Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 121:127–139

    Article  PubMed  CAS  Google Scholar 

  61. Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL, Daniel TO (1998) Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 12:667–678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gao PP, Yue Y, Cerretti DP, Dreyfus C, Zhou R (1999) Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci U S A 96:4073–4077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Holmberg J, Clarke DL, Frisen J (2000) Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408:203–206

    Article  PubMed  CAS  Google Scholar 

  64. Hindges R, McLaughlin T, Genoud N, Henkemeyer M, O’Leary D (2002) EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35:475–487

    Article  PubMed  CAS  Google Scholar 

  65. Mann F, Ray S, Harris W, Holt C (2002) Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35:461–473

    Article  PubMed  CAS  Google Scholar 

  66. McLaughlin T, Hindges R, Yates PA, O’Leary DD (2003) Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal-ventral retinotopic mapping. Development 130:2407–2418

    Article  PubMed  CAS  Google Scholar 

  67. Hansen MJ, Dallal GE, Flanagan JG (2004) Retinal axon response to ephrin-as shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42:717–730

    Article  PubMed  CAS  Google Scholar 

  68. Noren NK, Pasquale EB (2007) Paradoxes of the EphB4 receptor in cancer. Cancer Res 67:3994–3997

    Article  PubMed  CAS  Google Scholar 

  69. Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA (2011) Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer 422(3):433–42

    Google Scholar 

  70. Fang WB, Brantley-Sieders DM, Parker MA, Reith AD, Chen J (2005) A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis. Oncogene 24:7859–7868

    Article  PubMed  CAS  Google Scholar 

  71. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS (2001) EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res 61:2301–2306

    PubMed  CAS  Google Scholar 

  72. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 23:1448–1456

    Article  PubMed  CAS  Google Scholar 

  73. Thaker PH, Deavers M, Celestino J, Thornton A, Fletcher MS, Landen CN, Kinch MS, Kiener PA, Sood AK (2004) EphA2 expression is associated with aggressive features in ovarian carcinoma. Clin Cancer Res 10:5145–5150

    Article  PubMed  CAS  Google Scholar 

  74. Miao H, Burnett E, Kinch M, Simon E, Wang B (2000) Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2:62–69

    Article  PubMed  CAS  Google Scholar 

  75. Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, Rhim JS, Sedor JR, Burnett E, Wang B (2001) Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3:527–530

    Article  PubMed  CAS  Google Scholar 

  76. Dohn M, Jiang J, Chen X (2001) Receptor tyrosine kinase EphA2 is regulated by p53-family proteins and induces apoptosis. Oncogene 20:6503–6515

    Article  PubMed  CAS  Google Scholar 

  77. Guo H, Miao H, Gerber L, Singh J, Denning MF, Gilliam AC, Wang B (2006) Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res 66:7050–7058

    Article  PubMed  CAS  Google Scholar 

  78. Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA (2012) Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer 131:E614–E624

    Article  PubMed  CAS  Google Scholar 

  79. Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R, Manchanda PK, Ladner RD, Hawes D, Weaver FA, Beart RW, Singh G, Nguyen C, Kahn M, Gill PS (2009) Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res 69:3736–3745

    Article  PubMed  CAS  Google Scholar 

  80. Heroult M, Schaffner F, Pfaff D, Prahst C, Kirmse R, Kutschera S, Riedel M, Ludwig T, Vajkoczy P, Graeser R, Augustin HG (2010) EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinb2. Mol Cancer Res 8:1297–1309

    Article  PubMed  CAS  Google Scholar 

  81. Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J, Basilion JP, Sedor J, Wu J, Danielpour D, Sloan AE, Cohen ML, Wang B (2009) EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16:9–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Matsuoka H, Obama H, Kelly ML, Matsui T, Nakamoto M (2005) Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration. J Biol Chem 280:29355–29363

    Article  PubMed  CAS  Google Scholar 

  83. Lackmann M, Mann RJ, Kravets L, Smith FM, Bucci TA, Maxwell KF, Howlett GJ, Olsson JE, Vanden Bos T, Cerretti DP, Boyd AW (1997) Ligand for EPH-related kinase (LERK) 7 is the preferred high affinity ligand for the HEK receptor. J Biol Chem 272:16521–16530

    Article  PubMed  CAS  Google Scholar 

  84. Winslow JW, Moran P, Valverde J, Shih A, Yuan JQ, Wong SC, Tsai SP, Goddard A, Henzel WJ, Hefti F (1995) Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14:973–981

    Article  PubMed  CAS  Google Scholar 

  85. Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819

    Article  PubMed  CAS  Google Scholar 

  86. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, Clevers H (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263

    Article  PubMed  CAS  Google Scholar 

  87. Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, Gray JW, McCormick F (2005) A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell 8:111–118

    Article  PubMed  CAS  Google Scholar 

  88. Ji XD, Li G, Feng YX, Zhao JS, Li JJ, Sun ZJ, Shi S, Deng YZ, Xu JF, Zhu YQ, Koeffler HP, Tong XJ, Xie D (2011) EphB3 is overexpressed in non-small-cell lung cancer and promotes tumor metastasis by enhancing cell survival and migration. Cancer Res 71:1156–1166

    Article  PubMed  CAS  Google Scholar 

  89. Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T (2004) Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 50:490–499

    Article  PubMed  CAS  Google Scholar 

  90. Cooke JE, Kemp HA, Moens CB (2005) EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr Biol 15:536–542

    Article  PubMed  CAS  Google Scholar 

  91. Tawadros T, Brown MD, Hart CA, Clarke NW (2012) Ligand-independent activation of EphA2 by arachidonic acid induces metastasis-like behaviour in prostate cancer cells. Br J Cancer 107:1737–1744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Petty A, Myshkin E, Qin H, Guo H, Miao H, Tochtrop GP, Hsieh JT, Page P, Liu L, Lindner DJ, Acharya C, MacKerell AD, Ficker E, Song J, Wang B (2012) A small molecule agonist of EphA2 receptor tyrosine kinase inhibits tumor cell migration in vitro and prostate cancer metastasis in vivo. PLoS One 7:e42120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Aslam MI, Abraham J, Mansoor A, Druker BJ, Tyner JW, Keller C (2014) PDGFRbeta reverses EphB4 signaling in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A 111:6383–6388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H (2010) Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol 190:461–477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Bartley TD, Hunt RW, Welcher AA, Boyle WJ, Parker VP, Lindberg RA, Lu HS, Colombero AM, Elliott RL, Guthrie BA (1994) B61 is a ligand for the ECK receptor protein-tyrosine kinase. Nature 368:558–560

    Article  PubMed  CAS  Google Scholar 

  96. Alford SC, Bazowski J, Lorimer H, Elowe S, Howard PL (2007) Tissue transglutaminase clusters soluble A-type ephrins into functionally active high molecular weight oligomers. Exp Cell Res 313:4170–4179

    Article  PubMed  CAS  Google Scholar 

  97. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365

    Article  PubMed  CAS  Google Scholar 

  98. Beauchamp A, Lively MO, Mintz A, Gibo D, Wykosky J, Debinski W (2012) EphrinA1 is released in three forms from cancer cells by matrix metalloproteases. Mol Cell Biol 32:3253–3264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123:291–304

    Article  PubMed  CAS  Google Scholar 

  100. Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, Robakis NK (2006) Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J 25:1242–1252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Pascall JC, Brown KD (2004) Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem Biophys Res Commun 317:244–252

    Article  PubMed  CAS  Google Scholar 

  102. Tomita T, Tanaka S, Morohashi Y, Iwatsubo T (2006) Presenilin-dependent intramembrane cleavage of ephrin-B1. Mol Neurodegener 1:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Litterst C, Georgakopoulos A, Shioi J, Ghersi E, Wisniewski T, Wang R, Ludwig A, Robakis NK (2007) Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor. J Biol Chem 282:16155–16163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Xu J, Litterst C, Georgakopoulos A, Zaganas I, Robakis NK (2009) Peptide EphB2/CTF2 generated by the gamma-secretase processing of EphB2 receptor promotes tyrosine phosphorylation and cell surface localization of N-methyl-D-aspartate receptors. J Biol Chem 284:27220–27228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Lin KT, Sloniowski S, Ethell DW, Ethell IM (2008) Ephrin-B2-induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion. J Biol Chem 283:28969–28979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Gatto G, Morales D, Kania A, Klein R (2014) EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol 24:2355–2365

    Article  PubMed  CAS  Google Scholar 

  107. Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, Katahira-Tayama S, Sato T, Yamauchi E, Oda Y, Takai Y (2009) Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol 185:551–564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Eriksson O, Ramstrom M, Hornaeus K, Bergquist J, Mokhtari D, Siegbahn A (2014) The eph tyrosine kinase receptors ephb2 and epha2 are novel proteolytic substrates of tissue factor/coagulation factor viia. J Biol Chem 289:32379–32391

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W (2008) Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27:7260–7273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Alford S, Watson-Hurthig A, Scott N, Carette A, Lorimer H, Bazowski J, Howard PL (2010) Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells. Cancer Cell Int 10:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Ieguchi K, Tomita T, Omori T, Komatsu A, Deguchi A, Masuda J, Duffy SL, Coulthard MG, Boyd A, Maru Y (2014) ADAM12-cleaved ephrin-A1 contributes to lung metastasis. Oncogene 33:2179–2190

    Article  PubMed  CAS  Google Scholar 

  112. Nikolov DB, Xu K, Himanen JP (2013) Eph/ephrin recognition and the role of Eph/ephrin clusters in signaling initiation. Biochim Biophys Acta 1834:2160–2165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lackmann M, Oates AC, Dottori M, Smith FM, Do C, Power M, Kravets L, Boyd AW (1998) Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J Biol Chem 273:20228–20237

    Article  PubMed  CAS  Google Scholar 

  114. Himanen JP, Saha N, Nikolov DB (2007) Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 19:534–542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S (2010) Architecture of Eph receptor clusters. Proc Natl Acad Sci U S A 107:10860–10865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wimmer-Kleikamp SH, Janes PW, Squire A, Bastiaens PI, Lackmann M (2004) Recruitment of Eph receptors into signaling clusters does not require ephrin contact. J Cell Biol 164:661–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY (2010) An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol 17:398–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Seiradake E, Schaupp A, del Toro RD, Kaufmann R, Mitakidis N, Harlos K, Aricescu AR, Klein R, Jones EY (2013) Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol 20:958–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R (2014) The composition of EphB2 clusters determines the strength in the cellular repulsion response. J Cell Biol 204:409–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Janes PW, Griesshaber B, Atapattu L, Nievergall E, Hii LL, Mensinga A, Chheang C, Day BW, Boyd AW, Bastiaens PI, Jorgensen C, Pawson T, Lackmann M (2011) Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. J Cell Biol 195:1033–1045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Komurov K, Padron D, Cheng T, Roth M, Rosenblatt KP, White MA (2010) Comprehensive mapping of the human kinome to epidermal growth factor receptor signaling. J Biol Chem 285:21134–21142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Shao Z, Zhang WF, Chen XM, Shang ZJ (2008) Expression of EphA2 and VEGF in squamous cell carcinoma of the tongue: correlation with the angiogenesis and clinical outcome. Oral Oncol 44:1110–1117

    Article  PubMed  CAS  Google Scholar 

  123. Fukai J, Yokote H, Yamanaka R, Arao T, Nishio K, Itakura T (2008) EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line. Mol Cancer Ther 7:2768–2778

    Article  PubMed  CAS  Google Scholar 

  124. Salvucci O, de la Luz SM, Martina JA, McCormick PJ, Tosato G (2006) EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood 108:2914–2922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956

    Article  PubMed  CAS  Google Scholar 

  126. Nolt MJ, Lin Y, Hruska M, Murphy J, Sheffler-Colins SI, Kayser MS, Passer J, Bennett MV, Zukin RS, Dalva MB (2011) EphB controls NMDA receptor function and synaptic targeting in a subunit-specific manner. J Neurosci 31:5353–5364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15:598–606

    Article  PubMed  CAS  Google Scholar 

  128. Yumoto N, Wakatsuki S, Kurisaki T, Hara Y, Osumi N, Frisen J, Sehara-Fujisawa A (3) Meltrin beta/ADAM19 interacting with EphA4 in developing neural cells participates in formation of the neuromuscular junction. PLoS One e3322

    Google Scholar 

  129. Wei S, Xu G, Bridges LC, Williams P, White JM, DeSimone DW (2010) ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling. Dev Cell 19:345–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Solanas G, Cortina C, Sevillano M, Batlle E (2011) Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat Cell Biol 13:1100–1107

    Article  PubMed  CAS  Google Scholar 

  131. Nakada M, Niska JA, Miyamori H, McDonough WS, Wu J, Sato H, Berens ME (2004) The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res 64:3179–3185

    Article  PubMed  CAS  Google Scholar 

  132. Tanaka M, Kamata R, Takigahira M, Yanagihara K, Sakai R (2007) Phosphorylation of ephrin-B1 regulates dissemination of gastric scirrhous carcinoma. Am J Pathol 171:68–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Huynh-Do U, Vindis C, Liu H, Cerretti DP, McGrew JT, Enriquez M, Chen J, Daniel TO (2002) Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J Cell Sci 115:3073–3081

    PubMed  CAS  Google Scholar 

  134. Hu T, Shi G, Larose L, Rivera GM, Mayer BJ, Zhou R (2009) Regulation of process retraction and cell migration by EphA3 is mediated by the adaptor protein Nck1. Biochemistry 48:6369–6378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ellis C, Kasmi F, Ganju P, Walls E, Panayotou G, Reith AD (1996) A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12:1727–1736

    PubMed  CAS  Google Scholar 

  136. Zisch AH, Kalo MS, Chong LD, Pasquale EB (1998) Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 16:2657–2670

    Article  PubMed  CAS  Google Scholar 

  137. Knoll B, Drescher U (2004) Src family kinases are involved in EphA receptor-mediated retinal axon guidance. J Neurosci 24:6248–6257

    Article  PubMed  CAS  Google Scholar 

  138. Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E (1999) An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci U S A 96:13813–13818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Choi S, Park S (1999) Phosphorylation at Tyr-838 in the kinase domain of EphA8 modulates Fyn binding to the Tyr-615 site by enhancing tyrosine kinase activity. Oncogene 18:5413–5422

    Article  PubMed  CAS  Google Scholar 

  140. Hock B, Bohme B, Karn T, Feller S, Rubsamen-Waigmann H, Strebhardt K (1998) Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene 17:255–260

    Article  PubMed  CAS  Google Scholar 

  141. Vindis C, Cerretti DP, Daniel TO, Huynh-Do U (2003) EphB1 recruits c-Src and p52Shc to activate MAPK/ERK and promote chemotaxis. J Cell Biol 162:661–671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kandouz M, Haidara K, Zhao J, Brisson ML, Batist G (2010) The EphB2 tumor suppressor induces autophagic cell death via concomitant activation of the ERK1/2 and PI3K pathways. Cell Cycle 9:398–407

    Article  PubMed  CAS  Google Scholar 

  143. Maddigan A, Truitt L, Arsenault R, Freywald T, Allonby O, Dean J, Narendran A, Xiang J, Weng A, Napper S, Freywald A (2011) EphB receptors trigger Akt activation and suppress Fas receptor-induced apoptosis in malignant T lymphocytes. J Immunol 187:5983–5994

    Article  PubMed  CAS  Google Scholar 

  144. Stahl S, Branca RM, Efazat G, Ruzzene M, Zhivotovsky B, Lewensohn R, Viktorsson K, Lehtio J (2011) Phosphoproteomic profiling of NSCLC cells reveals that ephrin B3 regulates pro-survival signaling through Akt1-mediated phosphorylation of the EphA2 receptor. J Proteome Res 10:2566–2578

    Article  PubMed  CAS  Google Scholar 

  145. Yang NY, Fernandez C, Richter M, Xiao Z, Valencia F, Tice DA, Pasquale EB (2011) Crosstalk of the EphA2 receptor with a serine/threonine phosphatase suppresses the Akt-mTORC1 pathway in cancer cells. Cell Signal 23:201–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Fritsche-Guenther R, Noske A, Ungethum U, Kuban RJ, Schlag PM, Tunn PU, Karle J, Krenn V, Dietel M, Sers C (2010) De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway. Histopathology 57:836–850

    Article  PubMed  Google Scholar 

  147. Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, Coffman K, Jackson D, Bruckheimer E, Muraoka-Cook RS, Chen J (2008) The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 118:64–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Larsen AB, Stockhausen MT, Poulsen HS (2010) Cell adhesion and EGFR activation regulate EphA2 expression in cancer. Cell Signal 22:636–644

    Article  PubMed  CAS  Google Scholar 

  149. Larsen AB, Pedersen MW, Stockhausen MT, Grandal MV, Van DB, Poulsen HS (2007) Activation of the EGFR gene target EphA2 inhibits epidermal growth factor-induced cancer cell motility. Mol Cancer Res 5:283–293

    Article  PubMed  CAS  Google Scholar 

  150. Poliakov A, Cotrina ML, Pasini A, Wilkinson DG (2008) Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. J Cell Biol 183:933–947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gurniak CB, Berg LJ (1996) A new member of the Eph family of receptors that lacks protein tyrosine kinase activity. Oncogene 13:777–786

    PubMed  CAS  Google Scholar 

  152. Matsuoka H, Iwata N, Ito M, Shimoyama M, Nagata A, Chihara K, Takai S, Matsui T (1997) Expression of a kinase-defective Eph-like receptor in the normal human brain. Biochem Biophys Res Commun 235:487–492

    Article  PubMed  CAS  Google Scholar 

  153. Freywald A, Sharfe N, Roifman CM (2002) The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J Biol Chem 277:3823–3828

    Article  PubMed  CAS  Google Scholar 

  154. Gu C, Park S (2001) The EphA8 receptor regulates integrin activity through p110gamma phosphatidylinositol-3 kinase in a tyrosine kinase activity-independent manner. Mol Cell Biol 21:4579–4597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Huynh-Do U, Stein E, Lane AA, Liu H, Cerretti DP, Daniel TO (1999) Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J 18:2165–2173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Taddei ML, Parri M, Angelucci A, Onnis B, Bianchini F, Giannoni E, Raugei G, Calorini L, Rucci N, Teti A, Bologna M, Chiarugi P (2009) Kinase-dependent and -independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Am J Pathol 174:1492–1503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Miao H, Strebhardt K, Pasquale EB, Shen TL, Guan JL, Wang B (2005) Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of EphB3 receptor tyrosine kinase. Role of Rho family small GTPases. J Biol Chem 280:923–932

    Article  PubMed  CAS  Google Scholar 

  158. Kandouz M, Batist G (2010) Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets 14:681–692

    Article  PubMed  CAS  Google Scholar 

  159. Mellitzer G, Xu Q, Wilkinson DG (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400:77–81

    Article  PubMed  CAS  Google Scholar 

  160. Jones TL, Chong LD, Kim J, Xu RH, Kung HF, Daar IO (1998) Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Proc Natl Acad Sci U S A 95:576–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Paul DL, Yu K, Bruzzone R, Gimlich RL, Goodenough DA (1995) Expression of a dominant negative inhibitor of intercellular communication in the early Xenopus embryo causes delamination and extrusion of cells. Development 121:371–381

    PubMed  CAS  Google Scholar 

  162. Davy A, Bush JO, Soriano P (2006) Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol 4:e315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Ishii M, Mueller I, Nakajima T, Pasquale EB, Ogawa K (2011) EphB signaling inhibits gap junctional intercellular communication and synchronized contraction in cultured cardiomyocytes. Basic Res Cardiol 106:1057–1068

    Article  PubMed  CAS  Google Scholar 

  164. Zhou N, Zhao WD, Liu DX, Liang Y, Fang WG, Li B, Chen YH (2011) Inactivation of EphA2 promotes tight junction formation and impairs angiogenesis in brain endothelial cells. Microvasc Res 82:113–121

    Article  PubMed  CAS  Google Scholar 

  165. Tanaka M, Kamata R, Sakai R (2005) EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem 280:42375–42382

    Article  PubMed  CAS  Google Scholar 

  166. Shang X, Lin X, Howell SB (2014) Claudin-4 controls the receptor tyrosine kinase EphA2 pro-oncogenic switch through ss-catenin. Cell Commun Signal 12:59

    PubMed  PubMed Central  Google Scholar 

  167. Sukka-Ganesh B, Mohammed KA, Kaye F, Goldberg EP, Nasreen N (2012) Ephrin-A1 inhibits NSCLC tumor growth via induction of Cdx-2 a tumor suppressor gene. BMC Cancer 12:309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Dravis C, Henkemeyer M (2011) Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues. Dev Biol 355:138–151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Genet G, Guilbeau-Frugier C, Honton B, Dague E, Schneider MD, Coatrieux C, Calise D, Cardin C, Nieto C, Payre B, Dubroca C, Marck P, Heymes C, Dubrac A, Arvanitis D, Despas F, Altie MF, Seguelas MH, Delisle MB, Davy A, Senard JM, Pathak A, Gales C (2012) Ephrin-B1 is a novel specific component of the lateral membrane of the cardiomyocyte and is essential for the stability of cardiac tissue architecture cohesion. Circ Res 110:688–700

    Article  PubMed  CAS  Google Scholar 

  170. Tanaka M, Kamata R, Sakai R (2005) Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. EMBO J 24:3700–3711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2:531–539

    Article  PubMed  CAS  Google Scholar 

  172. Wang Q, Margolis B (2007) Apical junctional complexes and cell polarity. Kidney Int 72:1448–1458

    Article  PubMed  CAS  Google Scholar 

  173. Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  PubMed  CAS  Google Scholar 

  174. Lee HS, Daar IO (2009) EphrinB reverse signaling in cell-cell adhesion: is it just par for the course? Cell Adh Migr 3:250–255

    Article  PubMed  PubMed Central  Google Scholar 

  175. Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO (2008) EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat Cell Biol 10:979–986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192:907–917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410

    Article  PubMed  CAS  Google Scholar 

  178. Fagotto F, Rohani N, Touret AS, Li R (2013) A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. Dev Cell 27:72–87

    Article  PubMed  CAS  Google Scholar 

  179. Orsulic S, Kemler R (2000) Expression of Eph receptors and ephrins is differentially regulated by E-cadherin. J Cell Sci 113(Pt 10):1793–1802

    PubMed  CAS  Google Scholar 

  180. Parrinello S, Napoli I, Ribeiro S, Wingfield DP, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC (2010) EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143:145–155

    Article  PubMed  CAS  Google Scholar 

  181. Kasemeier-Kulesa JC, Bradley R, Pasquale EB, Lefcort F, Kulesa PM (2006) Eph/ephrins and N-cadherin coordinate to control the pattern of sympathetic ganglia. Development 133:4839–4847

    Article  PubMed  CAS  Google Scholar 

  182. Glazier JA, Zhang Y, Swat M, Zaitlen B, Schnell S (2008) Coordinated action of N-CAM, N-cadherin, EphA4, and ephrinB2 translates genetic prepatterns into structure during somitogenesis in chick. Curr Top Dev Biol 81:205–247

    Article  PubMed  PubMed Central  Google Scholar 

  183. Cooper MA, Son AI, Komlos D, Sun Y, Kleiman NJ, Zhou R (2008) Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc Natl Acad Sci U S A 105:16620–16625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Winning RS, Wyman TL, Walker GK (2001) EphA4 activity causes cell shape change and a loss of cell polarity in Xenopus laevis embryos. Differentiation 68:126–132

    Article  PubMed  CAS  Google Scholar 

  185. Miura K, Nam JM, Kojima C, Mochizuki N, Sabe H (2009) EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol Biol Cell 20:1949–1959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Son J, Park MS, Park I, Lee HK, Lee SH, Kang B, Min BH, Ryoo J, Lee S, Bae JS, Kim SH, Park MJ, Lee HS (2014) Pick1 modulates ephrinB1-induced junctional disassembly through an association with ephrinB1. Biochem Biophys Res Commun 450:659–665

    Article  PubMed  CAS  Google Scholar 

  187. Cheng C, Gong X (2011) Diverse roles of Eph/ephrin signaling in the mouse lens. PLoS One 6, e28147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Cheng C, Ansari MM, Cooper JA, Gong X (2013) EphA2 and Src regulate equatorial cell morphogenesis during lens development. Development 140:4237–4245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Nasreen N, Khodayari N, Sriram PS, Patel J, Mohammed KA (2014) Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling. Am J Physiol Cell Physiol 306:C1154–C1166

    Article  PubMed  CAS  Google Scholar 

  190. Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, Asao T, Kuwano H (2004) Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11:605–611

    PubMed  CAS  Google Scholar 

  191. Hou F, Yuan W, Huang J, Qian L, Chen Z, Ge J, Wu S, Chen J, Wang J, Chen Z (2012) Overexpression of EphA2 correlates with epithelial-mesenchymal transition-related proteins in gastric cancer and their prognostic importance for postoperative patients. Med Oncol 29:2691–2700

    Article  PubMed  CAS  Google Scholar 

  192. Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, Hou F, Ge J, Zhong M, Tang Y, Xia X, Chen Z (2014) EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells. Oncogene 33:2737–2747

    Article  PubMed  CAS  Google Scholar 

  193. Liu C, Huang H, Wang C, Kong Y, Zhang H (2014) Involvement of ephrin receptor A4 in pancreatic cancer cell motility and invasion. Oncol Lett 7:2165–2169

    PubMed  PubMed Central  CAS  Google Scholar 

  194. Zantek ND, Azimi M, Fedor-Chaiken M, Wang B, Brackenbury R, Kinch MS (1999) E-cadherin regulates the function of the EphA2 receptor tyrosine kinase. Cell Growth Differ 10:629–638

    PubMed  CAS  Google Scholar 

  195. Chiu ST, Chang KJ, Ting CH, Shen HC, Li H, Hsieh FJ (2009) Over-expression of EphB3 enhances cell-cell contacts and suppresses tumor growth in HT-29 human colon cancer cells. Carcinogenesis 30:1475–1486

    Article  PubMed  CAS  Google Scholar 

  196. Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, van de Born M, Malats N, Sancho E, Boon E, Pawson T, Gallinger S, Pals S, Clevers H (2005) EphB receptor activity suppresses colorectal cancer progression. Nature 435:1126–1130

    Article  PubMed  CAS  Google Scholar 

  197. Cortina C, Palomo-Ponce S, Iglesias M, Fernandez-Masip JL, Vivancos A, Whissell G, Huma M, Peiro N, Gallego L, Jonkheer S, Davy A, Lloreta J, Sancho E, Batlle E (2007) EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 39:1376–1383

    Article  PubMed  CAS  Google Scholar 

  198. Schauer MC, Stoecklein NH, Theisen J, Kropil F, Baldus S, Hoelscher A, Feith M, Bolke E, Matuschek C, Budach W, Knoefel WT (2012) The simultaneous expression of both ephrin B3 receptor and E-cadherin in Barrett’s adenocarcinoma is associated with favorable clinical staging. Eur J Med Res 17:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Fang WB, Ireton RC, Zhuang G, Takahashi T, Reynolds A, Chen J (2008) Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism. J Cell Sci 121:358–368

    Article  PubMed  CAS  Google Scholar 

  200. Potla L, Boghaert ER, Armellino D, Frost P, Damle NK (2002) Reduced expression of EphrinA1 (EFNA1) inhibits three-dimensional growth of HT29 colon carcinoma cells. Cancer Lett 175:187–195

    Article  PubMed  CAS  Google Scholar 

  201. Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor RE, Hendrix MJ (2006) VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 5:228–233

    Article  PubMed  CAS  Google Scholar 

  202. Guo JQ, Zheng QH, Chen H, Chen L, Xu JB, Chen MY, Lu D, Wang ZH, Tong HF, Lin S (2014) Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VEcadherin/EphA2/MMP9/MMP2 expression. Int J Oncol 45:1065–1072

    PubMed  CAS  Google Scholar 

  203. Kobielak A, Fuchs E (2004) Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5:614–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Vasioukhin V (2012) Adherens junctions and cancer. Subcell Biochem 60:379–414

    Article  PubMed  CAS  Google Scholar 

  205. Dusek RL, Attardi LD (2011) Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer 11:317–323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Lin S, Gordon K, Kaplan N, Getsios S (2010) Ligand targeting of EphA2 enhances keratinocyte adhesion and differentiation via desmoglein 1. Mol Biol Cell 21:3902–3914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Garber K (2010) Of Ephs and ephrins: companies target guidance molecules in cancer. J Natl Cancer Inst 102:1692–1694

    Article  PubMed  Google Scholar 

  208. Nasreen N, Mohammed KA, Antony VB (2006) Silencing the receptor EphA2 suppresses the growth and haptotaxis of malignant mesothelioma cells. Cancer 107:2425–2435

    Article  PubMed  CAS  Google Scholar 

  209. Brantley DM, Cheng N, Thompson EJ, Lin Q, Brekken RA, Thorpe PE, Muraoka RS, Cerretti DP, Pozzi A, Jackson D, Lin C, Chen J (2002) Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21:7011–7026

    Article  PubMed  CAS  Google Scholar 

  210. Martiny-Baron G, Korff T, Schaffner F, Esser N, Eggstein S, Marme D, Augustin HG (2004) Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia 6:248–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Scehnet JS, Ley EJ, Krasnoperov V, Liu R, Manchanda PK, Sjoberg E, Kostecke AP, Gupta S, Kumar SR, Gill PS (2009) The role of ephs, ephrins, and growth factors in Kaposi sarcoma and implications of ephrinB2 blockade. Blood 113:254–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Djokovic D, Trindade A, Gigante J, Badenes M, Silva L, Liu R, Li X, Gong M, Krasnoperov V, Gill PS, Duarte A (2010) Combination of Dll4/Notch and Ephrin-B2/EphB4 targeted therapy is highly effective in disrupting tumor angiogenesis. BMC Cancer 10:641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Tanaka M, Kamata R, Yanagihara K, Sakai R (2010) Suppression of gastric cancer dissemination by ephrin-B1-derived peptide. Cancer Sci 101:87–93

    Article  PubMed  CAS  Google Scholar 

  214. Ansuini H, Meola A, Gunes Z, Paradisi V, Pezzanera M, Acali S, Santini C, Luzzago A, Mori F, Lazzaro D, Ciliberto G, Nicosia A, La MN, Vitelli A (2009) Anti-epha2 antibodies with distinct in vitro properties have equal in vivo efficacy in pancreatic cancer. J Oncol 2009:951917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Landen CN Jr, Lu C, Han LY, Coffman KT, Bruckheimer E, Halder J, Mangala LS, Merritt WM, Lin YG, Gao C, Schmandt R, Kamat AA, Li Y, Thaker P, Gershenson DM, Parikh NU, Gallick GE, Kinch MS, Sood AK (2006) Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J Natl Cancer Inst 98:1558–1570

    Article  PubMed  CAS  Google Scholar 

  216. Krasnoperov V, Kumar SR, Ley E, Li X, Scehnet J, Liu R, Zozulya S, Gill PS (2010) Novel EphB4 monoclonal antibodies modulate angiogenesis and inhibit tumor growth. Am J Pathol 176:2029–2038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Martiny-Baron G, Holzer P, Billy E, Schnell C, Brueggen J, Ferretti M, Schmiedeberg N, Wood JM, Furet P, Imbach P (2010) The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis 13:259–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Kandouz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amessou, M., Kandouz, M. (2015). Role of the Family of Ephs and Ephrins in Cell-Cell Communication in Cancer. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_10

Download citation

Publish with us

Policies and ethics