Skip to main content

The Actual Role of LDH as Tumor Marker, Biochemical and Clinical Aspects

  • Chapter
Advances in Cancer Biomarkers

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 867))

Abstract

Lactate dehydrogenase (LDH) among many biochemical parameters represents a very valuable enzyme in patients with cancer with possibility for easy routine measurement in many clinical laboratories. Previous studies where mostly based on investigated LDH in serum of patients with cancer with aims to estimate their clinical significance. The new directions in investigation of LDH where based on the principle that tumor cells release intracellular enzymes trough damaged cell membrane, that is mostly consequence in intracellular mitochondrial machinery alteration, and apoptosis deregulation. This consideration can be used not only in-vitro assays, but also in respect to clinical characteristics of tumor patients. Based on new techniques of molecular biology it is shown that intracellular characteristics of LDH enzyme are very sensitive indicators of the cellular metabolic state, aerobic or anaerobic direction of glycolysis, activation status and malignant transformation. Using different molecular analyses it is very useful to analyzed intracellular LDH activity in different cell line and tumor tissues obtained from patients, not only to understanding complexity in cancer biochemistry but also in early clinical diagnosis. Based on understandings of the LDH altered metabolism, new therapy option is created with aims to blocking certain metabolic pathways and stop tumors growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benboubker L, Valat C, Linassier C et al (2000) A new serologic index for low-grade non-Hodgkin’s lymphoma based on initial CA125 and LDH serum levels. Ann Oncol 11:1485–1491

    Article  CAS  PubMed  Google Scholar 

  2. Koukourakis MI, Kontomanolis E, Giatromanolaki A, Sivridis E, Liberis V (2009) Serum and tissue LDH levels in patients with breast/gynaecological cancer and benign diseases. Gynecol Obstet Invest 67(3):162–168

    Article  CAS  PubMed  Google Scholar 

  3. Sagman U, Feld R, Evans WK, Warr D, Shepherd FA, Payne D, Pringle J, Yeoh J, DeBoer G, Malkin A et al (1991) The prognostic significance of pretreatment serum lactate dehydrogenase in patients with small-cell lung cancer. J Clin Oncol 9:954–961

    CAS  PubMed  Google Scholar 

  4. Coiffier B (1996) Advances in lymphoma research. Can prognostic factors be applied in treatment selection for aggressive lymphoma patients? Cancer Treat Res 85:53–77

    Article  CAS  PubMed  Google Scholar 

  5. Homsi J, Kashani-Sabet M, Messina JL, Daud A (2005) Cutaneous melanoma: prognostic factors. Cancer Control 12:223–229

    PubMed  Google Scholar 

  6. Jurisic V, Bumbasirevic V, Konjevic G, Djuricic B, Spuzic I (2004) TNF-alpha induces changes in LDH isotype profile following triggering of apoptosis in PBL of non-Hodgkin’s lymphomas. Ann Hematol 83(2):84–91, Epub 2003 Oct 28

    Article  CAS  PubMed  Google Scholar 

  7. Jurisic V, Terzic T, Pavlovic S, Colovic N, Colovic M (2008) Elevated TNF-alpha and LDH without parathormone disturbance is associated with diffuse osteolytic lesions in leukemic transformation of myelofibrosis. Pathol Res Pract 204(2):129–132

    Article  PubMed  Google Scholar 

  8. Ouyang QC, Wang PH (2001) The variation of the serum level of lactic dehydrogenace in 105 patients with non-Hodgkin’s and its clinical significance. J Pract Oncol 16:111–113

    Google Scholar 

  9. De Berardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  Google Scholar 

  10. Luo J, Solimini NL, Elledge SJ (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Warburg O, Posener K, Negelein E (1924) U¨ ber den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  12. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Icard P, Lincet H (2012) A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells review. Biochim Biophys Acta (BBA) – Reviews on Cancer 1826(2):423–433

    Article  CAS  Google Scholar 

  14. Lu R, Jiang M, Chen Z, Xu X, Hu H, Zhao X, Gao X, Guo L (2013) Lactate dehydrogenase 5 expression in non-hodgkin lymphoma is associated with the induced hypoxia regulated protein and poor prognosis. PLoS One 8(9):e74853. doi:10.1371/journal.pone.0074853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Shim H, Dolde C, Lewis B, Wu C, Dang G, Jungmann R, Dalla-Favera R, Dang C (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 94:6658–6663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  17. Chen JL, Appelbaum DE, Kocherginsky M, Cowey CL, Kimryn Rathmell W, McDermott DF, Stadler WM (2013) FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med 2(4):545–552. doi:10.1002/cam4.102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kim J-W, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30(3):142–150

    Article  CAS  PubMed  Google Scholar 

  19. Harris AL (2002) Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  20. Kolev Y, Uetake H, Takagi Y, Sugihara K (2008) Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer: association with hypoxia-inducible factor (HIF-1alpha) pathway, angiogenic factors production and poor prognosis. Ann Surg Oncol 15:2336–2344

    Article  PubMed  Google Scholar 

  21. Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van Diest PJ, van der Wall E (2005) Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia- inducible factor 1. J Pathol 206:291–304

    Article  CAS  PubMed  Google Scholar 

  22. Huang D, Jungmann RA (1995) Transcriptional regulation of the lactate dehydrogenase A subunit gene by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Mol Cell Endocrinol 108:87–94

    Article  CAS  PubMed  Google Scholar 

  23. Markert CL (1963) Lactate dehydrogenase isozymes: dissociation and recombination of subunits. Science 140:1329–1330

    Article  CAS  PubMed  Google Scholar 

  24. Grimm M, Alexander D, Munz A, Hoffmann J, Reinert S (2013) Increased LDH5 expression is associated with lymph node metastasis and outcome in oral squamous cell carcinoma. Clin Exp Metastasis 30(4):529–540. doi:10.1007/s10585-012-9557-2

    Article  CAS  PubMed  Google Scholar 

  25. Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC, Harris AL (2003) Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer 89(5):877–885. doi:10.1038/sj.bjc.6601205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Koukourakis MI, Giatromanolaki A, Sivridis E (2003) Lactate dehydrogenase isoenzymes 1 and 5: differential expression by neoplastic and stromal cells in non-small cell lung cancer and other epithelial malignant tumors. Tumour Biol 24:199–202

    Article  CAS  PubMed  Google Scholar 

  27. Langhammer S, Najjar M, Hess-Stumpp H, Thierauch KH (2011) LDH-A influences hypoxia-inducible factor 1alpha (HIF1 alpha) and is critical for growth of HT29 colon carcinoma cells in vivo. Target Oncol 6(3):155–162. doi:10.1007/s11523-011-0184-7

    Article  PubMed  Google Scholar 

  28. Rabinowitz Y, Dietz AA (1967) Malic and lactic dehydrogenase isoenzymes of normal and leukemic leukocytes separated on glass bead columns. Blood 29:182–195

    CAS  PubMed  Google Scholar 

  29. Jurisic V, Konjevic G, Banicevic B, Djuricic B, Spuzic I (2000) Different alterations in lactate dehydrogenase (LDH) activity and profile of peripheral blood mononuclear cells in Hodgkin’s and non-Hodgkin’s lymphomas. Eur J Haematol 64:259–266

    Article  CAS  PubMed  Google Scholar 

  30. Wollberg P, Nelson BD (1992) Regulation of the expression of lactate dehydrogenase isozymes in human lymphocytes. Mol Cell Biochem 110:161–164

    Article  CAS  PubMed  Google Scholar 

  31. Jurisic V, Bogdanovic G, Kojic V, Jakimov D, Srdic T (2006) Effect of TNF-alpha on Raji cells at different cellular levels estimated by various methods. Ann Hematol 85(2):86–94

    Article  CAS  PubMed  Google Scholar 

  32. Radenkovic S, Milosevic Z, Konjevic G, Karadzic K, Rovcanin B, Buta M, Gopcevic K, Jurisic V (2013) Lactate dehydrogenase, catalase, and superoxide dismutase in tumor tissue of breast cancer patients in respect to mammographic findings. Cell Biochem Biophys 66(2):287–295. doi:10.1007/s12013-012-9482-7

    Article  CAS  PubMed  Google Scholar 

  33. Brown NJ, Higham SE, Perunovic B, Arafa M, Balasubramanian S, Rehman I (2013) Lactate dehydrogenase-B is silenced by promoter methylation in a high frequency of human breast cancers. PLoS One 8(2), e57697. doi:10.1371/journal.pone.0057697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Scatena R, Bottoni P, Giardina B (2013) Circulating tumour cells and cancer stem cells: a role for proteomics in defining the interrelationships between function, phenotype and differentiation with potential clinical applications. Biochim Biophys Acta (BBA) – Reviews on Cancer 1835(2):129–143

    Article  CAS  Google Scholar 

  35. Gong G (2013) Local diffusion homogeneity (LDH): an inter-voxel diffusion MRI metric for assessing inter-subject white matter variability. PLoS One 8(6), e66366. doi:10.1371/journal.pone.0066366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434

    Article  CAS  PubMed  Google Scholar 

  37. Zhou M, Zhao Y, Ding Y, Liu H, Liu Z, Fodstad O, Riker AI, Kamarajugadda S, Lu J, Owen LB, Ledoux SP, Tan M (2010) Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 9:33

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ordys BB, Launay S, Deighton RF, McCulloch J, Whittle IR (2010) The role of mitochondria in glioma pathophysiology. Mol Neurobiol 42:64–75

    Article  CAS  PubMed  Google Scholar 

  39. Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    Article  CAS  PubMed  Google Scholar 

  40. Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61(14):1250–1275. doi:10.1016/j.addr.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  41. Konjević G, Jurisić V, Jakovljević B, Spuzić I (2002) Lactate dehydrogenase (LDH) in peripheral blood lymphocytes (PBL) of patients with solid tumors. Glas Srp Akad Nauka Med 47:137–147, Serbian

    PubMed  Google Scholar 

  42. Jurisic V (2003) Estimation of cell membrane alteration after drug treatment by LDH release. Blood 101:2894

    Article  CAS  PubMed  Google Scholar 

  43. Konjević G, Jurisić V, Spuzić I (2001) Association of NK cell dysfunction with changes in LDH characteristics of peripheral blood lymphocytes (PBL) in breast cancer patients. Breast Cancer Res Treat 66(3):255–263

    Article  PubMed  Google Scholar 

  44. Weinberg F, Chandel NS (2009) Mitochondrial metabolism and cancer. Ann N Y Acad Sci 1177:66–73

    Article  CAS  PubMed  Google Scholar 

  45. Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ (2012) Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta 1826(1):238–254. doi:10.1016/j.bbcan.2012.04.005

    CAS  PubMed  Google Scholar 

  46. Scatena R (2012) Mitochondria and cancer: a growing role in apoptosis, cancer cell metabolism and dedifferentiation. Review. Adv Exp Med Biol 942:287–308. doi:10.1007/978-94-007-2869-1_13

  47. Jurisić V, Spuzić I, Konjević G (1999) A comparison of the NK cell cytotoxicity with effects of TNF-alpha against K-562 cells, determined by LDH release assay. Cancer Lett 138(1–2):67–72

    Article  PubMed  Google Scholar 

  48. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  49. Jurisić V, Konjević G, Jancić-Nedeljkov R, Sretenović M, Banicević B, Colović M, Spuzić I (2004) The comparison of spontaneous LDH release activity from cultured PBMC with sera LDH activity in non-Hodgkin’s lymphoma patients. Med Oncol 21(2):179–185

    Article  PubMed  Google Scholar 

  50. Jurisic V, Kraguljac N, Konjevic G, Spuzic I (2005) TNF-alpha induced changes in cell membrane antigen expression on K-562 cells associated with increased lactate dehydrogenase (LDH) release. Neoplasma 52(1):25–31

    CAS  PubMed  Google Scholar 

  51. Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M (2011) TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol 239(3):115–122. doi:10.1007/s00232-010-9309-7

    Article  CAS  PubMed  Google Scholar 

  52. Zhang P, Wang J, Wang D, Wang H, Shan F, Chen L, Hou Y, Wang E, Lu CL (2012) Dendritic cell vaccine modified by Ag85A gene enhances anti-tumor immunity against bladder cancer. Int Immunopharmacol 14(3):252–260. doi:10.1016/j.intimp.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  53. Van der Helm HJ (1962) Interference of the measurement of lactate dehydrogenase (LDH) activity in human serum and plasma by LDH from blood cells. Clin Chim Acta 7:124–128

    Article  PubMed  Google Scholar 

  54. Korkolopoulou P, Thymara I, Kavantzas N, Vassilakopoulos TP, Angelopoulou MK, Kokoris SI, Dimitriadou EM, Siakantaris MP, Anargyrou K, Panayiotidis P, Tsenga A, Androulaki A, Doussis-Anagnostopoulou IA, Patsouris E, Pangalis GA (2005) Angiogenesis in Hodgkin’s lymphoma: a morphometric approach in 286 patients with prognostic implications. Leukemia 19(6):894–900

    Article  CAS  PubMed  Google Scholar 

  55. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC et al (2008) A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 111(2):558–565

    Article  CAS  PubMed  Google Scholar 

  56. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R et al (2004) Follicular lymphoma international prognostic index. Blood 104(5):1258–1265

    Article  CAS  PubMed  Google Scholar 

  57. Kastritis E, Zervas K, Repoussis P, Michali E, Katodrytou E, Zomas A et al (2009) Prognostication in young and old patients with Waldenstrom’s macroglobulinemia: importance of the International Prognostic Scoring System and of serum lactate dehydrogenase. Clin Lymphoma Myeloma 9(1):50–52

    Article  CAS  PubMed  Google Scholar 

  58. Dimopoulos MA, Barlogie B, Smith TL, Alexanian R (1991) High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med 115(12):931–935

    Article  CAS  PubMed  Google Scholar 

  59. Maltezas D, Dimopoulos MA, Katodritou I, Repousis P, Pouli A, Terpos E, Panayiotidis P, Delimpasi S, Michalis E, Anargyrou K, Gavriatopoulou M, Stefanoudaki A, Tzenou T, Koulieris E, Sachanas S, Dimou M, Vassilakopoulos TP, Angelopoulou MK, Pangalis GA, Kyrtsonis MC (2013) Re-evaluation of prognostic markers including staging, serum free light chains or their ratio and serum lactate dehydrogenase in multiple myeloma patients receiving novel agents. Hematol Oncol 31(2):356–362. doi:10.1002/hon.2026

    Article  CAS  Google Scholar 

  60. Jurisić V, Colović M (2002) Correlation of sera TNF-alpha with percentage of bone marrow plasma cells, LDH, beta2-microglobulin, and clinical stage in multiple myeloma. Med Oncol 19(3):133–139

    Article  PubMed  Google Scholar 

  61. Kim DY, Lee JH, Lee JH, Kim SD, Lim SN, Choi Y, Lee YS, Kang YA, Seol M, Jeon M, Kim JY, Lee KH, Lee YJ, Lee KH (2011) Significance of fibrinogen, D-dimer, and LDH levels in predicting the risk of bleeding in patients with acute promyelocytic leukemia. Leuk Res 35(2):152–158. doi:10.1016/j.leukres.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  62. Stokkel MP, Van Eck-Smit BL, Zwinderman AH, Willems LN, Pauwels EK (1997) The diagnostic value of pretreatment serum LDH in patients with limited disease small-cell lung carcinoma. Int J Biol Markers 12:162–167

    CAS  PubMed  Google Scholar 

  63. Stokkel MP, van Eck-Smit BL, Zwinderman AH, Willems LN, Pauwels EK (1998) Pretreatment serum LDH as additional staging parameter in small-cell lung carcinoma. Neth J Med 52:65–70

    Article  CAS  PubMed  Google Scholar 

  64. Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL (2006) Lactate dehydrogenase 5 expression in operable colorectal cancer: strong association with survival and activated vascular endothelial growth factor pathway – a report of the Tumour Angiogenesis Research Group. J Clin Oncol 24:4301–4308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the grant No. 175056 of the Ministry of Science and Technology of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jurisic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jurisic, V., Radenkovic, S., Konjevic, G. (2015). The Actual Role of LDH as Tumor Marker, Biochemical and Clinical Aspects. In: Scatena, R. (eds) Advances in Cancer Biomarkers. Advances in Experimental Medicine and Biology, vol 867. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7215-0_8

Download citation

Publish with us

Policies and ethics