Skip to main content

Immunophenotyping as Biomarker Platform in Acute Leukemia

  • Living reference work entry
  • First Online:
Biomarkers in Cancer
  • 322 Accesses

Abstract

In the past two decades, scientific advances have yielded new insights into the genetic and biological features of acute leukemia. Despite these advances, the mortality rate of patients with acute leukemia is still high. Over the same time period, flow cytometric immunophenotyping has become a major tool in current clinical practice for the diagnosis and classification of acute leukemia and the detection of residual leukemic cells after chemotherapy. However, the identification of patients with a high risk of relapse following therapy through the detection of leukemic minimal residual disease (MRD) remains a major challenge since it is difficult to identify small numbers of residual leukemic blasts in a background of nonmalignant regenerating bone marrow cells. The detection of leukemic blasts rests on the identification of characteristic immunophenotypic aberrancies by flow cytometry that allow discrimination from normal hematopoietic cells. Unfortunately, the immunophenotype of leukemic blasts often closely resembles their normal counterparts in regenerating bone marrows after cytotoxic chemotherapy which makes definitive assessment of leukemic MRD difficult. Emerging molecular analyses such as mRNA profiling by DNA microarray and proteomic analysis by mass spectrometry have been employed to identify new biomarkers of leukemic MRD. Despite these advanced methods, few new biomarkers of leukemic blasts are available clinically which hinders the assessment of leukemic MRD. One way to overcome this barrier is to develop new molecular probes and to discover new biomarkers, which can be used in flow cytometric analysis to distinguish leukemia cells from their normal counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AML:

Acute Myeloid Leukemia

B-ALL:

B-Cell Acute Lymphoblastic Leukemia

FISH:

Fluorescence In Situ Hybridization

FLT3-ITD:

FMS-Like Tyrosine Kinase 3-Internal Tandem Duplication

MRD:

Minimal Residual Disease

NPM1:

Nucleophosmin 1

PCR:

Polymerase Chain Reaction

PTK-7:

Protein Tyrosine Kinase-7

SELEX:

Systematic Evolution of Ligands by Exponential Enrichment

T-ALL:

T-Cell Acute Lymphoblastic Leukemia

References

  • Aghaeepour N, Finak G, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228–38 (Available from: PM: 23396282).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbas AS, Mi J, Clary BM, White RR. Aptamer applications for targeted cancer therapy. Future Oncol. 2010;6(7):1117–26 (Available from: PM: 20624124).

    Article  CAS  PubMed  Google Scholar 

  • Blank M, Weinschenk T, Priemer M, Schluesener H. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001;276(19):16464–8 (Available from: PM:11279054).

    Article  CAS  PubMed  Google Scholar 

  • Borowitz MJ, Bray R, Gascoyne R, Melnick S, Parker JW, Picker L, Stetler-Stevenson M. U.S.-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: data analysis and interpretation. Cytometry. 1997;30(5):236–44 (Available from: PM:9383097).

    Article  CAS  PubMed  Google Scholar 

  • Cerchia L, Giangrande PH, McNamara JO, de Franciscis V. Cell-specific aptamers for targeted therapies. Methods Mol Biol. 2009;535:59–78 (Available from: PM:19377980).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chu TC, Marks III JW, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M. Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 2006;66(12):5989–92 (Available from: PM:16778167).

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Keranen LM, Ellington AD, Newton AC. Isozyme-specific inhibition of protein kinase C by RNA aptamers. J Biol Chem. 1994;269(51):32051–4 (Available from: PM:7528207).

    CAS  PubMed  Google Scholar 

  • Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A. 2003;100(26):15416–21 (Available from: PM:14676325).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davis BH, Holden JT, Bene MC, Borowitz MJ, Braylan RC, Cornfield D, Gorczyca W, Lee R, Maiese R, Orfao A, Wells D, Wood BL, Stetler-Stevenson M. 2006 Bethesda International Consensus recommendations on the flow cytometric immunophenotypic analysis of hematolymphoid neoplasia: medical indications. Cytometry B Clin Cytom. 2007;72 Suppl 1:S5–13 (Available from: PM:17803188).

    Article  PubMed  Google Scholar 

  • de Francis V, Esposito CL, Catuogno S, Cellai L, Cerchia L. Aptamers as innovative diagnostic and therapeutic agents in the central nervous system. CNS Neurol Disord Drug Targets. 2009;8(5):393–401 (Available from: PM:19702567).

    Article  Google Scholar 

  • Ellington AD, Conrad R. Aptamers as potential nucleic acid pharmaceuticals. Biotechnol Annu Rev. 1995;1:185–214 (Available from: PM:9704089).

    Article  CAS  PubMed  Google Scholar 

  • Estey EH. Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol. 2013;88(4):318–27 (Available from: PM:23526416).

    Article  CAS  PubMed  Google Scholar 

  • Fiser K, Sieger T, Schumich A, Wood B, Irving J, Mejstrikova E, Dworzak MN. Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry A. 2012;81(1):25–34 (Available from: PM:21990127).

    Article  PubMed  Google Scholar 

  • Gold L. The SELEX process: a surprising source of therapeutic and diagnostic compounds. Harvey Lect. 1995;91:47–57 (Available from: PM:9127985).

    PubMed  Google Scholar 

  • Gold L, Brody E, Heilig J, Singer B. One, two, infinity: genomes filled with aptamers. Chem Biol. 2002;9(12):1259–64 (Available from: PM:12498875).

    Article  CAS  PubMed  Google Scholar 

  • Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5(12):e15004 (Available from: PM:21165148).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greig B, Oldaker T, Warzynski M, Wood B. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: recommendations for training and education to perform clinical flow cytometry. Cytometry B Clin Cytom. 2007;72 Suppl 1:S23–33 (Available from: PM:17803190).

    Article  PubMed  Google Scholar 

  • Hirao I, Spingola M, Peabody D, Ellington AD. The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants. Mol Divers. 1998;4(2):75–89 (Available from: PM:10425631).

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Gerrits B, Schmidt A, Bock T, Bausch-Fluck D, Aebersold R, Wollscheid B. Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood. 2010;116(13):e26–34 (Available from: PM:20570859).

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Zhang M, Yue B, Yang M, Carter C, Al-Quran SZ, Li B, Li Y. PTK7: a new biomarker for immunophenotypic characterization of maturing T cells and T cell acute lymphoblastic leukemia. Leuk Res. 2012;36(11):1347–53 (Available from: PM:22898210).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly JA, Feigon J, Yeates TO. Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d(GGTTGGTGTGGTTGG). J Mol Biol. 1996;256(3):417–22 (Available from: PM:8604127).

    Article  CAS  PubMed  Google Scholar 

  • Kern W, Haferlach C, Haferlach T, Schnittger S. Monitoring of minimal residual disease in acute myeloid leukemia. Cancer. 2008;112(1):4–16 (Available from: PM:18000811).

    Article  CAS  PubMed  Google Scholar 

  • Khaled SK, Thomas SH, Forman SJ. Allogeneic hematopoietic cell transplantation for acute lymphoblastic leukemia in adults. Curr Opin Oncol. 2012;24(2):182–90 (Available from: PM:22234252).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lo K, Hahne F, Brinkman RR, Gottardo R. Flowclust: a bioconductor package for automated gating of flow cytometry data. BMC Bioinform. 2009;10:145 (Available from: PM:19442304).

    Article  Google Scholar 

  • Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, McDevitt MR, Patel DJ, Scheinberg DA. A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res. 2011;39(6):2458–69 (Available from: PM:21030439).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marani C, Clavio M, Grasso R, Colombo N, Guolo F, Kunkl A, Ballerini F, Giannoni L, Ghiggi C, Fugazza G, Ravetti JL, Gobbi M, Miglino M. Integrating post induction WT1 quantification and flow-cytometry results improves minimal residual disease stratification in acute myeloid leukemia. Leuk Res. 2013;37(12):1606–11 (Available from: PM: 23891447).

    Article  PubMed  Google Scholar 

  • Mathisen MS, Kantarjian H, Thomas D, O’Brien S, Jabbour E. Acute lymphoblastic leukemia in adults: encouraging developments on the way to higher cure rates. Leuk Lymphoma. 2013;54(12):2592–600 (Available from: PM:23547835).

    Article  CAS  PubMed  Google Scholar 

  • Middeke JM, Beelen D, Stadler M, Gohring G, Schlegelberger B, Baurmann H, Bug G, Bellos F, Mohr B, Buchholz S, Schwerdtfeger R, Martin H, Hegenbart U, Ehninger G, Bornhauser M, Schetelig J. Outcome of high-risk acute myeloid leukemia after allogeneic hematopoietic cell transplantation: negative impact of abnl(17p) and −5/5q-. Blood. 2012;120(12):2521–8 (Available from: PM:22855604).

    Article  CAS  PubMed  Google Scholar 

  • Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D. Myeloid malignancies: mutations, models and management. BMC Cancer. 2012;12:304 (Available from: PM: 22823977).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Donnell MR, Abboud CN, Altman J, Appelbaum FR, Arber DA, Attar E, Borate U, Coutre SE, Damon LE, Goorha S, Lancet J, Maness LJ, Marcucci G, Millenson MM, Moore JO, Ravandi F, Shami PJ, Smith BD, Stone RM, Strickland SA, Tallman MS, Wang ES, Naganuma M, Gregory KM. Acute myeloid leukemia. J Natl Compr Canc Netw. 2012;10(8):984–1021 (Available from: PM: 22878824).

    PubMed  Google Scholar 

  • Paietta E. Minimal residual disease in acute myeloid leukemia: coming of age. Hematology Am Soc Hematol Educ Program. 2012;2012:35–42 (Available from: PM: 23233558).

    PubMed  Google Scholar 

  • Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol. 2009;27(4):171–81 (Available from: PM: 19569254).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoni V, Kieffer S, Desclaux D, Masson F, Rabilloud T. Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis. 2000;21(16):3329–44 (Available from: PM: 11079553).

    Article  CAS  PubMed  Google Scholar 

  • Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D, Li Y, Parekh P, Martin J, Meng L, Phillips JA, Kim YM, Tan WH. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia. 2009;23(2):235–44 (Available from: PM:19151784).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A. 2006;103(32):11838–43 (Available from: PM:16873550).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shangguan D, Cao ZC, Li Y, Tan W. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin Chem. 2007;53(6):1153–5 (Available from: PM:17463173).

    Article  CAS  PubMed  Google Scholar 

  • Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res. 2008;7(5):2133–9 (Available from: PM:18363322).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17(6):1013–34 (Available from: PM:12764363).

    Article  PubMed  Google Scholar 

  • Vant-Hull B, Gold L, Zichi DA. Theoretical principles of in vitro selection using combinatorial nucleic acid libraries. Curr Protoc Nucleic Acid Chem. 2000; Chapter 9, Unit available from: PM:18428805.

    Google Scholar 

  • Wang J, Li G. Aptamers against cell surface receptors: selection, modification and application. Curr Med Chem. 2011;18(27):4107–16 (Available from: PM:21838694).

    Article  CAS  PubMed  Google Scholar 

  • Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, Oldaker T, Shenkin M, Stone E, Wallace P. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom. 2007;72 Suppl 1:S14–22 (Available from: PM:17803189).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Li, Y., Carter, C.M., Al-Quran, S.Z., Allan, R.W. (2014). Immunophenotyping as Biomarker Platform in Acute Leukemia. In: Preedy, V., Patel, V. (eds) Biomarkers in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7744-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7744-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7744-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics