Skip to main content

Cell-Specific Aptamers for Targeted Therapies

  • Protocol
  • First Online:
Nucleic Acid and Peptide Aptamers

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 535))

Abstract

Many signalling proteins involved in diverse functions such as cell growth and differentiation can act as oncogenes and cause cellular transformation. These molecules represent attractive targets for cancer diagnosis or therapy and therefore are subject to intensive investigation.

Aptamers are small, highly structured nucleic acid molecules, isolated from combinatorial libraries by a procedure termed SELEX. Aptamers bind to a target molecule by providing a limited number of specific contact points imbedded in a larger, defined three-dimensional structure. Recently, aptamers have been selected against whole living cells, opening a new path which presents three major advantages: (1) direct selection without prior purification of membrane-bound targets, (2) access to membrane proteins in their native conformation similar to the in vivo conditions and (3) identification of (new) targets related to a specific phenotype. The ability to raise aptamers against living cells opens some attractive possibilities for new therapeutic and delivery approaches. In this chapter, the most recent advances in the field will be reviewed together with detailed descriptions of the relevant experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  2. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Science 346, 818–822.

    CAS  Google Scholar 

  3. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H. and Toole, J.J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566.

    Article  PubMed  CAS  Google Scholar 

  4. Osborne, S.E. and Ellington, A.D. (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem. Rev. 97, 349–370.

    Article  PubMed  CAS  Google Scholar 

  5. Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson-Welsh, L. and Janjic, N. (1998) 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567.

    Article  PubMed  CAS  Google Scholar 

  6. Famulok, M. and Mayer, G. (2005). Intramers and aptamers: applications in protein-function analyses and potential for drug screening. ChemBioChem. 6, 19–26.

    Article  PubMed  CAS  Google Scholar 

  7. Morris, K.N., Jensen, K.B, Julin, C.M., Weil, M., Gold, L. (1998) High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. U.S.A. 95, 2902–2907.

    Google Scholar 

  8. Homann, M. and Goringer, H.U. (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. 27, 2006–2014.

    Article  PubMed  CAS  Google Scholar 

  9. Cerchia, L., Ducongé, F., Pestourie, C., Boulay, J., Aissouni, Y., Gombert, K., Tavitian, B, de Franciscis, V. and Libri, D. (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 3, e123.

    Article  PubMed  Google Scholar 

  10. Gschwind, A., Fischer, O.M. and Ullrich, A. (2004). The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer. 4, 361–370.

    Article  PubMed  CAS  Google Scholar 

  11. Pestourie, C., Cerchia, L., Gombert, K., Aissouni, Y., Boulay, J., de Franciscis, V., Libri, D., Tavitian, B. and Duconge, F. (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16, 323–335.

    Article  PubMed  CAS  Google Scholar 

  12. Jhiang, S.M. (2000) The RET proto-oncogene in human cancers. Oncogene 19, 5590–5597.

    Article  PubMed  CAS  Google Scholar 

  13. Ichihara, M., Murakumo, Y. and Takahashi, M. (2004). RET and neuroendocrine tumors. Cancer Lett. 204,197–211.

    Article  PubMed  CAS  Google Scholar 

  14. Hansford, J.R. and Mulligan, L.M. (2000) Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J. Med. Genet. 37, 817–827.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi, M. (2001) The GDNF/Ret signaling pathway and human diseases. Cytokine Growth Factor Rev. 12, 361–373.

    Article  PubMed  CAS  Google Scholar 

  16. Putzer, B.M. and Drosten, M. (2004) The RET proto-oncogene: a potential target for molecular cancer therapy. Trends Mol. Med. 10, 351–357.

    Article  PubMed  CAS  Google Scholar 

  17. Maniè, S., Santoro, M., Fusco, A. and Billaud, M. (2001) The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 17, 580–589.

    Article  PubMed  Google Scholar 

  18. Pirollo, K.F., Zon, G., Rait, A., Zhou, Q., Yu, W., Hogrefe, R. and Chang, E.H. (2006) Tumor-targeting nanoimmunoliposome complex for short interfering RNA delivery. Human Gene Ther. 17, 117–124.

    Article  CAS  Google Scholar 

  19. Song, E., Zhu, P., Lee, S., Chowdhury, D., Kussman, S., Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., Marasco, W.A. and Lieberman, J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.Nat. Biotechnol. 23, 709–717.

    Article  PubMed  CAS  Google Scholar 

  20. Sioud, M. (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: A central role for 2'-hydroxyl uridines in immune responses. Eur. J. Immunol. 36, 1222–1230.

    Article  PubMed  CAS  Google Scholar 

  21. Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P. and Langer, R. (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U.S.A. 103, 6315–6320.

    Google Scholar 

  22. Chu, T.C., Twu, K.T., Ellington, A.D. and Levy, M. (2006) Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73.

    Article  PubMed  Google Scholar 

  23. McNamara, J.O. 2nd, Andrechek, E.R., Wang, Y., Viles, K.D., Rempel, R.E., Gilboa, E., Sullenger, B.A. and Giangrande, P.H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1115.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, C.H., Chernis, G.A., Hoang, V.Q. and Landgraf, R. (2003). Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. U.S.A. 100, 9226–9231.

    Google Scholar 

  25. Lupold, S.E., Hicke, B.J., Lin, Y. and Coffey, D.S. (2002). Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 62, 4029–4033.

    PubMed  CAS  Google Scholar 

  26. Mi, J., Zhang, X., Giangrande, P.H., McNamara, J.O., 2nd, Nimjee, S.M., Sarraf-Yazdi, S., Sullenger, B.A. and Clary, B.M. (2005). Targeted inhibition of alphavbeta3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem. Biophys. Res. Commun. 338, 956–963.

    Article  PubMed  CAS  Google Scholar 

  27. Mori, T., Oguro, A., Ohtsu, T. and Nakamura, Y (2004). RNA aptamers selected against the receptor activator of NF-kappaB acquire general affinity to proteins of the tumor necrosis factor receptor family. Nucleic Acids Res. 32, 6120–6128.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Molecular Imaging Laboratory (EMIL) Network (LSHC-2004-503569) and by the MIUR-FIRB Grant (#RBIN04J4J7).

We wish to thank C.L. Esposito, B. Tavitian, F. Duconge and D. Libri for fruitful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cerchia, L., Giangrande, P.H., McNamara, J.O., de Franciscis, V. (2009). Cell-Specific Aptamers for Targeted Therapies. In: Mayer, G. (eds) Nucleic Acid and Peptide Aptamers. Methods in Molecular Biology™, vol 535. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-557-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-557-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-89-3

  • Online ISBN: 978-1-59745-557-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics