Skip to main content

Biomarkers in Focal Segmental Glomerulosclerosis

  • Living reference work entry
  • First Online:
Biomarkers in Kidney Disease
  • 326 Accesses

Abstract

Focal segmental glomerulosclerosis (FSGS) is a podocyte-related disease and one of the common causes of idiopathic glomerulonephritis. The pathogenesis of FSGS is not well understood and still under study; however, some clues have been found regarding implications of critical signaling pathways. Diagnosis of FSGS like other glomerulopathies is based on renal biopsy. Although biopsy considered a gold standard in nephrology world for diagnosis, it is invasive and not always possible to be performed. Discovery of the biomolecules which are easily measurable, noninvasive, specific, and sensitive and their changes reflect the type and stage of the disease can simplify the diagnosis. These biomolecules are referred to as “biomarkers” and can be complementary to biopsy for faster and more accurate diagnosis. The advances in biomedicine fields and nascency of the high-throughput platforms such as proteomics, transcriptomics, metabolomics, and other related “omics” have brought the novel way of detection biomarkers in various diseases. In this review, we focus on the recently presented biomarkers for diagnosis, prognosis, and prediction of the responsiveness to drugs for FSGS detected by different methods. However, most of the current biomarkers are still under more examination; they will be dependable complementary of traditional diagnostic methods in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2DE:

Two-dimensional electrophoresis

ACE:

Angiotensin-converting enzyme

ADR:

Adriamycin

ARB:

Angiotensin receptor blocker

CLCF1:

Cardiotrophin-like cytokine factor 1

ConA:

Concanavalin A

ELISA:

Enzyme-linked immunosorbent assay

EMT:

Epithelial–mesenchymal transition

ESRD:

End-stage renal disease

FDR:

False discovery rate

FN:

Fibronectin

FSGS:

Focal segmental glomerulosclerosis

GBM:

Glomerular basement membrane

GC-MS:

Gas chromatography mass spectrometry

GFR:

Glomerular filtration rate

GPI:

Glycosylphosphatidylinositol

HLA:

Human leukocyte antigen

IEF:

Isoelectrofocusing

IGFBP:

Insulin-like growth factor-binding protein

INS:

Idiopathic nephrotic syndrome

LC:

Liquid chromatography

LN:

Lupus nephritis

MALDI-TOF:

Matrix-assisted laser desorption/ionization time of flight

MCD:

Minimal change disease

MCNS:

Minimal change nephrotic syndrome

MCP-1:

Monocyte chemotactic protein-1

MDA:

Malondialdehyde

MMF:

Mycophenolate mofetil

MMP9:

Matrix metallopeptidase 9

MN:

Membranous nephropathy

MS:

Mass spectrometry

NGAL:

Neutrophil gelatinase-associated lipocalin

NMR:

Nuclear magnetic resonance

NOS:

Not otherwise specified

RT-qPCR:

Real-time quantitative polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SELDI-TOF:

Surface-enhanced laser desorption/ionization time of flight

SRM:

Single reaction monitoring

SRNS:

Steroid-resistant nephrotic syndrome

SSNS:

Steroid-sensitive nephrotic syndrome

suPAR:

Soluble urokinase plasminogen activator receptor

TGF-ß:

Transforming growth factor-ß

TWEAK:

TNF-like weak inducer of apoptosis

UPAR:

Urokinase plasminogen activator receptor

References

  • Bennett MR, Piyaphanee N, Czech K, et al. NGAL distinguishes steroid sensitivity in idiopathic nephrotic syndrome. Pediatr Nephrol. 2012;27:807–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock ME, Price HE, Gallon L, et al. Serum soluble urokinase-type plasminogen activator receptor levels and idiopathic FSGS in children: a single-center report. Clin J Am Soc Nephrol. 2013;8:1304–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cai X, Xia Z, Zhang C, et al. Serum microRNAs levels in primary focal segmental glomerulosclerosis. Pediatr Nephrol. 2013;28:1797–801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha 1 antitrypsin in glomerular disease associated with nephrotic syndrome. J Am Soc Nephrol. 2006;17:139–48.

    Google Scholar 

  • Cara-Fuentes G, Araya C, Wei C, et al. CD80, suPAR and nephrotic syndrome in a case of NPHS2 mutation. Nefrologia. 2013;33:727–31.

    PubMed  Google Scholar 

  • Cara-Fuentes G, Wei C, Segarra A, et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr Nephrol. 2014;29:1361–71.

    Article  Google Scholar 

  • Carraro M, Zennaro C, Artero M, et al. The effect of proteinase inhibitors on glomerular permeability induced in vitro by serum from patients with idiopathic focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2004;19:1969–75.

    Article  PubMed  CAS  Google Scholar 

  • Chehade H, Parvex P, Poncet A, et al. Urinary low-molecular-weight protein excretion in pediatric idiopathic nephrotic syndrome. Pediatr Nephrol. 2013;28:2299–306.

    Article  PubMed  Google Scholar 

  • Chun MJ, Korbet SM, Schwartz MM, et al. Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. J Am Soc Nephrol. 2004;15:2169–77.

    Article  PubMed  Google Scholar 

  • Davin JC. CD80 and suPAR: diagnostic and pathogenic value in minimal change disease and focal segmental glomerulosclerosis? Pediatr Nephrol. 2014;29:1465–6.

    Article  PubMed  Google Scholar 

  • Deegens JKJ, Steenbergen EJ, Borm GF, et al. Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population—epidemiology and outcome. Nephrol Dial Transplant. 2008;23:186–92.

    Article  PubMed  Google Scholar 

  • Devarajan P, Krawczeski CD, Nguyen MT, et al. Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children. Am J Kidney Dis. 2010;56:632–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Devireddy LR, Gazin C, Zhu X, et al. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123:1293–305.

    Article  PubMed  CAS  Google Scholar 

  • Endlich N, Sunohara M, Nietfeld W, et al. Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J. 2002;16:1850–2.

    PubMed  CAS  Google Scholar 

  • Everaert K, Hoebeke P, Delanghe J. A review on urinary proteins in outflow disease of the upper urinary tract. Clin Chim Acta. 2000;297:183–9.

    Article  PubMed  CAS  Google Scholar 

  • Falk RJ, Jennette JC, Nachman PH. Glomerular disease. In: Brenner B, editor. The kidney. 6th ed. Philadelphia: Saunders; 2000. p. 1283–349.

    Google Scholar 

  • Fischbach BV, Trout KL, Lewis J, et al. WAGR syndrome: a clinical review of 54 cases. Pediatrics. 2005;116:984–8.

    Article  PubMed  Google Scholar 

  • Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318:1–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10:1033–43.

    Article  PubMed  CAS  Google Scholar 

  • Hao X, Liu X, Wang W, et al. Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics. PLoS One. 2013;8, e78531.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hattori M, Akioka Y, Chikamoto H, et al. Increase of integrin-linked kinase activity in cultured podocytes upon stimulation with plasma from patients with recurrent FSGS. Am J Transplant. 2008;8:1550–6.

    Article  PubMed  CAS  Google Scholar 

  • Heiser M, Hutter-Paier B, Jerkovic L, et al. Vitamin E binding protein afamin protects neuronal cells in vitro. J Neural Transm Suppl. 2002;62:337–45.

    Article  PubMed  CAS  Google Scholar 

  • Henry J, Miller MM, Pontarotti P. Structure and evolution of the extended B7 family. Immunol Today. 1999;20:285–8.

    Article  PubMed  CAS  Google Scholar 

  • Huang TH, Shui HA, Ka SM, et al. Rab 23 is expressed in the glomerulus and plays a role in the development of focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2009;24:743–54.

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Liu G, Zhang YM, et al. Urinary soluble urokinase receptor levels are elevated and pathogenic in patients with primary focal segmental glomerulosclerosis. BMC Med. 2014;12:81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jefferson JA, Shankland SJ. Has the circulating permeability factor in primary FSGS been found? Kidney Int. 2013;84:235–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ka SM, Tsai PY, Chao TK, et al. Urine annexin A1 as an index for glomerular injury in patients. Dis Markers. 2014;2014:1–12.

    Article  Google Scholar 

  • Kalantari S, Nafar M, Samavat S, et al. Urinary prognostic biomarkers in patients with focal segmental glomerulosclerosis. Nephrourol Mon. 2014a;6, e16806.

    PubMed  PubMed Central  Google Scholar 

  • Kalantari S, Nafar M, Rutishauser D, et al. Predictive urinary biomarkers for steroid-resistant and steroid-sensitive focal segmental glomerulosclerosis using high resolution mass spectrometry and multivariate statistical analysis. BMC Nephrol. 2014b;15:141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato H, Susztak K. Repair problems in podocytes: Wnt, notch and glomerulosclerosis. Semin Nephrol. 2012;32:350–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khurana M, Traum AZ, Aivado M, et al. Urine proteomic profiling of pediatric nephrotic syndrome. Pediatr Nephrol. 2006;21:1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjeldsen L, Johnsen A, Sengeløv H, et al. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem. 1993;268:10425–32.

    PubMed  CAS  Google Scholar 

  • Korzeniecka-Kozerska A, Wasilewska A, Tenderenda E, et al. Urinary MMP-9/NGAL ratio as a potential marker of FSGS in nephrotic children. Dis Markers. 2013;34:357–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kuo HT, Kuo MC, Chiu YW, et al. Increased glomerular and extracellular malondialdehyde levels in patients and rats with focal segmental glomerulosclerosis. Eur J Clin Invest. 2005;35:245–50.

    Article  PubMed  CAS  Google Scholar 

  • Lee HS. Pathogenic role of TGF-ß in diabetic nephropathy. J Diabetes Metab. 2013;S9:008.

    Google Scholar 

  • Li F, Zheng C, Zhong Y, et al. Relationship between serum soluble urokinase plasminogen activator receptor level and steroid responsiveness in FSGS. Clin J Am Soc Nephrol. 2014;9:1903–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lopez-Hellin J, Cantarell C, Jimeno L, et al. A form of apolipoprotein a-I is found specifically in relapses of focal segmental glomerulosclerosis following transplantation. Am J Transplant. 2013;13:493–500.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen J, Shah R, Biser A, et al. The role of osteopontin in the development of albuminuria. J Am Soc Nephrol. 2008;19:884–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Makris K, Markou N, Evodia E, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med. 2009;47:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Marczewski K, Krawczyk W, Rozyc P, et al. Day/night ratio of microproteinuria and blood pressure rhythm in type II diabetes. Diabetes Res Clin Pract. 1996;33:169–72.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Hess S, Kajiyama H, et al. Proteomic analysis identifies insulin-like growth factor binding protein-related protein 1 as a podocyte product. Am J Physiol Renal Physiol. 2010;299(4):F776–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol: Clin J Am Soc Nephrol. 2010;5:2115–21.

    Article  PubMed  Google Scholar 

  • Meijers B, Maas RJ, Sprangers B, et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 2014;85:636–40.

    Article  PubMed  CAS  Google Scholar 

  • Nafar M, Kalantari S, Samavat S, et al. The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Int J Nephrol. 2014;2014:574261.

    PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Kitazawa K, Honda H, et al. Roles of and correlation between alpha-smooth muscle actin, CD44, hyaluronic acid and osteopontin in crescent formation in human glomerulonephritis. Clin Nephrol. 2005;64:401–11.

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Muñoz M, Ibernon M, Bonet J, et al. Uromodulin and α(1)-antitrypsin urinary peptide analysis to differentiate glomerular kidney diseases. Kidney Blood Press Res. 2012;35:314–25.

    Article  PubMed  Google Scholar 

  • Nezhad ST, Momeni B, Basiratnia M. Glomerular malondialdehyde levels in patients with focal and segmental glomerulosclerosis and minimal change disease. Saudi J Kidney Dis Transpl. 2010;21:886–91.

    PubMed  Google Scholar 

  • Niaudet P, Gubler MC. WT1 and glomerular diseases. Pediatr Nephrol. 2006;21:1653–60.

    Article  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.

    Article  PubMed  CAS  Google Scholar 

  • Normandin K, Peant B, Le Page C, et al. Protease inhibitor SERPINA1 expression in epithelial ovarian cancer. Clin Exp Metastasis. 2010;27:55.

    Article  PubMed  CAS  Google Scholar 

  • Orloff MS, Iyengar SK, Winkler CA, et al. Variants in the Wilms’ tumor gene are associated with focal segmental glomerulosclerosis in the African American population. Physiol Genomics. 2005;21:212–21.

    Article  PubMed  CAS  Google Scholar 

  • Pérez V, Ibernón M, López D, et al. Urinary peptide profiling to differentiate between minimal change disease and focal segmental glomerulosclerosis. PLoS One. 2014;9, e87731.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piyaphanee N, Ma Q, Kremen O, et al. Discovery and initial validation of α 1-B glycoprotein fragmentation as a differential urinary biomarker in pediatric steroid-resistant nephrotic syndrome. Proteomics Clin Appl. 2011;5:334–42.

    Article  PubMed  CAS  Google Scholar 

  • Ponticelli C, Passerini P. Can prognostic factors assist therapeutic decisions in idiopathic membranous nephropathy? J Nephrol. 2010;23:156–63.

    PubMed  Google Scholar 

  • Proletov II, Saganova ES, Galkina OV, et al. Diagnostic value of cystatin C and neutrophil gelatinase-associated lipocalin in primary glomerulopathies. Ter Arkh. 2013;85:10–6.

    Google Scholar 

  • Ramjee G, Coovadia HM, Adhikari M. Comparison of noninvasive methods for distinguishing steroid-sensitive nephrotic syndrome from focal glomerulosclerosis. J Lab Clin Med. 1997;129:47–52.

    Article  PubMed  CAS  Google Scholar 

  • Reiser J, Mundel P. Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol. 2004;15:2246.

    Article  PubMed  Google Scholar 

  • Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113:1390.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rich AR. A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. Bull Johns Hopkins Hosp. 1959;100:173–86.

    Google Scholar 

  • Romick-Rosendale LE, Brunner HI, Bennett MR, et al. Identification of urinary metabolites that distinguish membranous lupus nephritis from proliferative lupus nephritis and focal segmental glomerulosclerosis. Arthritis Res Ther. 2011;13, R199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakairi T, Abe Y, Kopp JB. TGF-beta1 reduces Wilms’ tumor suppressor gene expression in podocytes. Nephrol Dial Transplant. 2011;26:2746–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sanchez-Niño MD, Poveda J, Sanz AB, et al. Fn14 in podocytes and proteinuric kidney disease. Biochim Biophys Acta. 2013;1832:2232–43.

    Article  PubMed  Google Scholar 

  • Santin M, Cannas M. Collagen-bound alpha 1-microglobulin in normal and healed tissues and its effect on immunocompetent cells. Scand J Immunol. 1999;50:289–95.

    Article  PubMed  CAS  Google Scholar 

  • Savin VJ, Sharma M, McCarthy ET, et al. Cardiotrophin-like cytokine-1: candidate for the focal glomerulosclerosis permeability factor (Abstract). J Am Soc Nephrol. 2008;19:59A.

    Article  Google Scholar 

  • Schordan S, Grisk O, Schordan E, et al. OPN deficiency results in severe glomerulosclerosis in uninephrectomized mice. Am J Physiol Renal Physiol. 2013;304:F1458–70.

    Article  PubMed  CAS  Google Scholar 

  • Sedic M, Gethings LA, Vissers JPC, et al. Label-free mass spectrometric profiling of urinary proteins and metabolites from paediatric idiopathic nephrotic syndrome. Biochem Biophys Res Commun. 2014;452:21–6.

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Sharma R, McCarthy ET, et al. The focal segmental glomerulosclerosis permeability factor: biochemical characteristics and biological effects. Exp Biol Med. 2004;229:85–98.

    CAS  Google Scholar 

  • Shui HA, Ka SM, Lin JC, et al. Fibronectin in blood invokes the development of focal segmental glomerulosclerosis in mouse model. Nephrol Dial Transplant. 2006;21:1794–802.

    Article  PubMed  CAS  Google Scholar 

  • Shui HA, Ka SM, Yang SM, et al. Osteopontin as an injury marker expressing in epithelial hyperplasia lesions helpful in prognosis of focal segmental glomerulosclerosis. Transl Res. 2007;150:216–22.

    Article  PubMed  CAS  Google Scholar 

  • Shui HA, Huang TH, Ka SM, et al. Urinary proteome and potential biomarkers associated with serial pathogenesis steps of focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2008;23:176–85.

    Article  PubMed  CAS  Google Scholar 

  • Smith HW, Marshall CJ. Regulation of cell signaling by uPAR. Nat Rev Mol Cell Biol. 2010;11:23–36.

    Article  PubMed  CAS  Google Scholar 

  • Susztak K, Bottinger E, Novetsky A, et al. Molecular profiling of diabetic mouse kidney reveals novel genes linked to glomerular disease. Diabetes. 2004;53:784–94.

    Article  PubMed  CAS  Google Scholar 

  • Szeto CC, Chan RW, Lai KB, et al. Messenger RNA expression of target genes in the urinary sediment of patients with chronic kidney diseases. Nephrol Dial Transplant. 2005;20:105–13.

    Article  PubMed  CAS  Google Scholar 

  • Teramoto H, Castellone MD, Malek RL, et al. Autocrine activation of an osteopontin-CD44-Rac pathway enhances invasion and transformation by H-RasV12. Oncogene. 2005;24:489–501.

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Zhou Y, Jiang L, et al. Urinary Micro-RNA 10a and Micro-RNA 30d serve as novel sensitive and specific biomarkers for kidney injury. PloS One. 2012;33:134–44.

    Google Scholar 

  • Wang G, Kwan BC, Lai FM, et al. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin Chim Acta. 2013;418:5–11.

    Article  PubMed  CAS  Google Scholar 

  • Wei C, El Hindi S, Li J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med. 2011;17:952–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei C, Trachtman H, Li J, Dong C, et al. PodoNet and FSGS CT study consortia: circulating suPAR in two cohorts of primary FSGS. J Am Soc Nephrol. 2012;23:2051–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wen Q, Huang LT, Luo N, et al. Proteomic profiling identifies haptoglobin as a potential serum biomarker for steroid-resistant nephrotic syndrome. Am J Nephrol. 2012;36:105–13.

    Article  PubMed  CAS  Google Scholar 

  • Woroniecki RP, Kopp JB. Genetics of focal segmental glomerulosclerosis. Pediatr Nephrol. 2007;22:638–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Worthmann K, Peters I, Kümpers P, et al. Urinary excretion of IGFBP-1 and 3 correlate with disease activity and differentiate focal segmental glomerulosclerosis and minimal change disease. Growth Factors. 2010;28:129–38.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Goetz D, Li JY, Wang W, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10:1045–56.

    Article  PubMed  CAS  Google Scholar 

  • Youssef DM, El-Shal AS. Urinary neutrophil gelatinase-associated lipocalin and kidney injury in children with focal segmental glomerulosclerosis. Iran J Kidney Dis. 2012;6:355–60.

    PubMed  Google Scholar 

  • Yu CC, Fornoni A, Weins A, et al. Abatacept in B7–1-positive proteinuric kidney disease. N Engl J Med. 2013;369:2416–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang C, Zhang W, Chen HM, et al. Plasma microRNA-186 and proteinuria in focal segmental glomerulosclerosis. Am J Kidney Dis. 2014a;S0272-6386:01083-X.

    Google Scholar 

  • Zhang W, Zhang C, Chen H, et al. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin J Am Soc Nephrol. 2014b;9:1545–52.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao M, Li M, Li X, et al. Dynamic changes of urinary proteins in a focal segmental glomerulosclerosis rat model. Proteome Sci. 2014;21:12–42.

    Google Scholar 

  • Zhou H, Cheruvanky A, Hu X, et al. Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int. 2008;74:613–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou H, Kajiyama H, Tsuji T, et al. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. Am J Physiol Renal Physiol. 2013;305:F553–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Kalantari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Nafar, M., Kalantari, S. (2015). Biomarkers in Focal Segmental Glomerulosclerosis. In: Patel, V. (eds) Biomarkers in Kidney Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7743-9_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7743-9_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7743-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics